Pathogenesis of neuropsychic complications of new coronavirus infection

Nikolay A. Klimov , Olga V. Shamova

Medical academic journal ›› 2023, Vol. 23 ›› Issue (4) : 5 -20.

PDF
Medical academic journal ›› 2023, Vol. 23 ›› Issue (4) : 5 -20. DOI: 10.17816/MAJ624867
Analytical reviews
review-article

Pathogenesis of neuropsychic complications of new coronavirus infection

Author information +
History +
PDF

Abstract

Infection caused by the SARS-CoV-2 coronavirus is characterized by neurological and mental complications in a significant number of patients, which are based on disruption of the permeability of the blood-brain barrier, penetration of pro-inflammatory cytokines into the brain, neuroinflammation and coagulopathy. Studies of the brains of patients who died during an acute period of the disease showed a presence of foci of perivascular inflammation containing macrophages and, in a small number, CD8+ T cells. Microglial cells, mast cells, macrophages, and endothelial cells are involved in the development of neuroinflammation. Microglial nodules were observed in brain tissue samples, indicating neurophagia and neuronal loss. Some SARS-CoV-2 proteins, in particular the S protein, have pathogenic properties towards neurons. Biochemical markers in the cerebrospinal fluid of COVID-19 patients — NfL (neurofilament light chain) and GFAp (glial fibrillary acidic protein) indicate axonal destruction and astrocyte damage. Many patients with COVID-19, develop autoantibodies to self-antigens, including some CNS receptors, and encephalitis due to immune dysfunction and molecular mimicry. In patients with Alzheimer’s disease and Parkinson’s disease, coronavirus infection increases the symptoms of these diseases. The purpose of the review is summarizing the literary data for the analysis of immunopathogenesis of neuropsychic complications of acute coronavirus infection (COVID-19) and post-COVID syndrome.

Keywords

SARS-CoV-2 / COVID-19 / post-COVID syndrome / neuroinflammation / Alzheimer’s disease / Parkinson’s disease

Cite this article

Download citation ▾
Nikolay A. Klimov, Olga V. Shamova. Pathogenesis of neuropsychic complications of new coronavirus infection. Medical academic journal, 2023, 23(4): 5-20 DOI:10.17816/MAJ624867

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bordallo B, Bellas M, Cortez AF, et al. Severe COVID-19: what have we learned with the immunopathogenesis? Adv Rheumatol. 2020;60(1):50. DOI: 10.1186/s42358-020-00151-7

[2]

Bordallo B., Bellas M., Cortez A.F. et al. Severe COVID-19: what have we learned with the immunopathogenesis? // Adv. Rheumatol. 2020. Vol. 60, No. 1. P. 50. DOI: 10.1186/s42358-020-00151-7

[3]

Batiha GE, Al-Kuraishy HM, Al-Gareeb AI, et al. Pathophysiology of post-COVID syndromes: a new perspective. Virol J. 2022;19(1):158. DOI: 10.1186/s12985-022-01891-2

[4]

Batiha G.E., Al-Kuraishy H.M., Al-Gareeb A.I. et al. Pathophysiology of post-COVID syndromes: a new perspective // Virol. J. 2022. Vol. 19, No. 1. P. 158. DOI: 10.1186/s12985-022-01891-2

[5]

Evans JP, Liu S-L. Role of host factors in SARS-CoV-2 entry. J Biol Chem. 2021:297(1):100847. DOI: 10.1016/j.jbc.2021.100847

[6]

Evans J.P., Liu S.-L. Role of host factors in SARS-CoV-2 entry // J. Biol. Chem. 2021. Vol. 297, No. 1. P. 100847. DOI: 10.1016/j.jbc.2021.100847

[7]

Gusev E, Sarapultsev A, Solomatina L, et al. SARS-CoV-2-specific immune response and the pathogenesis of COVID-19. Int J Mol Sci. 2022;23(3):1716. DOI: 10.3390/ijms23031716

[8]

Gusev E., Sarapultsev A., Solomatina L. et al. SARS-CoV-2-specific immune response and the pathogenesis of COVID-19 // Int. J. Mol. Sci. 2022. Vol. 23, No. 3. P. 1716. DOI: 10.3390/ijms23031716

[9]

Cantuti-Castelvetri L, Ojha R, Pedro LD, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020;370(6518):856–860. DOI: 10.1126/science.abd2985

[10]

Cantuti-Castelvetri L., Ojha R., Pedro L.D. et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity // Science. 2020. Vol. 370, No. 6518. P. 856–860. DOI: 10.1126/science.abd2985

[11]

Daly JL, Simonetti B, Klein K, et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 2020;370(6518):861–865. DOI: 10.1126/science.abd3072

[12]

Daly J.L., Simonetti B., Klein K. et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection // Science. 2020. Vol. 370, No. 6518. P. 861–865. DOI: 10.1126/science.abd3072

[13]

Zhao J, Yuan Q, Wang H, et al. Responses to SARS-CoV-2 in patients with novel coronavirus disease 2019. Clin Infect Dis. 2020;71(16):2027–2034. DOI: 10.1093/cid/ciaa344

[14]

Zhao J., Yuan Q., Wang H. et al. Responses to SARS-CoV-2 in patients with novel coronavirus disease 2019 // Clin. Infect. Dis. 2020. Vol. 71, No. 16. P. 2027–2034. DOI: 10.1093/cid/ciaa344

[15]

Wajnberg A, Amanat F, Firpo A, et al. Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science. 2020;370(6521):1227–1230. DOI: 10.1126/science.abd7728

[16]

Wajnberg A., Amanat F., Firpo A. et al. Robust neutralizing antibodies to SARS-CoV-2 infection persist for months // Science. 2020. Vol. 370, No. 6521. P. 1227–1230. DOI: 10.1126/science.abd7728

[17]

Sun J, Xiao J, Sun R, et al. Prolonged persistence of SARS-CoV-2 RNA in body fluids. Emerg Infect Dis. 2020;26(8):1834–1838. DOI: 10.3201/eid2608.201097

[18]

Sun J., Xiao J., Sun R. et al. Prolonged persistence of SARS-CoV-2 RNA in body fluids // Emerg. Infect. Dis. 2020. Vol. 26, No. 8. P. 1834–1838. DOI: 10.3201/eid2608.201097

[19]

Stein SR, Ramelli SC, Grazioli A, et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature. 2022;612(7941):758–763. DOI: 10.1038/s41586-022-05542-y

[20]

Stein S.R., Ramelli S.C., Grazioli A. et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy // Nature. 2022. Vol. 612, No. 7941. P. 758–763. DOI: 10.1038/s41586-022-05542-y

[21]

Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome. N Engl J Med. 2017;377(7):562–572. DOI: 10.1056/NEJMra1608077

[22]

Thompson B.T., Chambers R.C., Liu K.D. Acute respiratory distress syndrome // N. Engl. J. Med. 2017. Vol. 377, No. 7. P. 562–572. DOI: 10.1056/NEJMra1608077

[23]

Burnham EL, Janssen WJ, Riches DW, et al. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significanc. Eur Respir J. 2014;43(1):276–285. DOI: 10.1183/09031936.00196412

[24]

Burnham E.L., Janssen W.J., Riches D.W. et al. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance // Eur. Respir. J. 2014. Vol. 43, No. 1. P. 276–285. DOI: 10.1183/09031936.00196412

[25]

Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020;55:102763. DOI: 10.1016/j.ebiom.2020.102763

[26]

Liu J., Li S., Liu J. et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients // EBioMedicine. 2020. Vol. 55. P. 102763. DOI: 10.1016/j.ebiom.2020.102763

[27]

Blanco-Melo D, Nilsson-Payant BE, Liu W-C, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036–1045.e9. DOI: 10.1016/j.cell.2020.04.026

[28]

Blanco-Melo D., Nilsson-Payant B.E., Liu W-C. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19 // Cell. 2020. Vol. 181, No. 5. P. 1036–1045.e9. DOI: 10.1016/j.cell.2020.04.026

[29]

Yang Y, Shen C, Li J, et al. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. J Allergy Clin Immunol. 2020;146(1):119–127.e4. DOI: 10.1016/j.jaci.2020.04.027

[30]

Yang Y., Shen C., Li J. et al. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19 // J. Allergy Clin. Immunol. 2020. Vol. 146, No. 1. P. 119–127.e4. DOI: 10.1016/j.jaci.2020.04.027

[31]

Yang L, Liu S, Liu J, et al. COVID-19: immunopathogenesis and immunotherapeutics. Signal Transduct Target Ther. 2020;5(1):128. DOI: 10.1038/s41392-020-00243-2

[32]

Yang L., Liu S., Liu J. et al. COVID-19: immunopathogenesis and immunotherapeutics // Signal Transduct. Target. Ther. 2020. Vol. 5, No. 1. P. 128. DOI: 10.1038/s41392-020-00243-2

[33]

Soriano JB, Murthy S, Marshall JC, et al. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis. 2022;22(4):e102–e107. DOI: 10.1016/S1473-3099(21)00703-9

[34]

Soriano J.B., Murthy S., Marshall J.C. et al. A clinical case definition of post-COVID-19 condition by a Delphi consensus // Lancet Infect. Dis. 2022. Vol. 22, No. 4. P. e102–e107. DOI: 10.1016/S1473-3099(21)00703-9

[35]

Yong SJ. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infect Dis (Lond). 2021;53(10):737–754. DOI: 10.1080/23744235.2021.1924397

[36]

Yong S.J. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments // Infect. Dis. (Lond). 2021. Vol. 53, No. 10. P. 737–754. DOI: 10.1080/23744235.2021.1924397

[37]

Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(3):133–146. DOI: 10.1038/s41579-022-00846-2

[38]

Davis H.E., McCorkell L., Vogel J.M., Topol E.J. Long COVID: major findings, mechanisms and recommendations // Nat. Rev. Microbiol. 2023. Vol. 21, No. 3. P. 133–146. DOI: 10.1038/s41579-022-00846-2

[39]

Peluso MJ, Lu S, Tang AF, et al. Markers of immune activation and inflammation in individuals with postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection. J Infect Dis. 2021;224(11):1839–1848. DOI: 10.1093/infdis/jiab490

[40]

Peluso M.J., Lu S., Tang A.F. et al. Markers of immune activation and inflammation in individuals with postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection // J. Infect. Dis. 2021. Vol. 224, No. 11. P. 1839–1848. DOI: 10.1093/infdis/jiab490

[41]

Swank Z, Senussi Y, Manickas-Hill Z, et al. Persistent circulating severe acute respiratory syndrome coronavirus 2 spike is associated with post-acute coronavirus disease 2019 sequelae. Clin Infect Dis. 2023;76(3):e487–e490. DOI: 10.1093/cid/ciac722

[42]

Swank Z., Senussi Y., Manickas-Hill Z. et al. Persistent circulating severe acute respiratory syndrome coronavirus 2 spike is associated with post-acute coronavirus disease 2019 sequelae // Clin. Infect. Dis. 2023. Vol. 76, No. 3. P. e487–e490. DOI: 10.1093/cid/ciac722

[43]

Stein SR, Ramelli SC, Grazioli A, et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature. 2022;612(7941):758–763. DOI: 10.1038/s41586-022-05542-y

[44]

Stein S.R., Ramelli S.C., Grazioli A. et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy // Nature. 2022. Vol. 612, No. 7941. P. 758–763. DOI: 10.1038/s41586-022-05542-y

[45]

Taquet M, Geddes JR, Husain M, et al. 6-month neurological and psychiatric outcomes in 236379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry. 2021;8(5):416–427. DOI: 10.1016/S2215-0366(21)00084-5

[46]

Taquet M., Geddes J.R., Husain M. et al. 6-month neurological and psychiatric outcomes in 236379 survivors of COVID-19: a retrospective cohort study using electronic health records // Lancet Psychiatry. 2021. Vol. 8, No. 5. P. 416–427. DOI: 10.1016/S2215-0366(21)00084-5

[47]

Davis HE, McCorkell L, Vogel JM, et al. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(1):133–146. DOI: 10.1038/s41579-022-00846-2

[48]

Davis H.E., McCorkell L., Vogel J.M. et al. Long COVID: major findings, mechanisms and recommendations // Nat. Rev. Microbiol. 2023. Vol. 21, No. 1. P. 133–146. DOI: 10.1038/s41579-022-00846-2

[49]

Taquet M, Sillett R, Zhu L, et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1 284 437 patients. Lancet Psychiatry. 2022;9(10):815–827. DOI: 10.1016/S2215-0366(22)00260-7

[50]

Taquet M., Sillett R., Zhu L. et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1 284 437 patients // Lancet Psychiatry. 2022. Vol. 9, No. 10. P. 815–827. DOI: 10.1016/S2215-0366(22)00260-7

[51]

Lee MH, Perl DP, Steiner J, et al. Neurovascular injury with complement activation and inflammation in COVID-19. Brain. 2022;145(7):2555–2568. DOI: 10.1093/brain/awac151

[52]

Lee M.H., Perl D.P., Steiner J. et al. Neurovascular injury with complement activation and inflammation in COVID-19 // Brain. 2022. Vol. 145, No. 7. P. 2555–2568. DOI: 10.1093/brain/awac151

[53]

Matschke J, Lütgehetmann M, Hagel C, et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020;19(11):919–929. DOI: 10.1016/S1474-4422(20)30308-2

[54]

Matschke J., Lütgehetmann M., Hagel C. et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series // Lancet Neurol. 2020. Vol. 19, No. 11. P. 919–929. DOI: 10.1016/S1474-4422(20)30308-2

[55]

Solomon IH, Normandin E, Bhattacharyya S, et al. Neuropathological features of Covid-19. N Engl J Med. 2020;383(10):989–992. DOI: 10.1056/NEJMc2019373

[56]

Solomon I.H., Normandin E., Bhattacharyya S. et al. Neuropathological features of Covid-19 // N. Engl. J. Med. 2020. Vol. 383, No. 10. P. 989–992. DOI: 10.1056/NEJMc2019373

[57]

Barrantes FJ. Central nervous system targets and routes for SARS-CoV-2: Current views and new hypotheses. ACS Chem Neurosci. 2020;11(18):2793–2803. DOI: 10.1021/acschemneuro.0c00434

[58]

Barrantes F.J. Central nervous system targets and routes for SARS-CoV-2: Current views and new hypotheses // ACS Chem. Neurosci. 2020. Vol. 11, No. 18. P. 2793–2803. DOI: 10.1021/acschemneuro.0c00434

[59]

Welcome MO, Mastorakis NE. Neuropathophysiology of coronavirus disease 2019: neuroinflammation and blood brain barrier disruption are critical pathophysiological processes that contribute to the clinical symptoms of SARS-CoV-2 infection. Inflammopharmacology. 2021;29(4):939–963. DOI: 10.1007/s10787-021-00806-x

[60]

Welcome M.O., Mastorakis N.E. Neuropathophysiology of coronavirus disease 2019: neuroinflammation and blood brain barrier disruption are critical pathophysiological processes that contribute to the clinical symptoms of SARS-CoV-2 infection // Inflammopharmacology. 2021. Vol. 29, No. 4. P. 939–963. DOI: 10.1007/s10787-021-00806-x

[61]

Meinhardt J, Radke J, Dittmayer C, et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci. 2021;24(2):168–175. DOI: 10.1038/s41593-020-00758-5

[62]

Meinhardt J., Radke J., Dittmayer C. et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19 // Nat. Neurosci. 2021. Vol. 24, No. 2. P. 168–175. DOI: 10.1038/s41593-020-00758-5

[63]

Burks SM, Rosas-Hernandez H, Alejandro Ramirez-Lee M, et al. Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier? Brain Behav Immun. 2021;95(1):7–14. DOI: 10.1016/j.bbi.2020.12.031

[64]

Burks S.M., Rosas-Hernandez H., Alejandro Ramirez-Lee M. et al. Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier? // Brain Behav. Immun. 2021. Vol. 95, No. 1. P. 7–14. DOI: 10.1016/j.bbi.2020.12.031

[65]

Granholm AC. Long-term effects of SARS-CoV-2 in the brain: Clinical consequences and molecular mechanisms. J Clin Med. 2023;12(9):3190. DOI: 10.3390/jcm12093190

[66]

Granholm AC. Long-term effects of SARS-CoV-2 in the brain: clinical consequences and molecular mechanisms // J. Clin. Med. 2023. Vol. 12, No. 9. P. 3190. DOI: 10.3390/jcm12093190

[67]

Kaplan L, Chow BW, Gu C. Neuronal regulation of the blood–brain barrier and neurovascular coupling. Nat Rev Neurosci. 2020;21(8):416–432. DOI: 10.1038/s41583-020-0322-2

[68]

Kaplan L., Chow B.W., Gu C. Neuronal regulation of the blood–brain barrier and neurovascular coupling // Nat. Rev. Neurosci. 2020. Vol. 21, No. 8. P. 416–432. DOI: 10.1038/s41583-020-0322-2

[69]

Huang X, Hussain B, Chang J. Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms. CNS Neurosci Ther. 2021;27(1):36–47. DOI: 10.1111/cns.13569

[70]

Huang X., Hussain B., Chang J. Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms // CNS Neurosci. Ther. 2021. Vol. 27, No. 1. P. 36–47. DOI: 10.1111/cns.13569

[71]

Wang F, Kream RM, Stefano GB. Long-term respiratory and neurological sequelae of COVID-19. Med Sci Monit. 2020;26:e928996. DOI: 10.12659/MSM.928996

[72]

Wang F., Kream R.M., Stefano G.B. Long-term respiratory and neurological sequelae of COVID-19 // Med. Sci. Monit. 2020. Vol. 26. P. e928996. DOI: 10.12659/MSM.928996

[73]

Rauti R, Shahoha M, Leichtmann-Bardoogo Y. et al. Effect of SARS-CoV-2 proteins on vascular permeability. Elife. 2021;10:e69314. DOI: 10.7554/eLife.69314

[74]

Rauti R., Shahoha M., Leichtmann-Bardoogo Y. et al. Effect of SARS-CoV-2 proteins on vascular permeability // Elife. 2021. Vol. 10. P. e69314. DOI: 10.7554/eLife.69314

[75]

Pezzini A, Padovani A: Lifting the mask on neurological manifestations of COVID-19. Nat Rev Neurol. 2020;16(11):636–644. DOI: 10.1038/s41582-020-0398-3

[76]

Pezzini A., Padovani A. Lifting the mask on neurological manifestations of COVID-19 // Nat. Rev. Neurol. 2020. Vol. 16, No. 11. P. 636–644. DOI: 10.1038/s41582-020-0398-3

[77]

Zhang L, Zhou L, Bao L, et al. SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduct Target Ther. 2021;6(1):337–373. DOI: 10.1038/s41392-021-00719-9

[78]

Zhang L., Zhou L., Bao L. et al. SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration // Signal Transduct. Target. Ther. 2021. Vol. 6, No. 1. P. 337–373. DOI: 10.1038/s41392-021-00719-9

[79]

Song E, Zhang C, Israelow B, et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med. 2021;218(3):e20202135. DOI: 10.1084/jem.20202135

[80]

Song E., Zhang C., Israelow B. et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain // J. Exp. Med. 2021. Vol. 218, No. 3. P. e20202135. DOI: 10.1084/jem.20202135

[81]

Spudich S, Nath A. Nervous system consequences of COVID-19. Science. 2022;375(6578):267–269. DOI: 10.1126/science.abm2052

[82]

Spudich S., Nath A. Nervous system consequences of COVID-19 // Science. 2022. Vol. 375, No. 6578. P. 267–269. DOI: 10.1126/science.abm2052

[83]

Brann DH, Tsukahara T, Weinreb C, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv. 2020;6(31):eabc5801. DOI: 10.1126/sciadv.abc5801

[84]

Brann D.H., Tsukahara T., Weinreb C. et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia // Sci. Adv. 2020. Vol. 6, No. 31. P. eabc5801. DOI: 10.1126/sciadv.abc5801

[85]

Soung AL, Vanderheiden A, Nordvig AS, et al. COVID-19 induces CNS cytokine expression and loss of hippocampal neurogenesis. Brain. 2022;145(12):4193–4201. DOI: 10.1093/brain/awac270

[86]

Soung A.L., Vanderheiden A., Nordvig A.S. et al. COVID-19 induces CNS cytokine expression and loss of hippocampal neurogenesis // Brain. 2022. Vol. 145, No. 12. P. 4193–4201. DOI: 10.1093/brain/awac270

[87]

Poloni TE, Moretti M, Medici V, et al. COVID-19 Pathology in the lung, kidney, heart and brain: The different roles of T-cells, macrophages, and microthrombosis. Cells. 2022;11(19):3124. DOI: 10.3390/cells11193124

[88]

Poloni T.E., Moretti M., Medici V. et al. COVID-19 Pathology in the lung, kidney, heart and brain: The different roles of T-cells, macrophages, and microthrombosis // Cells. 2022. Vol. 11, No. 19. P. 3124. DOI: 10.3390/cells11193124

[89]

Frank S. Catch me if you can: SARS-CoV-2 detection in brains of deceased patients with COVID-19. Lancet Neurol. 2020;19(11):883–884. DOI: 10.1016/S1474-4422(20)30371-9

[90]

Frank S. Catch me if you can: SARS-CoV-2 detection in brains of deceased patients with COVID-19 // Lancet Neurol. 2020. Vol. 19, No. 11. P. 883–884. DOI: 10.1016/S1474-4422(20)30371-9

[91]

Gafson AR, Barthélemy NR, Bomont P, et al. Neurofilaments: neurobiological foundations for biomarker applications. Brain. 2020;143(7):1975–1998. DOI: 10.1093/brain/awaa098

[92]

Gafson A.R., Barthélemy N.R., Bomont P. et al. Neurofilaments: neurobiological foundations for biomarker applications // Brain. 2020. Vol. 143, No. 7. P. 1975–1998. DOI: 10.1093/brain/awaa098

[93]

Zingaropoli MA, Pasculli P, Barbato C, et al. Biomarkers of neurological damage: from acute stage to post-acute sequelae of COVID-19. Cells. 2023;12(18):2270. DOI: 10.3390/cells12182270

[94]

Zingaropoli M.A., Pasculli P., Barbato C. et al. Biomarkers of neurological damage: From acute stage to post-acute sequelae of COVID-19 // Cells. 2023. Vol. 12, No. 18. P. 2270. DOI: 10.3390/cells12182270

[95]

Kanberg N, Simrén J, Edén A, et al. Neurochemical signs of astrocytic and neuronal injury in acute COVID-19 normalizes during long-term follow-up. EBioMedicine. 2021;70:103512. DOI: 10.1016/j.ebiom.2021.103512

[96]

Kanberg N., Simrén J., Edén A. et al. Neurochemical signs of astrocytic and neuronal injury in acute COVID-19 normalizes during long-term follow-up // EBioMedicine. 2021 Vol. 70. Р. 103512. DOI: 10.1016/j.ebiom.2021.103512

[97]

Karnik M, Beeraka NM, Uthaiah CA, et al. A Review on SARS-CoV-2-induced neuroinflammation, neurodevelopmental complications, and recent updates on the vaccine development. Mol Neurobiol. 2021;58(9):4535–4563. DOI: 10.1007/s12035-021-02399-6

[98]

Karnik M., Beeraka N.M., Uthaiah C.A. et al. A review on SARSCoV-2-induced neuroinflammation, neurodevelopmental complications, and recent updates on the vaccine development // Mol. Neurobiol. 2021. Vol. 58, No. 9. P. 4535–4563. DOI: 10.1007/s12035-021-02399-6

[99]

Chaumont H, Kaczorowski F, San-Galli A, et al. Cerebrospinal fluid biomarkers in SARS-CoV-2 patients with acute neurological syndromes. Rev Neurol. 2022;179(3):208–217. DOI: 10.1016/j.neurol.2022.11.002

[100]

Chaumont H., Kaczorowski F., San-Galli A. et al. Cerebrospinal fluid biomarkers in SARS-CoV-2 patients with acute neurological syndromes // Rev. Neurol. 2022. Vol. 179, No. 3. P. 208–217. DOI: 10.1016/j.neurol.2022.11.002

[101]

Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol. 2017;35:441–468. DOI: 10.1146/annurev-immunol-051116-052358

[102]

Colonna M., Butovsky O. Microglia function in the central nervous system during health and neurodegeneration // Annu. Rev. Immunol. 2017. Vol. 35. P. 441–468. DOI: 10.1146/annurev-immunol-051116-052358

[103]

Theoharides TC, Kempuraj D. Role of SARS-CoV-2 spike-protein-induced activation of microglia and mast cells in the pathogenesis of Neuro-COVID. Cells. 2023;12(5):688. DOI: 10.3390/cells12050688

[104]

Theoharides T.C., Kempuraj D. Role of SARS-CoV-2 spike-protein-induced activation of microglia and mast cells in the pathogenesis of neuro-COVID // Cells. 2023. Vol. 12, No. 5. P. 688. DOI: 10.3390/cells12050688

[105]

Jeong GU, Lyu J, Kim KD, et al. SARS-CoV-2 infection of microglia elicits proinflammatory activation and apoptotic cell death. Microbiol Spectr. 2022;29(3):e0109122. DOI: 10.1128/spectrum.01091-22

[106]

Jeong G.U., Lyu J., Kim K.D. et al. SARS-CoV-2 infection of microglia elicits proinflammatory activation and apoptotic cell death // Microbiol. Spectr. 2022. Vol. 29, No. 3. P. e0109122. DOI: 10.1128/spectrum.01091-22

[107]

Clough E, Inigo J, Chandra D, et al. Mitochondrial dynamics in SARS-CoV-2 spike protein treated human microglia: implications for Neuro-COVID. J Neuroimmune Pharmacol. 2021;16(4):770–784. DOI: 10.1007/s11481-021-10015-6

[108]

Clough E., Inigo J., Chandra D. et al. Mitochondrial dynamics in SARS-CoV-2 spike protein treated human microglia: implications for neuro-COVID // J. Neuroimmune Pharmacol. 2021. Vol. 16, No. 4. P. 770–784. DOI: 10.1007/s11481-021-10015-6

[109]

Mukai K, Tsai M, Saito H, et al. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev. 2018;282(1):121–150. DOI: 10.1111/imr.12634

[110]

Mukai K., Tsai M., Saito H. et al. Mast cells as sources of cytokines, chemokines, and growth factors // Immunol. Rev. 2018. Vol. 282, No. 1. P. 121–150. DOI: 10.1111/imr.12634

[111]

Skaper SD, Facci L, Zusso M, et al. Neuroinflammation, mast cells, and glia: dangerous liaisons. Neuroscientist. 2017;23(5):478–498. DOI: 10.1177/1073858416687249

[112]

Skaper S.D., Facci L., Zusso M. et al. Neuroinflammation, mast cells, and glia: dangerous liaisons // Neuroscientist. 2017. Vol. 23, No. 5. P. 478–498. DOI: 10.1177/1073858416687249

[113]

Lee MH, Perl DP, Nair G, et al. Microvascular injury in the brains of patients with COVID-19. N Engl J Med. 2021;384(5):481–483. DOI: 10.1056/NEJMc2033369

[114]

Lee M.H., Perl D.P., Nair G. et al. Microvascular injury in the brains of patients with COVID-19 // N. Engl. J. Med. 2021. Vol. 384, No. 5. P. 481–483. DOI: 10.1056/NEJMc2033369

[115]

Zhang X, Wang Y, Dong H, et al. Induction of microglial activation by mediators released from mast cells. Cell Physiol Biochem. 2016;38(4):1520–1531. DOI: 10.1159/000443093

[116]

Zhang X., Wang Y., Dong H. et al. Induction of microglial activation by mediators released from mast cells // Cell. Physiol. Biochem. 2016. Vol. 38, No. 4. P. 1520–1531. DOI: 10.1159/000443093

[117]

Blinkouskaya Y, Caçoilo A, Gollamudi T, et al. Brain aging mechanisms with mechanical manifestations. Mech Ageing Dev. 2021;200:111575. DOI: 10.1016/j.mad.2021.111575

[118]

Blinkouskaya Y., Caçoilo A., Gollamudi T. et al. Brain aging mechanisms with mechanical manifestations // Mech. Ageing Dev. 2021. Vol. 200. P. 111575. DOI: 10.1016/j.mad.2021.111575

[119]

Mattson MP, Arumugam TV. Hallmarks of brain aging: adaptive and pathological modification by metabolic states. Cell Metab. 2018;27(6):1176–1199. DOI: 10.1016/j.cmet.2018.05.011

[120]

Mattson M.P., Arumugam T.V. Hallmarks of brain aging: Adaptive and pathological modification by metabolic states // Cell Metab. 2018. Vol. 27, No. 6. P. 1176–1199. DOI: 10.1016/j.cmet.2018.05.011

[121]

Mavrikaki M, Lee JD, Solomon IH, et al. Severe COVID-19 induces molecular signatures of aging in the human brain. Nat Aging. 2022;2(12):1130–1137. DOI: 10.1038/s43587-022-00321-w

[122]

Mavrikaki M., Lee J.D., Solomon I.H. et al. Severe COVID-19 induces molecular signatures of aging in the human brain // Nat. Aging. 2022. Vol. 2, No. 12. P. 1130–1137. DOI: 10.1038/s43587-022-00321-w

[123]

Idrees D, Kumar V. SARS-CoV-2 spike protein interactions with amyloidogenic proteins: Potential clues to neurodegeneration. Biochem Biophys Res Commun. 2021;554(1):94–98. DOI: 10.1016/j.bbrc.2021.03.100

[124]

Idrees D., Kumar V. SARS-CoV-2 spike protein interactions with amyloidogenic proteins: Potential clues to neurodegeneration // Biochem. Biophys. Res. Commun. 2021. Vol. 554, No. 1. P. 94–98. DOI: 10.1016/j.bbrc.2021.03.100

[125]

Mysiris DS, Vavougios GD, Karamichali E, et al. Post-COVID-19 parkinsonism and Parkinson’s disease pathogenesis: the exosomal cargo hypothesis. Int J Mol Sci. 2022;23(17):9739. DOI: 10.3390/ijms23179739

[126]

Mysiris D.S., Vavougios G.D., Karamichali E. et al. Post-COVID-19 parkinsonism and Parkinson’s disease pathogenesis: The exosomal cargo hypothesis // Int. J. Mol. Sci. 2022. Vol. 23, No. 17. P. 9739. DOI: 10.3390/ijms23179739

[127]

Groh N, Buhler A, Huang C, et al. Age-dependent protein aggregation initiates amyloid-beta aggregation. Front Aging Neurosci. 2017;9(1):138. DOI: 10.3389/fnagi.2017.00138

[128]

Groh N., Buhler A., Huang C. et al. Age-dependent protein aggregation initiates amyloid-beta aggregation // Front. Aging Neurosci. 2017. Vol. 9, No. 1. P. 138. DOI: 10.3389/fnagi.2017.00138

[129]

Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762–768. DOI: 10.1093/cid/ciaa248

[130]

Qin C., Zhou L., Hu Z. et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China // Clin. Infect. Dis. 2020. Vol. 71, No. 15. P. 762–768. DOI: 10.1093/cid/ciaa248

[131]

Cañas CA. The triggering of post-COVID-19 autoimmunity phenomena could be associated with both transient immunosuppression and an inappropriate form of immune reconstitution in susceptible individuals. Med Hypotheses. 2020;1:110345. DOI: 10.1016/j.mehy.2020.110345

[132]

Cañas C.A. The triggering of post-COVID-19 autoimmunity phenomena could be associated with both transient immunosuppression and an inappropriate form of immune reconstitution in susceptible individuals // Med. Hypotheses. 2020. Vol. 1. P. 110345. DOI: 10.1016/j.mehy.2020.110345

[133]

Davis HE, McCorkell L, Vogel JM, et al. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(3):133–146. DOI: 10.1038/s41579-022-00846-2

[134]

Davis H.E., McCorkell L., Vogel J.M. et al. Long COVID: major findings, mechanisms and recommendations // Nat. Rev. Microbiol. 2023. Vol. 21, No. 3. P. 133–146. DOI: 10.1038/s41579-022-00846-2

[135]

Kanduc D. From anti-SARS-CoV-2 immune responses to COVID-19 via molecular mimicry. Antibodies (Basel). 2020;9(4):33. DOI: 10.3390/antib9030033

[136]

Kanduc D. From anti-SARS-CoV-2 immune responses to COVID-19 via molecular mimicry // Antibodies (Basel). 2020. Vol. 9, No. 4. P. 33. DOI: 10.3390/antib9030033

[137]

Tang KT, Hsu BC, Chen DY. Autoimmune and rheumatic manifestations associated with COVID-19 in adults: an updated systematic review. Front Immunol. 2021;12:645013. DOI: 10.3389/fimmu.2021.645013

[138]

Tang K.T., Hsu B.C., Chen D.Y. Autoimmune and rheumatic manifestations associated with COVID-19 in adults: an updated systematic review // Front. Immunol. 2021. Vol. 12. P. 645013. DOI: 10.3389/fimmu.2021.645013

[139]

Wallukat G, Hohberger B, Wenzel K, et al. Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms. J Transl Autoimmun. 2021;4:100100. DOI: 10.1016/j.jtauto.2021.100100

[140]

Wallukat G., Hohberger B., Wenzel K. et al. Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms // J. Transl. Autoimmun. 2021. Vol. 4. P. 100100. DOI: 10.1016/j.jtauto.2021.100100

[141]

Schofield JR. Persistent antiphospholipid antibodies, mast cell activation syndrome, postural orthostatic tachycardia syndrome and post-COVID syndrome: 1 year on. Eur J Case Rep Intern Med. 2021;8(3):002378. DOI: 10.12890/2021_002378

[142]

Schofield JR. Persistent antiphospholipid antibodies, mast cell activation syndrome, postural orthostatic tachycardia syndrome and post-COVID syndrome: 1 year on // Eur. J. Case Rep. Intern. Med. 2021. Vol. 8, No. 3. P. 002378. DOI: 10.12890/2021_002378

[143]

Arthur JM, Forrest JC, Boehme KW, et al. Development of ACE2 autoantibodies after SARS-CoV-2 infection. PLoS One. 2021;16(9):e0257016. DOI: 10.1371/journal.pone.0257016

[144]

Arthur J.M., Forrest J.C., Boehme K.W. et al. Development of ACE2 autoantibodies after SARS-CoV-2 infection // PLoS One. 2021. Vol. 16, No. 9. P. e0257016. DOI: 10.1371/journal.pone.0257016

[145]

Xue H, Zeng L, He H, et al. Autoimmune encephalitis in COVID-19 patients: a systematic review of case reports and case series. Front Neurol. 2023;14:1207883. DOI: 10.3389/fneur.2023.1207883

[146]

Xue H., Zeng L., He H. et al. Autoimmune encephalitis in COVID-19 patients: a systematic review of case reports and case series // Front. Neurol. 2023. Vol. 14. P. 1207883. DOI: 10.3389/fneur.2023.1207883

[147]

Wang J, Saguner AM, An J, et al. Dysfunctional coagulation in COVID-19: from cell to bedside. Adv Ther. 2020;37(7):3033–3039. DOI: 10.1007/s12325-020-01399-7

[148]

Wang J., Saguner A.M., An J. et al. Dysfunctional coagulation in COVID-19: from cell to bedside // Adv. Ther. 2020. Vol. 37, No. 7. P. 3033–3039. DOI: 10.1007/s12325-020-01399-7

[149]

O’Sullivan JM, Gonagle DM, Ward SE, et al. Endothelial cells orchestrate COVID-19 coagulopathy. Lancet Haematol. 2020;7(8):e553–e555. DOI: 10.1016/S2352-3026(20)30215-5

[150]

O’Sullivan J.M., Gonagle D.M., Ward S.E. et al. Endothelial cells orchestrate COVID-19 coagulopathy // Lancet Haematol. 2020. Vol. 7, No. 8. P. e553–e555. DOI: 10.1016/S2352-3026(20)30215-5

[151]

Barbosa LC, Gonçalves TL, de Araujo LP, et al. Endothelial cells and SARS-CoV-2: An intimate relationship. Vascul Pharmacol. 2021;137:106829. DOI: 10.1016/j.vph.2021.106829

[152]

Barbosa L.C., Gonçalves T.L., de Araujo L.P. et al. Endothelial cells and SARS-CoV-2: an intimate relationship // Vascul. Pharmacol. 2021. Vol. 137. P. 106829. DOI: 10.1016/j.vph.2021.106829

[153]

Kumar MA, Krishnaswamy M, Arul JN. Post COVID-19 sequelae: Venous thromboembolism complicated by lower GI bleed. BMJ Case Rep. 2021;14(1):e241059. DOI: 10.1136/bcr-2020-241059

[154]

Kumar M.A., Krishnaswamy M., Arul J.N. Post COVID-19 sequelae: Venous thromboembolism complicated by lower GI bleed // BMJ Case Rep. 2021. Vol. 14, No. 1. P. e241059. DOI: 10.1136/bcr-2020-241059

[155]

Townsend L, Fogarty H, Dyer A, et al. Prolonged elevation of D-dimer levels in convalescent COVID-19 patients is independent of the acute phase response. J Thromb Haemost. 2021;19(4):1064–1070. DOI: 10.1111/jth.15267

[156]

Townsend L., Fogarty H., Dyer A. et al. Prolonged elevation of D-dimer levels in convalescent COVID-19 patients is independent of the acute phase response // J. Thromb. Haemost. 2021. Vol. 19, No. 4. P. 1064–1070. DOI: 10.1111/jth.15267

[157]

Xia X, Wang Y, Zheng J. COVID-19 and Alzheimer’s disease: how one crisis worsens the other. Transl Neurodegener. 2021;10(1):15. DOI: 10.1186/s40035-021-00237-2

[158]

Xia X., Wang Y., Zheng J. COVID-19 and Alzheimer’s disease: how one crisis worsens the other // Transl. Neurodegener. 2021. Vol. 10, No. 1. P. 15. DOI: 10.1186/s40035-021-00237-2

[159]

Shankar GM, Li S, Mehta TH, et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med. 2008;14(8):837–842. DOI: 10.1038/nm1782

[160]

Shankar G.M., Li S., Mehta T.H. et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory // Nat. Med. 2008. Vol. 14, No. 8. P. 837–842. DOI: 10.1038/nm1782

[161]

Jin M, Shepardson N, Yang T, et al. Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci USA. 2011;108(14):5819–5824. DOI: 10.1073/pnas.1017033108

[162]

Jin M., Shepardson N., Yang T. et al. Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce tau hyperphosphorylation and neuritic degeneration // Proc. Natl. Acad. Sci. USA. 2011. Vol. 108, No. 14. P. 5819–5824. DOI: 10.1073/pnas.1017033108

[163]

Hsu JT, Tien CF, Yu GY, et al. The effects of Aβ1-42 binding to the SARS-CoV-2 spike protein S1 subunit and angiotensin-converting enzyme 2. Int J Mol Sci. 2021;22(15):8226. DOI: 10.3390/ijms22158226

[164]

Hsu J.T., Tien C.F., Yu G.Y. et al. The effects of Aβ1-42 binding to the SARS-CoV-2 spike protein S1 subunit and angiotensin-converting enzyme 2 // Int. J. Mol. Sci. 2021. Vol. 22, No. 15. P. 8226. DOI: 10.3390/ijms22158226

[165]

Matias-Guiu JA, Pytel V, Matias-Guiu J. Death rate due to COVID-19 in Alzheimer’s disease and frontotemporal dementia. J Alzheimers Dis. 2020;78(2):537–541. DOI: 10.3233/JAD-200940

[166]

Matias-Guiu J.A., Pytel V., Matias-Guiu J. Death rate due to COVID-19 in Alzheimer’s disease and frontotemporal dementia // J. Alzheimers Dis. 2020. Vol. 78, No. 2. P. 537–541. DOI: 10.3233/JAD-200940

[167]

Zhang J, Bishir M, Barbhuiya S, et al. Meta-analysis of the mechanisms underlying COVID-19 modulation of Parkinson’s disease. Int J Mol Sci. 2023;24(17):13554. DOI: 10.3390/ijms241713554

[168]

Zhang J., Bishir M., Barbhuiya S. et al. Meta-analysis of the mechanisms underlying COVID-19 modulation of Parkinson’s disease // Int. J. Mol. Sci. 2023. Vol. 24, No. 17. P. 13554. DOI: 10.3390/ijms241713554

[169]

Simon DK, Tanner CM, Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med. 2020;36(1):1–12. DOI: 10.1016/j.cger.2019.08.002

[170]

Simon D.K., Tanner C.M., Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology // Clin. Geriatr. Med. 2020. Vol. 36, No. 1. P. 1–12. DOI: 10.1016/j.cger.2019.08.002

[171]

Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurol. 2020;27(1):27–42. DOI: 10.1111/ene.14108

[172]

Balestrino R., Schapira A.H.V. Parkinson disease // Eur. J. Neurol. 2020. Vol. 27, No. 1. P. 27–42. DOI: 10.1111/ene.14108

[173]

Baizabal-Carvallo JF, Alonso-Juarez M. The role of viruses in the pathogenesis of Parkinson’s disease. Neural Regen Res. 2021;16(6):1200–1201. DOI: 10.4103/1673-5374.300437

[174]

Baizabal-Carvallo J.F., Alonso-Juarez M. The role of viruses in the pathogenesis of Parkinson’s disease // Neural Regen. Res. 2021. Vol. 16, No. 6. P. 1200–1201. DOI: 10.4103/1673-5374.300437

[175]

Jiang T, Li G, Xu J, et al. The challenge of the pathogenesis of Parkinson’s disease: is autoimmunity the culprit? Front Immunol. 2018;9:2047. DOI: 10.3389/fimmu.2018.02047

[176]

Jiang T., Li G., Xu J. et al. The challenge of the pathogenesis of Parkinson’s disease: is autoimmunity the culprit? // Front. Immunol. 2018. Vol. 9. P. 2047. DOI: 10.3389/fimmu.2018.02047

[177]

Sulzer D, Antonini A, Leta V, et al. COVID-19 and possible links with Parkinson’s disease and parkinsonism: From bench to bedside. NPJ Parkinsons Dis. 2020;6(1):18. DOI: 10.1038/s41531-020-00123-0

[178]

Sulzer D., Antonini A., Leta V. et al. COVID-19 and possible links with Parkinson’s disease and parkinsonism: From bench to bedside // NPJ Parkinsons Dis. 2020. Vol. 6, No. 1. P. 18. DOI: 10.1038/s41531-020-00123-0

[179]

Leta V, Urso D, Batzu L, et al. Viruses, parkinsonism and Parkinson’s disease: The past, present and future. J Neural Transm. 2022;129(9):1119–1132. DOI: 10.1007/s00702-022-02536-y

[180]

Leta V., Urso D., Batzu L. et al. Viruses, parkinsonism and Parkinson’s disease: The past, present and future // J. Neural Transm. 2022. Vol. 129, No. 9. P. 1119–1132. DOI: 10.1007/s00702-022-02536-y

[181]

Smadi M, Kaburis M, Schnapper Y, et al. SARS-CoV-2 susceptibility and COVID-19 illness course and outcome in people with pre-existing neurodegenerative disorders: Systematic review with frequentist and Bayesian meta-analyses. Br J Psychiatry. 2023;223(2):348–361. DOI: 10.1192/bjp.2023.43

[182]

Smadi M., Kaburis M., Schnapper Y. et al. SARS-CoV-2 susceptibility and COVID-19 illness course and outcome in people with pre-existing neurodegenerative disorders: Systematic review with frequentist and Bayesian meta-analyses // Br. J. Psychiatry. 2023. Vol. 223, No. 2. P. 348–361. DOI: 10.1192/bjp.2023.43

[183]

Przytuła F, Kasprzak J, Dulski J, et al. Morbidity and severity of COVID-19 in patients with Parkinson’s disease treated with amantadine — A multicenter, retrospective, observational study. Parkinsonism Relat Disord. 2023;106:105238. DOI: 10.1016/j.parkreldis.2022.105238

[184]

Przytuła F., Kasprzak J., Dulski J. et al. Morbidity and severity of COVID-19 in patients with Parkinson’s disease treated with amantadine — a multicenter, retrospective, observational study // Parkinsonism Relat. Disord. 2023. Vol. 106. P. 105238. DOI: 10.1016/j.parkreldis.2022.105238

[185]

Semerdzhiev SA, Fakhree MAA, Segers-Nolten I, et al. Interactions between SARS-CoV-2 N-protein and alpha-synuclein accelerate amyloid formation. ACS Chem Neurosci. 2022;13(1):143–150. DOI: 10.1021/acschemneuro.1c00666

[186]

Semerdzhiev S.A., Fakhree M.A.A., Segers-Nolten I. et al. Interactions between SARS-CoV-2 N-Protein and alpha-synuclein accelerate amyloid formation // ACS Chem. Neurosci. 2022. Vol. 13, No. 1. P. 143–150. DOI: 10.1021/acschemneuro.1c00666

[187]

Wang J, Dai L, Deng M, et al. SARS-CoV-2 spike protein S1 domain accelerates α-synuclein phosphorylation and aggregation in cellular models of synucleinopathy. Mol Neurobiol. 2023. DOI: 10.1007/s12035-023-03726-9

[188]

Wang J., Dai L., Deng M. et al. SARS-CoV-2 spike protein S1 domain accelerates α-synuclein phosphorylation and aggregation in cellular models of synucleinopathy // Mol. Neurobiol. 2023. DOI: 10.1007/s12035-023-03726-9

[189]

Antonini A, Leta V, Teo J, Chaudhuri KR. Outcome of Parkinson’s disease patients affected by COVID-19. Mov Disord. 2020;35(6):905–908. DOI: 10.1002/mds.28104

[190]

Antonini A., Leta V., Teo J., Chaudhuri K.R. Outcome of Parkinson’s disease patients affected by COVID-19 // Mov. Disord. 2020. Vol. 35, No. 6. P. 905–908. DOI: 10.1002/mds.28104

[191]

Brown EG, Chahine LM, Goldman SM, et al. The effect of the COVID-19 pandemic on people with Parkinson’s disease. J Parkinsons Dis. 2020;10(4):1365–1377. DOI: 10.3233/JPD-202249

[192]

Brown E.G., Chahine L.M., Goldman S.M. et al. The effect of the COVID-19 pandemic on people with Parkinson’s disease // J. Parkinsons Dis. 2020. Vol. 10, No. 4. P. 1365–1377. DOI: 10.3233/JPD-202249

[193]

Leta V, Boura I, van Wamelen DJ, et al. COVID-19 and Parkinson’s disease: Acute clinical implications, long-COVID and post-COVID-19 parkinsonism. Int Rev Neurobiol. 2022;165(1):63–89. DOI: 10.1016/bs.irn.2022.04.004

[194]

Leta V., Boura I., van Wamelen D.J. et al. COVID-19 and Parkinson’s disease: Acute clinical implications, long-COVID and post-COVID-19 parkinsonism // Int. Rev. Neurobiol. 2022. Vol. 165, No. 1. P. 63–89. DOI: 10.1016/bs.irn.2022.04.004

[195]

Zhang J, Bishir M, Barbhuiya S, et al. Meta-analysis of the mechanisms underlying COVID-19 modulation of Parkinson’s disease. Int J Mol Sci. 2023;24(17):13554. DOI: 10.3390/ijms241713554

[196]

Zhang J., Bishir M., Barbhuiya S. et al. Meta-analysis of the mechanisms underlying COVID-19 modulation of Parkinson’s disease // Int. J. Mol. Sci. 2023. Vol. 24, No. 17. P. 13554. DOI: 10.3390/ijms241713554

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

78

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/