Changes in the liver of Djungarian hamsters under conditions of a three-month supply of water-soluble silicon of various concentrations
Evgeniia A. Grigoreva , Valentina S. Gordova , Valentina E. Sergeeva , Roman D. Mikheikin , Valeriia S. Dedikina , Darya A. Braun
Medical academic journal ›› 2024, Vol. 24 ›› Issue (1) : 97 -106.
Changes in the liver of Djungarian hamsters under conditions of a three-month supply of water-soluble silicon of various concentrations
BACKGROUND: Silicon enters the human body through drinking water, air and food. Silicon nanoparticles used in the cosmetic, pharmaceutical and food industries are known to have biological activity. Taking into account the widespread prevalence of silicon compounds, the issue of the safety of its use is becoming more urgent.
AIM: To study the effect of water-soluble silicon on the morphological structure of the liver of Djungarian hamsters for three months.
MATERIALS AND METHODS: The experiment was carried out on Djungarian hamsters kept in normal vivarium conditions under natural light. The animals were divided into three groups: control, which received bottled drinking water; the first experimental group, which received the same water, but with the addition of sodium metasilicate nine-hydrate at a concentration of 10 mg/l in terms of silicon; the second experimental group, which also received the same water, but with the concentration of sodium metasilicate nine-hydrate doubled (up to 20 mg/l). After three months, the animals were removed from the experiment. Sections were processed by general histological (hematoxylin and eosin, Van Gieson method, toluidine blue), histochemical (monoamine oxidase-positive cells) methods.
RESULTS: In the liver of hamsters from the experimental groups, changes in the micromorphological structure were revealed, such as an increase in the nuclear area, nuclear-cytoplasmic ratio of hepatocytes, and the diameter of sinusoidal capillaries. Moreover, more pronounced changes were observed in the liver of hamsters of the second experimental group, such as polymorphic cell infiltration of the portal tracts, an increase in the number of eosinophils, deformation of hepatocyte nuclei and the appearance of apoptotic bodies. A decrease in the area of mast cells and an increase in their number, as well as the number of monoamine oxidase-positive cells in the liver of hamsters of both experimental groups were recorded.
CONCLUSIONS: An increase in the concentration of silicon supplied with drinking water in both cases is reflected in the micromorphological structure of the liver of hamsters. Moreover these changes are more pronounced in the liver of hamsters of the second experimental group.
silicon / liver / silicates / hamsters / mast cells / monoamine oxidase-positive cells
| [1] |
Martin KR. Silicon: the health benefits of a metalloid. Met Ions life Sci. 2013;13:451–473. doi: 10.1007/978-94-007-7500-8_14 |
| [2] |
Martin K.R. Silicon: the health benefits of a metalloid // Met Ions life Sci. 2013. Vol. 13. P. 451–473. doi: 10.1007/978-94-007-7500-8_14 |
| [3] |
Martin KR. The chemistry of silica and its potential health benefits. J Nutr Health Aging. 2007;11(2):94–97. |
| [4] |
Martin K.R. The chemistry of silica and its potential health benefits // J Nutr Health Aging. 2007. Vol. 11, N 2. P. 94–97. |
| [5] |
Athinarayanan J, Alshatwi AA, Periasamy VS, Al-Warthan AA. Identification of nanoscale ingredients in commercial food products and their induction of mitochondrially mediated cytotoxic effects on human mesenchymal stem cells. J Food Sci. 2015;80(2):459–464. doi: 10.1111/1750-3841.12760 |
| [6] |
Athinarayanan J., Alshatwi A.A., Periasamy V.S., Al-Warthan A.A. Identification of nanoscale ingredients in commercial food products and their induction of mitochondrially mediated cytotoxic effects on human mesenchymal stem cells // J Food Sci. 2015. Vol. 80, N 2. P. 459–464. doi: 10.1111/1750-3841.12760 |
| [7] |
Lotfipour F, Shahi S, Farjami A, et al. Safety and toxicity issues of therapeutically used nanoparticles from the oral route. Biomed Res Int. 2021;2021:e9322282. doi: 10.1155/2021/9322282 |
| [8] |
Lotfipour F., Shahi S., Farjami A., et al. Safety and toxicity issues of therapeutically used nanoparticles from the oral route // Biomed Res Int. 2021. Vol. 2021. P. e9322282. doi: 10.1155/2021/9322282 |
| [9] |
Martin KR. Dietary Silicon: Is Biofortification Essential? J Nutr Food Sci Forecast. 2018;1(2):1006. |
| [10] |
Martin K.R. Dietary Silicon: Is Biofortification Essential? // J Nutr Food Sci Forecast. 2018. Vol. 1, N 2. P. 1006. |
| [11] |
Jugdaohsingh R, Anderson SHC, Tucker KL, et al. Dietary silicon intake and absorption. Am J Clin Nutr. 2002;75:887–893. doi: 10.1093/ajcn/75.5.887 |
| [12] |
Jugdaohsingh R., Anderson S.H.C., Tucker K.L., et al. Dietary silicon intake and absorption // Am J Clin Nutr. 2002. Vol. 75. P. 887–893. doi: 10.1093/ajcn/75.5.887 |
| [13] |
Kamenetskaya DB. Silicon, its forms and methods of determination in water bodies: a review. Public Health and Life Environment – PH&LE. 2022;(6):15–22. EDN: IGIDQG doi: 10.35627/2219-5238/2022-30-6-15-22 |
| [14] |
Каменецкая Д.Б. Кремний в природных водных объектах: формы соединений и методы контроля (обзор) // Здоровье населения и среда обитания – ЗНиСО. 2022. № 6. С. 15–22. EDN: IGIDQG doi: 10.35627/2219-5238/2022-30-6-15-22 |
| [15] |
Firouzamandi M, Hejazy M, Mohammadi A, et al. In vivo toxicity of oral administrated nano-SiO2: Can food additives increase apoptosis? Biol Trace Elem Res. 2023;201(10):4769–4778. doi: 10.1007/s12011-022-03542-7 |
| [16] |
Firouzamandi M., Hejazy M., Mohammadi A., et al. In vivo toxicity of oral administrated nano-SiO2: Can food additives increase apoptosis? // Biol Trace Elem Res. 2023. Vol. 201, N 10. P. 4769–4778. doi: 10.1007/s12011-022-03542-7 |
| [17] |
Joshi D, Keane D, Brind E. Visual hepatology: textbook. Transl. from English Yu.O. Shulpekova. Ed. by Ch.S. Pavlov. Moscow: GEOTAR-Media; 2018. 168 p. (In Russ.) |
| [18] |
Джоши Д., Кин Д., Брин Э. Наглядная гепатология: учебное пособие / пер. с англ. Ю.О. Шульпековой; под ред. Ч.С. Павлова. Москва: ГЭОТАР-Медиа, 2018. 168 с. |
| [19] |
Myadelets OD, Lebedeva EI. Functional morphology and elements of general liver pathology. Vitebsk: VGMU; 2018. 339 p. (In Russ.) EDN: YXKBZJ |
| [20] |
Мяделец О.Д., Лебедева Е.И. Функциональная морфология и элементы общей патологии печени. Витебск: ВГМУ, 2018. 339 с. EDN: YXKBZJ |
| [21] |
Zaitseva NV, Zemlyanova MA, Zvezdin VN, et al. Influence of silicon dioxide nanoparticles on the morphology of internal organs in rats after oral administration. Health risk analysis. 2016;4:74–87. EDN: XHTTDD doi: 10.21668/health.risk/2016.4.10 |
| [22] |
Зайцева Н.В., Землянова М.А., Звездин В.Н., и др. Влияние наночастиц диоксида кремния на морфологию внутренних органов у крыс при пероральном введении // Анализ риска здоровью. 2016. № 4. С. 80–94. EDN: XHTTDD doi: 10.21668/health.risk/2016.4.10 |
| [23] |
Yukina GYu, Sukhorukova EG, Polovnikov IV, Kryzhanovskaya EA. Effect of silicon dioxide nanoparticles on liver morphology of rats in parenteral administration. Journal of Anatomy and Histopathology. 2021;10(4):85–88. EDN: GLZFDO doi: 10.18499/2225-7357-2021-10-4-85-88. |
| [24] |
Юкина Г.Ю., Сухорукова Е.Г., Половников И.В., Крыжановская Е.А. Влияние наночастиц диоксида кремния на морфологию печени крысы при парентеральном введении // Журнал анатомии и гистопатологии. 2021. Т. 10, № 4. С. 85–88. EDN: GLZFDO doi: 10.18499/2225-7357-2021-10-4-85-88 |
| [25] |
Tassinari R, Martinelli A, Valeri M, Maranghi F. Amorphous silica nanoparticles induced spleen and liver toxicity after acute intravenous exposure in male and female rats. Toxicol Ind Health. 2021;37(6):328–335. doi: 10.1177/07482337211010579 |
| [26] |
Tassinari R., Martinelli A., Valeri M., Maranghi F. Amorphous silica nanoparticles induced spleen and liver toxicity after acute intravenous exposure in male and female rats // Toxicol Ind Health. 2021. Vol. 37, N 6. P. 328–335. doi: 10.1177/07482337211010579 |
| [27] |
Azouz RA, Korany RMS. Toxic impacts of amorphous silica nanoparticles on liver and kidney of male adult rats: an in vivo study. Biol Trace Elem Res. 2021;199(7):2653–2662. doi: 10.1007/s12011-020-02386-3 |
| [28] |
Azouz R.A., Korany R.M.S. Toxic impacts of amorphous silica nanoparticles on liver and kidney of male adult rats: an in vivo study // Biol Trace Elem Res. 2021. Vol. 199, N 7. P. 2653–2662. doi: 10.1007/s12011-020-02386-3 |
| [29] |
Liang Q, Sun M, Ma Y, et al. Adverse effects and underlying mechanism of amorphous silica nanoparticles in liver. Chemosphere. 2023;311(Pt 1):136955. doi: 10.1016/j.chemosphere.2022.136955 |
| [30] |
Liang Q., Sun M., Ma Y., et al. Adverse effects and underlying mechanism of amorphous silica nanoparticles in liver // Chemosphere. 2023. Vol. 311, N Pt 1. P. 136955. doi: 10.1016/j.chemosphere.2022.136955 |
| [31] |
Badawy MM, Sayed-Ahmed MZ, Almoshari Y, et al. Magnesium supplementation alleviates the toxic effects of silica nanoparticles on the kidneys, liver, and adrenal glands in rats. Toxics. 2023;11(4):381. doi: 10.3390/toxics11040381 |
| [32] |
Badawy M.M., Sayed-Ahmed M.Z., Almoshari Y., et al. Magnesium supplementation alleviates the toxic effects of silica nanoparticles on the kidneys, liver, and adrenal glands in rats // Toxics. 2023. Vol. 11, N 4. P. 381. doi: 10.3390/toxics11040381 |
| [33] |
Mahmoud AM, Desouky EM, Hozayen WG, et al. Mesoporous silica nanoparticles trigger liver and kidney Injury and fibrosis via altering TLR4/NF-κB, JAK2/STAT3 and Nrf2/HO-1 signaling in rats. Biomolecules. 2019;9(10):528. doi: 10.3390/biom9100528 |
| [34] |
Mahmoud A.M., Desouky E.M., Hozayen W.G., et al. Mesoporous silica nanoparticles trigger liver and kidney Injury and fibrosis via altering TLR4/NF-κB, JAK2/STAT3 and Nrf2/HO-1 signaling in rats // Biomolecules. 2019. Vol. 9, N 10. P. 528. doi: 10.3390/biom9100528 |
| [35] |
Sun M, Zhang J, Liang S, et al. Metabolomic characteristics of hepatotoxicity in rats induced by silica nanoparticles. Ecotoxicol Environ Saf. 2021;208:111496. doi: 10.1016/j.ecoenv.2020.111496 |
| [36] |
Sun M., Zhang J., Liang S., et al. Metabolomic characteristics of hepatotoxicity in rats induced by silica nanoparticles // Ecotoxicol Environ Saf. 2021. Vol. 208. P. 111496. doi: 10.1016/j.ecoenv.2020.111496 |
| [37] |
Sadek SA, Soliman AM, Marzouk M. Ameliorative effect of Allolobophora caliginosa extract on hepatotoxicity induced by silicon dioxide nanoparticles. Toxicol Ind Health. 2016;32(8):1358–1372. doi: 10.1177/0748233714561075 |
| [38] |
Sadek S.A., Soliman A.M., Marzouk M. Ameliorative effect of Allolobophora caliginosa extract on hepatotoxicity induced by silicon dioxide nanoparticles // Toxicol Ind Health. 2016. Vol. 32, N 8. P. 1358–1372. doi: 10.1177/0748233714561075 |
| [39] |
Yu Y, Duan J, Li Y, et al. Silica nanoparticles induce liver fibrosis via TGF-β1/Smad3 pathway in ICR mice. Int J Nanomedicine. 2017;12:6045–6057. doi: 10.2147/IJN.S132304 |
| [40] |
Yu Y., Duan J., Li Y., et al. Silica nanoparticles induce liver fibrosis via TGF-β1/Smad3 pathway in ICR mice // Int J Nanomedicine. 2017. Vol. 12. P. 6045–6057. doi: 10.2147/IJN.S132304 |
| [41] |
Grigor’eva EA. Morphological features of the liver when exposed to a water-soluble silicon compound. Medical academic journal. 2016;16(4):71–72. (In Russ.) EDN: XWQLFH doi: 10.17816/MAJ16471-72 |
| [42] |
Григорьева Е.А. Морфологические особенности печени при воздействии водорастворимого соединения кремния // Медицинский академический журнал. 2016. Т. 16, № 4. С. 71–72. EDN: XWQLFH doi: 10.17816/MAJ16471-72 |
| [43] |
Grigor’eva EA, Dedikina VS, Mikheikin RD, et al. Comprehensive assessment of morphological changes in the liver of rabbits exposed to water-soluble silicon for three months. Acta Medica Eurasica. 2023;3:84–93. doi: 10.47026/2413-4864-2023-3-84-93 |
| [44] |
Григорьева Е.А., Дедикина В.С., Михейкин Р.Д., и др. Комплексная оценка морфологических изменений в печени кроликов при воздействии водорастворимого кремния в течение трех месяцев // Acta Medica Eurasica. 2023. № 3. С. 84–93. doi: 10.47026/2413-4864-2023-3-84-93 |
| [45] |
Smitha T, Sharada P, Girish H. Morphometry of the basal cell layer of oral leukoplakia and oral squamous cell carcinoma using computer-aided image analysis. J Oral Maxillofac Pathol. 2011;15(1):26–33. doi: 10.4103/0973-029X.80034 |
| [46] |
Smitha T., Sharada P., Girish H. Morphometry of the basal cell layer of oral leukoplakia and oral squamous cell carcinoma using computer-aided image analysis // J Oral Maxillofac Pathol. 2011. Vol. 15, N 1. P. 26–33. doi: 10.4103/0973-029X.80034 |
| [47] |
Il’ina LYu, Sapozhnikov SP, Kozlov VA, et al. Quantitative evaluation of mast cells sulfation. Acta medica Eurasica. 2020;2:43–53. |
| [48] |
Ильина Л.Ю., Сапожников С.П., Козлов В.А., и др. Количественная оценка сульфатирования тучных клеток // Acta medica Eurasica. 2020. № 2. С. 43–53. |
| [49] |
Pustyl’nyak VO, Kirulli V, Dzhervazi PD, et al. Effect of triphenyldioxane on phase I xenobiotic metabolism enzymes in the liver of rats and rabbits. Bulletin of Experimental Biology and Medicine. 2006;141(6):698–700. EDN: LJSVYL doi: 10.1007/s10517-006-0256-3 |
| [50] |
Пустыльняк В.О., Кирулли В., Джервази П.Д., и др. Влияние трифенилдиоксана на ферменты 1 фазы метаболизма ксенобиотиков в печени крыс и кроликов // Бюллетень экспериментальной биологии и медицины. 2006. Т. 141, № 6. С. 646–648. EDN: LJSVYL doi: 10.1007/s10517-006-0256-3 |
| [51] |
Ardies CM, Lasker JM, Lieber CS. Characterization of the cytochrome P-450 monooxygenase system of hamster liver microsomes. Effects of prior treatment with ethanol and other xenobiotics. Biochem Pharmacol. 1987;36(21):3613–3619. doi: 10.1016/0006-2952(87)90010-4 |
| [52] |
Ardies C.M., Lasker J.M., Lieber C.S. Characterization of the cytochrome P-450 monooxygenase system of hamster liver microsomes. Effects of prior treatment with ethanol and other xenobiotics // Biochem Pharmacol. 1987. Vol. 36, N 21. P. 3613–3619. doi: 10.1016/0006-2952(87)90010-4 |
| [53] |
Bhadoria P, Nagar M, Bharihoke V, Bhadoria AS. Ethephon, an organophosphorous, a fruit and vegetable ripener: has potential hepatotoxic effects? J Family Med Prim Care. 2018;7(1):179–183. doi: 10.4103/jfmpc.jfmpc_422_16 |
| [54] |
Bhadoria P., Nagar M., Bharihoke V., Bhadoria A.S. Ethephon, an organophosphorous, a fruit and vegetable ripener: has potential hepatotoxic effects? // J Family Med Prim Care. 2018. Vol. 7, N 1. P. 179–183. doi: 10.4103/jfmpc.jfmpc_422_16 |
| [55] |
Hussein WF, Farahat FY, Abass MA, Shehata AS. Hepatotoxic potential of gibberellic acid (GA3) in adult male albino rats. Life Sci J. 2011;8:373–383. |
| [56] |
Hussein W.F., Farahat F.Y., Abass M.A., Shehata A.S. Hepatotoxic potential of gibberellic acid (GA3) in adult male albino rats // Life Sci J. 2011. Vol. 8. P. 373–383. |
| [57] |
Yukina GYu, Zhuravskii SG, Panevin AA, et al. Macrophage granulomas and mast cells as beginning organ remodeling in case of silicone dioxide nanoparticles chronic toxicity. Translational Medicine. 2016;3(2):70–79. EDN: XBHQTN doi: 10.18705/2311-4495-2016-3-2-70-79 |
| [58] |
Юкина Г.Ю., Журавский С.Г., Паневин А.А., и др. Взаимодействие тканевых макрофагов и тучных клеток как начало органного ремоделирования в рамках хронической токсичности наночастиц кремнезема // Трансляционная медицина. 2016. Т. 3, № 2. С. 70–79. EDN: XBHQTN doi: 10.18705/2311-4495-2016-3-2-70-79 |
| [59] |
Xu L, Yang Y, Wen Y, et al. Hepatic recruitment of eosinophils and their protective function during acute liver injury. J Hepatol. 2022;77(2):344–352. doi: 10.1016/j.jhep.2022.02.024 |
| [60] |
Xu L., Yang Y., Wen Y., et al. Hepatic recruitment of eosinophils and their protective function during acute liver injury // J Hepatol. 2022. Vol. 77, N 2. P. 344–352. doi: 10.1016/j.jhep.2022.02.024 |
| [61] |
Kondrashevskaya MV. Mast cells heparin — new information on the old component (review). Annals of the Russian Academy of Medical Sciences. 2021;76(2):149–158. EDN: PJYAUA doi: 10.15690/vramn1284 |
| [62] |
Кондрашевская М.В. Гепарин тучных клеток – новые сведения о старом компоненте (обзор литературы) // Вестник Российской академии медицинских наук. 2021. Т. 76, № 2. P. 149–158. EDN: PJYAUA doi: 10.15690/vramn1284 |
| [63] |
Yurina NA, Radostina AI. Mast cells and their role in the body: textbook. Moscow: Peoples’ Friendship University named after Patrice Lumumba; 1977. 75 p. (In Russ.) |
| [64] |
Юрина Н.А., Радостина А.И. Тучные клетки и их роль в организме: учебное пособие. Москва: Изд-во РУДН, 1977. 75 с. |
| [65] |
Gusel’nikova VV, Pronina AP, Nazarov PG, Polevshchikov AV. Origin of mast cells: current state of the problem. In: Questions of morphology of the XXI century. Vol. 2. Collection of works dedicated to the 80-th anniversary of the birth of Aleksey Andreevich Klishov. Saint Petersburg: DEAN; 2010. P. 108–115. (In Russ.) |
| [66] |
Гусельникова В.В., Пронина А.П., Назаров П.Г., Полевщиков А.В. Происхождение тучных клеток: современное состояние проблемы. В кн.: Вопросы морфологии XXI века. Вып. 2. Сборник научных трудов. К 80-летию со дня рождения проф. Алексея Андреевича Клишова. Санкт-Петербург: ДЕАН, 2010. С. 108–115. |
| [67] |
Gorbunova AV. Brain content of biogenic amines and stabilityof cardio-vascular reaction under emotional stress. The Russian Journal of Neuroscience. 2006;1:3–19. (In Russ.) |
| [68] |
Горбунова А.В. Биогенные амины мозга и устойчивость сердечно-сосудистых функций к эмоциональному стрессу // Нейронауки. 2006. № 1. С. 3–19. |
| [69] |
Mayanskii AN, Pazyuk EA, Makarova TP, et al. Mechanism and diagnostic capabilities of the reaction of reduction of nitroblue tetrazolium by human neutrophils. Kazan Medical Journal. 1981;62(4):64–68. (In Russ.) EDN: NGWVRW |
| [70] |
Маянский А.Н., Пазюк Е.А., Макарова Т.П., и др. Механизм и диагностические возможности реакции восстановления нитросинего тетразолия нейтрофилами человека // Казанский медицинский журнал. 1981. Т. 62, № 4. С. 64–68. EDN: NGWVRW |
Eco-Vector
/
| 〈 |
|
〉 |