Mathematical modeling of biomechanical elastic and hyperelastic properties of the myocardium
Sergey A. Muslov , Yury A. Vasyuk , Alla I. Zavialova , Elena Yu. Shupenina , Pavel Yu. Sukhochev , Layla Z. Guchukova
Medical academic journal ›› 2023, Vol. 23 ›› Issue (4) : 53 -68.
Mathematical modeling of biomechanical elastic and hyperelastic properties of the myocardium
BACKGROUND: The study of mechanical properties of biological tissues is extremely informative and is one of the most important areas of biomechanics. Knowledge of these aspects of biological objects based on experimental data can become a source of new medical and technical solutions for the reconstruction of organs and the development of replacement materials.
AIM: Passive mechanical properties of isolated myocardium are compared with linear, bilinear, exponential and the most common hyperelastic models (neohookean, Mooney–Rivlin, Ogden, Yeoh, polynomial and Veronda–Westmann).
MATERIALS AND METHODS: Literature data on mechanical tests of autopsy material obtained from mongrel dogs were used as initial data. To search for the most advanced calculation algorithms the computer algebra system was used, the Mathcad 15.0 software package and the multifunctional finite element analysis application ANSYS 2022 R2 were used. Direct comparison of models was made based on mathematical statistics.
RESULTS: Among the first group of models, the results closest to the experimental data were demonstrated by the exponential model R = 0.9958/0.9984 (in the longitudinal/transverse direction with respect to the myocardial fibers), the lowest accuracy was demonstrated by the linear model R = 0.9813/0.9803. Young’s moduli of linear, bilinear and exponential models and material constants of hyperelastic models are determined. The coefficient of elastic anisotropy of the myocardium, defined as the ratio of the elastic moduli of the linear model measured along and across the direction of the fibers, is equal to 2.18, which is very different from the literature data for the myocardium of the human heart. Deformation along the fibers of the heart muscle is more energy-consuming in the direction along the fibers than in the transverse direction (3.81 and 2.52 mJ/cm3). The most accurate hyperelastic models turned out to be the 2nd order polynomial model R = 0.9971 and the 3rd order Yeoh model R = 0.997. The largest deviations and the lowest correlation coefficient between the experimental and model data were demonstrated by the simple neohookean model R = 0.974 with a single parameter μ. The numerical values of the parameters of hyperelastic models obtained by calculation methods used practically did not differ from each other (≤2.16%).
CONCLUSIONS: The study demonstrated the importance of selecting the correct mechanical model for isolated myocardium. The data obtained can be useful in virtual interventions (simulations) for predicting outcomes and supporting clinical decisions, developing replacement materials and structures made of them for reconstructive operations on heart structures.
myocardium / biomechanical models / elasticity / hyperelasticity / elastic anisotropy / bioengineering
| [1] |
Nemavhola F, Pandelani T, Ngwangwa H. Fitting of hyperelastic constitutive models in different sheep heart regions based on biaxial mechanical properties. bioRxiv preprint. 2021. DOI: 10.1101/2021.10.28.466240 |
| [2] |
Nemavhola F., Pandelani T., Ngwangwa H. Fitting of hyperelastic constitutive models in different sheep heart regions based on biaxial mechanical properties // bioRxiv preprint. 2021. DOI: 10.1101/2021.10.28.466240 |
| [3] |
Izakov VYa, Markhasin VS, Yasnikov GP, et al. Vvedenie v biomekhaniku passivnogo miokarda. Moscow: Nauka; 2000. (In Russ.) |
| [4] |
Изаков В.Я., Мархасин В.С., Ясников Г.П. и др. Введение в биомеханику пассивного миокарда. Москва: Наука, 2000. |
| [5] |
Skovoroda AR. Zadachi teorii uprugosti v probleme diagnostiki patologii myagkikh biologicheskikh tkanei. Moscow; 2006. (In Russ.) |
| [6] |
Сковорода А.Р. Задачи теории упругости в проблеме диагностики патологий мягких биологических тканей. Москва, 2006. |
| [7] |
Ostrovsky NV, Chelnokova NO, Golyadkina AA, et al. Biomechanical parameters of the ventricles of the human heart. Fundamental research. 2015;(1–10):2070–2075. (In Russ.) |
| [8] |
Островский Н.В., Челнокова Н.О., Голядкина А.А. и др. Биомеханические параметры желудочков сердца человека // Фундаментальные исследования. 2015. № 1–10. С. 2070–2075. |
| [9] |
Ovcharenko EA, Kalashnikov KYu, Glushkova TV, Barbarash LS. Modeling of implantation of a bioprosthesis by the finite element method. Complex problems of cardiovascular diseases. 2016;(1):6–11. (In Russ.) DOI: 10.17802/2306-1278-2016-1-6-11 |
| [10] |
Овчаренко Е.А., Клышников К.Ю., Глушкова Т.В., Барбараш Л.С. Моделирование имплантации биопротеза методом конечных элементов // Комплексные проблемы сердечно-сосудистых заболеваний. 2016. № 1. С. 6–11. DOI: 10.17802/2306-1278-2016-1-6-11 |
| [11] |
Shilko SV, Kuzminsky YuG, Borisenko MV. Mathematical model and software implementation of monitoring of the cardiovascular system. Problems of Physics, Mathematics and Technics. 2011;3(8):104–112. (In Russ.) |
| [12] |
Шилько С.В., Кузьминский Ю.Г., Борисенко М.В. Математическая модель и программная реализация мониторинга сердечно-сосудистой системы // Проблемы физики, математики и техники. 2011. Т. 3, № 8. С. 104–112. |
| [13] |
Demer Linda L, Yin Frank C. Passive biaxial mechanical properties of isolated canine myocardium. J Physiol. 1983;339(1):615–630. DOI: 10.1113/jphysiol.1983.sp014738 |
| [14] |
Demer Linda L., Yin Frank C. Passive biaxial mechanical properties of isolated canine myocardium // J. Physiol. 1983. Vol. 339, No. 1. P. 615–630. DOI: 10.1113/jphysiol.1983.sp014738 |
| [15] |
Fung YC. Elasticity of soft tissues in simple elongation. Am J Physiol. 1967;213(6):1532–1544. DOI: 10.1152/ajplegacy.1967.213.6.1532 |
| [16] |
Fung Y.C. Elasticity of soft tissues in simple elongation // Am. J. Physiol. 1967. Vol. 213, No. 6. P. 1532–1544. DOI: 10.1152/ajplegacy.1967.213.6.1532 |
| [17] |
Mirsky I. Assessment of passive, elastic stiffness of cardiac muscle: mathematical concepts, physiologic and clinical considerations, directions of future research. Prog Cardiovasc Dis. 1976;18(4):277–308. DOI: 10.1016/0033-0620(76)90023-2 |
| [18] |
Mirsky I. Assessment of passive, elastic stiffness of cardiac muscle: mathematical concepts, physiologic and clinical considerations, directions of future research // Prog. Cardiovasc. Dis. 1976. Vol. 18, No. 4. P. 277–308. DOI: 10.1016/0033-0620(76)90023-2 |
| [19] |
Fung YC. Biorheology of soft tissues. Biorheology. 1973;10(2):139–155. DOI: 10.3233/bir-1973-10208 |
| [20] |
Fung Y.C. Biorheology of soft tissues // Biorheology. 1973. Vol. 10, No. 2. P. 139–155. DOI: 10.3233/bir-1973-10208 |
| [21] |
Panda SC, Natarajan R. Finite-element method of stress analysis in the human left ventricular layered wall structure. Med Biol Eng Comput. 1977;15(1):67–71. DOI: 10.1007/bf02441577 |
| [22] |
Panda S.C., Natarajan R. Finite-element method of stress analysis in the human left ventricular layered wall structure // Med. Biol. Eng. Comput. 1977. Vol. 15, No. 1. P. 67–71. DOI: 10.1007/bf02441577 |
| [23] |
Smolyuk LT, Protsenko YL. Mechanical properties of passive myocardium: experiment and mathematical model. Biophysics. 2010;55(5):905–909. (In Russ.) DOI: 10.1134/S0006350910050209 |
| [24] |
Смолюк Л.Т., Проценко Ю.Л. Механические свойства пассивного миокарда: эксперимент и математическая модель // Биофизика. 2010. Т. 55, № 5. С. 905–909. DOI: 10.1134/S0006350910050209 |
| [25] |
Green AE, Adkins JE. Large Elastic Deformations and Nonlinear Continuum Mechanics. Oxford: Clarendon; 1960. DOI: 10.2307/3613144 |
| [26] |
Green A.E., Adkins J.E. Large Elastic Deformations and Nonlinear Continuum Mechanics. Oxford: Clarendon, 1960. DOI: 10.2307/3613144 |
| [27] |
Fung YC. Biomechanics, its scope, history, and some problems of continuum mechanics in physiology. Appl Mech Rev. 1973;21(1):1–20. DOI: 10.1016/0043-1648(68)90345-1 |
| [28] |
Fung Y.C. Biomechanics, its scope, history, and some problems of continuum mechanics in physiology // Appl. Mech. Rev. 1973. Vol. 21, No. 1. P. 1–20. DOI: 10.1016/0043-1648(68)90345-1 |
| [29] |
Muslov SA, Lotkov AI, Arutyunov SD, Albakova TM. Calculation of parameters of mechanical properties of the heart muscle. Perspective materials. 2020;(12):42–52. (In Russ.) DOI: 10.30791/1028-978x-2020-12-42-52 |
| [30] |
Муслов С.А., Лотков А.И., Арутюнов С.Д., Албакова Т.М. Расчет параметров механических свойств сердечной мышцы // Перспективные материалы. 2020. № 12. С. 42–52. DOI: 10.30791/1028-978x-2020-12-42-52 |
| [31] |
Anliker M. Direct measurements of the distensibility of heart ventricles. Presented at the 2nd Annual Workshop of the Basic Science Council of the American Heart Association, Ames Research Centre. Moffett Field, Calif., 1968 4-8th Aug. |
| [32] |
Anliker M. Direct measurements of the distensibility of heart ventricles. Presented at the 2nd Annual Workshop of the Basic Science Council of the American Heart Association, Ames Research Centre. Moffett Field, Calif., 1968 4-8 Aug. |
| [33] |
Papadacci C, Bunting EA, Wan EY, et al. 3D myocardial elastography in vivo. IEEE Trans Med Imaging. 2017;36(2):618–627. DOI: 10.1109/TMI.2016.2623636 |
| [34] |
Papadacci C., Bunting E.A., Wan E.Y. et al. 3D myocardial elastography in vivo // IEEE Trans. Med. Imaging. 2017. Vol. 36, No. 2. P. 618–627. DOI: 10.1109/TMI.2016.2623636 |
| [35] |
da Silveira JS, Scansen BA, Wassenaar PA, et al. Quantification of myocardial stiffness using magnetic resonance elastography in right ventricular hypertrophy: initial feasibility in dogs. Magn Reson Imaging. 2016;34(1):26–34. DOI: 10.1016/j.mri.2015.10.001 |
| [36] |
da Silveira J.S., Scansen B.A., Wassenaar P.A. et al. Quantification of myocardial stiffness using magnetic resonance elastography in right ventricular hypertrophy: initial feasibility in dogs // Magn. Reson. Imaging. 2016. Vol. 34, No. 1. P. 26–34. DOI: 10.1016/j.mri.2015.10.001 |
| [37] |
Muslov SA, Albakova MB, Guchukova LZ. Constants of the hyperelastic Mooney–Rivlin model of the ventricular wall of the heart. Cardiological Bulletin. 2021;16(2–2):39. (In Russ.) |
| [38] |
Муслов С.А., Албакова М.Б., Гучукова Л.З. Константы гиперупругой модели Муни – Ривлина стенки желудочков сердца // Кардиологический вестник. 2021. Т. 16, № 2–2. С. 39. |
| [39] |
Ren M, Ong CW, Buist ML, Yap CH. Biventricular biaxial mechanical testing and constitutive modelling of fetal porcine myocardium passive stiffness. J Mech Behav Biomed Mater. 2022;134:105383. DOI: 10.1016/j.jmbbm.2022.105383 |
| [40] |
Ren M., Ong C.W., Buist M.L., Yap C.H. Biventricular biaxial mechanical testing and constitutive modelling of fetal porcine myocardium passive stiffness // J. Mech. Behav. Biomed. Mater. 2022. Vol. 134. P. 105383. DOI: 10.1016/j.jmbbm.2022.105383 |
| [41] |
Avazmohammadi R, Soares JS, Li DS, et al. A contemporary look at biomechanical models of myocardium. Annu Rev Biomed Eng. 2019;21:417–442. DOI: 10.1146/annurev-bioeng-062117-121129 |
| [42] |
Avazmohammadi R., Soares J.S., Li D.S. et al. A contemporary look at biomechanical models of myocardium // Annu. Rev. Biomed. Eng. 2019. Vol. 21. P. 417–442. DOI: 10.1146/annurev-bioeng-062117-121129 |
| [43] |
Ogden RW, Saccomandi G, Sgura I. Fitting hyperelastic models to experimental data. Comput Mech. 2004;34(6):484–502. DOI: 10.1007/s00466-004-0593-y |
| [44] |
Ogden R.W., Saccomandi G., Sgura I. Fitting hyperelastic models to experimental data // Comput. Mech. 2004. Vol. 34, No. 6. P. 484–502. DOI: 10.1007/s00466-004-0593-y |
| [45] |
Chen J, Ahmad R, Li W, et al. Biomechanics of oral mucosa. J R Soc Interface. 2015;12(109):20150325. DOI: 10.1098/rsif.2015.0325 |
| [46] |
Chen J., Ahmad R., Li W. et al. Biomechanics of oral mucosa // J. R. Soc. Interface. 2015. Vol. 12, No. 109. P. 20150325. DOI: 10.1098/rsif.2015.0325 |
| [47] |
Wertheim MG. Memoire sur l’elasticite et la cohesion des pricipaux tissus du corps humain. Ann Chimie Phys Paris (Ser. 3). 1847;21:385–414. |
| [48] |
Wertheim M.G. Memoire sur l’elasticite et la cohesion des pricipaux tissus du corps humain // Ann. Chimie Phys. Paris (Ser. 3). 1847. Vol. 21. P. 385–414. |
| [49] |
Morgan FR. The mechanical properties of collagen fibers: stress-strain curves. J Soc Leather Trades Chem. 1960;44:171–182. |
| [50] |
Morgan F.R. The mechanical properties of collagen fibers: stress-strain curves // J. Soc. Leather Trades Chem. 1960. Vol. 44. P. 171–182. |
| [51] |
Kenedi RM, Gibson T, Daly CH. Bioengineering study of the human skin. In: Structure and Function of Connective and Skeletal Tissue. S.F. Jackson, S.M. Harkness, R. Tristram (eds.) Scientific Comittee, St. Andrews, Scotland; 1964. P. 388–395. DOI: 10.1016/b978-1-4831-6701-5.50022-x |
| [52] |
Kenedi R.M., Gibson T., Daly C.H. Bioengineering study of the human skin // Structure and Function of Connective and Skeletal Tissue. Ed. by S.F. Jackson, S.M. Harkness, R. Tristram. Scientific Comittee, St. Andrews, Scotland, 1964. P. 388–395. DOI: 10.1016/b978-1-4831-6701-5.50022-x |
| [53] |
Ridge MD, Wright V. Mechanical properties of skin: A bioegineering study of skin texture. J Appl Physiol. 1966;21(5):1602–1606. DOI: 10.1152/jappl.1966.21.5.1602 |
| [54] |
Ridge M.D., Wright V. Mechanical properties of skin: A bioegineering study of skin texture // J. Appl. Physiol. 1966. Vol. 21, No. 5. P. 1602–1606. DOI: 10.1152/jappl.1966.21.5.1602 |
| [55] |
Corporan D, Saadeh M, Yoldas A, et al. Passive mechanical properties of the left ventricular myocardium and extracellular matrix in hearts with chronic volume overload from mitral regurgitation. Physiol Rep. 2022;10(14):e15305. DOI: 10.14814/phy2.15305 |
| [56] |
Corporan D., Saadeh M., Yoldas A. et al. Passive mechanical properties of the left ventricular myocardium and extracellular matrix in hearts with chronic volume overload from mitral regurgitation // Physiol. Rep. 2022. Vol. 10, No. 14. P. e15305. DOI: 10.14814/phy2.15305 |
| [57] |
Yamada H. Strength of Biological Materials. Baltimore; 1973. DOI: 10.1126/science.171.3966.57-a |
| [58] |
Yamada H. Strength of Biological Materials. Baltimore, 1973. DOI: 10.1126/science.171.3966.57-a |
| [59] |
Muslov SA, Pertsov SS, Arutyunov SD. Fiziko-mekhanicheskie svoistva biologicheskikh tkanei. Ed. by O.O. Yanushevich. Moscow; 2023. 457 p. (In Russ.) |
| [60] |
Муслов С.А., Перцов С.С., Арутюнов С.Д. Физико-механические свойства биологических тканей / под ред. О.О. Янушевича. Москва, 2023. 457 c. |
| [61] |
Fung Y.C. Biomechanics: Mechanical Properties of Living Tissues. Second edition. Springer; 1993. 586 p. DOI: 10.1115/1.2901550 |
| [62] |
Fung Y.C. Biomechanics: Mechanical Properties of Living Tissues. Second edition. Springer, 1993. 586 p. DOI: 10.1115/1.2901550 |
| [63] |
Muslov SA, Pertsov SS, Chizhmakov EA, et al. Elastic linear, bilinear, nonlinear exponential and hyperelastic skin models. Russian Journal of Biomechanics. 2023;27(3):89–103. (In Russ.) DOI: 10.15593/RZhBiomeh/2023.3.07 |
| [64] |
Муслов С.А., Перцов С.С., Чижмаков Е.А. и др. Упругая линейная, билинейная, нелинейная экспоненциальная и гиперупругие модели кожи // Российский журнал биомеханики. 2023. Т. 27, № 3. С. 89–103. DOI: 10.15593/RZhBiomeh/2023.3.07 |
| [65] |
Ivanov DV, Fomkina OA. Opredelenie postoyannykh dlya modelei Neo–Guka i Muni–Rivlina po rezul’tatam ehksperimentov na odnoosnoe rastyazhenie. Bulletin of the Saratov University. Mathematics. Mechanics. 2008;(10):114–117. (In Russ.) |
| [66] |
Иванов Д.В., Фомкина О.А. Определение постоянных для моделей Нео – Гука и Муни – Ривлина по результатам экспериментов на одноосное растяжение // Вестник Саратовского Университета. Математика. Механика. 2008. № 10. С. 114–117. |
| [67] |
Shmurak MI, Kuchumov AG, Voronova NO. Analysis of hyperelastic models for describing the behavior of soft tissues of the human body. Master’s Journal. 2017;(1):230–243. (In Russ.) |
| [68] |
Шмурак М.И., Кучумов А.Г., Воронова Н.О. Анализ гиперупругих моделей для описания поведения мягких тканей организма человека // Master’s Journal. 2017. № 1. С. 230–243. |
| [69] |
Yeoh OH. Some forms of the strain energy function for rubber. Rubber Chem Technol. 1993;66(5):754–771. DOI: 10.5254/1.3538343 |
| [70] |
Yeoh O.H. Some forms of the strain energy function for rubber // Rubber Chem. Technol. 1993. Vol. 66, No. 5. P. 754–771. DOI: 10.5254/1.3538343 |
| [71] |
Rivlin RS. Some applications of elasticity theory to rubber engineering. In: Collected Papers of R.S. Rivlin. 1997;1:9–16. DOI: 10.1007/978-1-4612-2416-7_2 |
| [72] |
Rivlin R.S. Some applications of elasticity theory to rubber engineering // Collected Papers of R.S. Rivlin. 1997. Vol. 1. P. 9–16. DOI: 10.1007/978-1-4612-2416-7_2 |
| [73] |
Veronda DR, Westmann RA. Mechanical characterizations of skin-finite deformations. J Biomech. 1970;3(1):111–124. DOI: 10.1016/0021-9290(70)90055-2 |
| [74] |
Veronda D.R., Westmann R.A. Mechanical characterizations of skin-finite deformations // J. Biomech. 1970. Vol. 3, No. 1. P. 111–124. DOI: 10.1016/0021-9290(70)90055-2 |
| [75] |
Kanbara R, Nakamura Y, Ochiai KT, et al. Three-dimensional finite element stress analysis: the technique and methodology of nonlinear property simulation and soft tissue loading behavior for different partial denture designs. Dent Mater J. 2012;31(2):297–308. DOI: 10.4012/dmj.2011-165 |
| [76] |
Kanbara R., Nakamura Y., Ochiai K.T. et al. Three-dimensional finite element stress analysis: the technique and methodology of nonlinear property simulation and soft tissue loading behavior for different partial denture designs // Dent. Mater. J. 2012. Vol. 31, No. 2. P. 297–308. DOI: 10.4012/dmj.2011-165 |
| [77] |
Borak L, Florian Z, Bartakova S, et al. Bilinear elastic property of the periodontal ligament for simulation using a finite element mandible model. Dent Mater J. 2011;30(4):448–454. DOI: 10.4012/dmj.2010-170 |
| [78] |
Borak L., Florian Z., Bartakova S. et al. Bilinear elastic property of the periodontal ligament for simulation using a finite element mandible model // Dent. Mater. J. 2011. Vol. 30, No. 4. P. 448–454. DOI: 10.4012/dmj.2010-170 |
| [79] |
Sacks M, Chuong C. Biaxial mechanical properties of passive right ventricular free wall myocardium. J Biomech Eng. 1993;115(2):202–205. DOI: 10.1115/1.2894122 |
| [80] |
Sacks M., Chuong C. Biaxial mechanical properties of passive right ventricular free wall myocardium // J. Biomech. Eng. 1993. Vol. 115, No. 2. P. 202–205. DOI: 10.1115/1.2894122 |
| [81] |
Emig R, Zgierski-Johnston CM, Timmermann V, et al. Passive myocardial mechanical properties: meaning, measurement, models. Biophys Rev. 2021;13(5):587–610. DOI: 10.1007/s12551-021-00838-1 |
| [82] |
Emig R., Zgierski-Johnston C.M., Timmermann V. et al. Passive myocardial mechanical properties: meaning, measurement, models // Biophys. Rev. 2021. Vol. 13, No. 5. P. 587–610. DOI: 10.1007/s12551-021-00838-1 |
| [83] |
Sirry MS, Butler JR, Patnaik SS, et al. Characterisation of the mechanical properties of infarcted myocardium in the rat under biaxial tension and uniaxial compression. J Mech Behav Biomed Mater. 2016;63:252–264. DOI: 10.1016/j.jmbbm.2016.06.029 |
| [84] |
Sirry M.S., Butler J.R., Patnaik S.S. et al. Characterisation of the mechanical properties of infarcted myocardium in the rat under biaxial tension and uniaxial compression // J. Mech. Behav. Biomed. Mater. 2016. Vol. 63. P. 252–264. DOI: 10.1016/j.jmbbm.2016.06.029 |
| [85] |
Hill R. A general theory of uniqueness and stability in elastic-plastic solids. J Mech Phys Solids. 1958;6(3):236–249. DOI: 10.1016/0022-5096(58)90029-2 |
| [86] |
Hill R. A general theory of uniqueness and stability in elastic-plastic solids // J. Mech. Phys. Solids. 1958. Vol. 6, No. 3. P. 236–249. DOI: 10.1016/0022-5096(58)90029-2 |
| [87] |
Drucker DC. A definition of a stable inelastic material. J Appl Mech. 1959;26(1):101–195. DOI: 10.1115/1.4011929 |
| [88] |
Drucker D.C. A definition of a stable inelastic material // J. Appl. Mech. 1959. Vol. 26, No. 1. P. 101–195. DOI: 10.1115/1.4011929 |
| [89] |
Wang Y, Haynor DR, Kim Y. An investigation of the importance of myocardial anisotropy in finite-element modeling of the heart: methodology and application to the estimation of defibrillation efficacy. IEEE Trans Biomed Eng. 2001;48(12):1377–1389. DOI: 10.1109/10.966597 |
| [90] |
Wang Y., Haynor D.R., Kim Y. An investigation of the importance of myocardial anisotropy in finite-element modeling of the heart: methodology and application to the estimation of defibrillation efficacy // IEEE Trans. Biomed. Eng. 2001. Vol. 48, No. 12. P. 1377–1389. DOI: 10.1109/10.966597 |
Eco-Vector
/
| 〈 |
|
〉 |