Cytotoxic effects of nerve growth factor and its combinations with chemotherapeutic drugs on anaplastoc astrocytoma, glioblastoma and medubloblastoma cells in vitro

Alexander N. Chernov , Elvira S. Galimova , Olga V. Shamova

Medical academic journal ›› 2023, Vol. 23 ›› Issue (4) : 69 -84.

PDF (1082KB)
Medical academic journal ›› 2023, Vol. 23 ›› Issue (4) : 69 -84. DOI: 10.17816/MAJ624106
Original research
research-article

Cytotoxic effects of nerve growth factor and its combinations with chemotherapeutic drugs on anaplastoc astrocytoma, glioblastoma and medubloblastoma cells in vitro

Author information +
History +
PDF (1082KB)

Abstract

BACKGROUND: Currently, the effectiveness of the treatment of malignant tumors using surgical resection, radiotherapy and chemotherapy is insufficient. Therefore, new research is needed to find alternative molecules with antitumor effects. It is known that nerve growth factor (NGF) inhibits invasion, migration, and angiogenesis of tumor cells. Studying the effects of NGF on brain tumors, as well as its combinations with chemotherapy drugs used in medicine, may contribute to the development of new treatment regimens for malignant neoplasms in the central nervous system.

AIM: The purpose of this study is an exploration the molecular and cellular mechanisms of anticancer effects of individual and combined preparations of NGF and chemotherapeutic drugs on brain tumor cells (gliomas C6, U251, anaplastic astrocytoma, glioblastoma and medulloblastoma).

MATERIALS AND METHODS: The study was performed on rat glioma C6, human U251 glioma cell lines, as well as on primary cells of anaplastic astrocytoma (n = 9), glioblastoma (n = 9) and medulloblastoma (n = 38) patients. The cytotoxicity of chemotherapeutic drugs, NGF and their combinations against tumor cells was assessed using the MTT assay. The expression of TrkA and p75 receptors on anaplastic astrocytoma, glioblastoma and medulloblastoma cells was assessed by immunofluorescence analysis using anti-TrkA and anti-p75 monoclonal antibodies.

RESULTS: Nerve growth factor exhibits in vitro cytotoxic activity that exceeds the activity of chemotherapy drugs towards rat glioma C6, human U251, anaplastic astrocytoma (AA), glioblastoma (GBM) and medulloblastoma cells. The cytotoxic activity of NGF in combination with chemotherapy drugs is significantly higher than the activity of the individual NGF drug against medulloblastoma cells, while against anaplastic astrocytoma cells it is comparable to the indicators of the isolated action of NGF, and lower for glioblastoma cells. The effectiveness of the cytotoxic effect of the combinations NGF + cisplatin and NGF + temozolomide (TMZ) on AA and GBM cells correlates with both the expression of TrkA, p75 receptors, and their coexpression, indicating that expression indicators can be considered as markers of tumor cell sensitivity to NGF.

CONCLUSIONS: The data obtained allow us to consider NGF as a potential anticancer drug for the treatment of brain tumors. Thus, NGF can act as a potential anticancer drug for the development of new therapeutic regimens for brain tumors.

Keywords

brain tumors / anaplastic astrocytoma / glioblastoma / medulloblastoma / nerve growth factor / combinations of nerve growth factor with chemotherapy / TrkA, p75 receptors expression

Cite this article

Download citation ▾
Alexander N. Chernov, Elvira S. Galimova, Olga V. Shamova. Cytotoxic effects of nerve growth factor and its combinations with chemotherapeutic drugs on anaplastoc astrocytoma, glioblastoma and medubloblastoma cells in vitro. Medical academic journal, 2023, 23(4): 69-84 DOI:10.17816/MAJ624106

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Allen C. et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015 a systematic analysis for the global burden of disease study. JAMA Oncol. 2017;3(4):524–548. DOI: 10.1001/jamaoncol.2016.568

[2]

Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Allen C. et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015 a systematic analysis for the global burden of disease study // JAMA Oncology. 2017. Vol. 3, No. 4. P. 524–548. DOI: 10.1001/jamaoncol.2016.568

[3]

International agency for research of cancer (Globocan) [Internet]. WHO. 2020. Available from: http:www.globocan.iarc.fr. Accessed: 23.11.2023.

[4]

International agency for research of cancer (Globocan) [Электронный ресурс] // WHO. 2020. Режим доступа: http: www.globocan.iarc.fr. Дата обращения: 23.11.2023.

[5]

Lafay-Cousin L, Smith A, Chi SN, et al. Clinical, pathological, and molecular characterization of infant medulloblastomas treated with sequential high-dose chemotherapy. Pediatr Blood Cancer. 2016;63(9):1527–1534. DOI: 10.1002/pbc.26042

[6]

Lafay-Cousin L., Smith A., Chi S.N. et al. Clinical, pathological, and molecular characterization of infant medulloblastomas treated with sequential high-dose chemotherapy // Pediatr. Blood Cancer. 2016. Vol. 63, No. 9. P. 1527–1534. DOI: 10.1002/pbc.26042

[7]

Johnston DL, Keene D, Strother D, et al. Survival following tumor recurrence in children with medulloblastoma. J Pediatr Hematol Oncol. 2018;40(3):e159–e163. DOI: 10.1097/MPH.0000000000001095

[8]

Johnston D.L., Keene D., Strother D. et al. Survival following tumor recurrence in children with medulloblastoma // J. Pediatr. Hematol. Oncol. 2018. Vol. 40, No. 3. P. e159–e163. DOI: 10.1097/MPH.0000000000001095

[9]

Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492–507. DOI: 10.1056/NEJMra0708126

[10]

Wen P.Y., Kesari S. Malignant gliomas in adults // N. Engl. J. Med. 2008. Vol. 359, No. 5. P. 492–507. DOI: 10.1056/NEJMra0708126

[11]

Taylor OG, Brzozowski JS, Skelding KA. Glioblastoma multiforme: an overview of emerging therapeutic targets. Front Oncol. 2019;9:963. DOI: 10.3389/fonc.2019.00963

[12]

Taylor O.G., Brzozowski J.S., Skelding K.A. Glioblastoma multiforme: an overview of emerging therapeutic targets // Front. Oncol. 2019. Vol. 9. P. 963. DOI: 10.3389/fonc.2019.00963

[13]

Safdie F, Brandhorst S, Wei M, et al. Fasting enhances the response of glioma to chemo- and radiotherapy. PLoS One. 2012;7(9):e44603. DOI: 10.1371/journal.pone.0044603

[14]

Safdie F., Brandhorst S., Wei M. et al. Fasting enhances the response of glioma to chemo- and radiotherapy // PLoS One. 2012. Vol. 7, No. 9. P. e44603. DOI: 10.1371/journal.pone.0044603

[15]

Penas-Prado M, Hess KR, Fisch MJ, et al. Randomized phase II adjuvant factorial study of dose-dense temozolomide alone and in combination with isotretinoin, celecoxib, and/or thalidomide for glioblastoma. Neuro Oncol. 2015;17(2):266–273. DOI: 10.1093/neuonc/nou155

[16]

Penas-Prado M., Hess K.R., Fisch M.J. et al. Randomized phase II adjuvant factorial study of dose-dense temozolomide alone and in combination with isotretinoin, celecoxib, and/or thalidomide for glioblastoma // Neuro Oncol. 2015. Vol. 17, No. 2. P. 266–273. DOI: 10.1093/neuonc/nou155

[17]

Tomlinson FH, Lihou MG, Smith PJ. Comparison of in vitro activity of epipodophyllotoxins with other chemotherapeutic agents in human medulloblastomas. Br J Cancer. 1991;64(6):1051–1059. DOI: 10.1038/bjc.1991.464

[18]

Tomlinson F.H., Lihou M.G., Smith P.J. Comparison of in vitro activity of epipodophyllotoxins with other chemotherapeutic agents in human medulloblastomas // Br. J. Cancer. 1991. Vol. 64, No. 6. P. 1051–1059. DOI: 10.1038/bjc.1991.464

[19]

Prolonged Exposure to Doxorubicin in Patients with Glioblastoma Multiforme and Diffuse Intrinsic Pontine Glioma [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02758. Accessed: 23.10.2023.

[20]

Prolonged Exposure to Doxorubicin in Patients with Glioblastoma Multiforme and Diffuse Intrinsic Pontine Glioma [Электронный ресурс]. Режим доступа: https://clinicaltrials.gov/ct2/show/NCT02758. Дата обращения: 23.10.2023.

[21]

Skaga E, Kulesskiy E, Fayzullin A, et al. Intertumoral heterogeneity in patient-specific drug sensitivities in treatment-naïve glioblastoma. BMC Cancer. 2019;19:628. DOI: 10.1186/s12885-019-5861-4

[22]

Skaga E., Kulesskiy E., Fayzullin A. et al. Intertumoral heterogeneity in patient-specific drug sensitivities in treatment-naïve glioblastoma // BMC Cancer. 2019. Vol. 19. P. 628. DOI: 10.1186/s12885-019-5861-4

[23]

Chernov AN, Alaverdian DA, Galimova ES, et al. The phenomenon of multidrug resistance in glioblastomas. Hematol Oncol Stem Cell Ther. 2022;15(2):1–7. DOI: 10.1016/j.hemonc.2021.05.006

[24]

Chernov A.N., Alaverdian D.A., Galimova E.S. et al. The phenomenon of multidrug resistance in glioblastomas // Hematol. Oncol. Stem Cell Ther. 2022. Vol. 15, No. 2. P. 1–7. DOI: 10.1016/j.hemonc.2021.05.006

[25]

Chernov AN, Shamova OV. Molecular mechanisms of drug resistance of glioblastoma. Part 1: ABC family proteins and inhibitors. Medical Academic Journal. 2021;21(4):85–106. DOI: 10.17816/MAJ83049

[26]

Чернов А.Н., Шамова О.В. Молекулярные механизмы лекарственной устойчивости глиобластомы. Часть 1. Белки ABC-семейства и ингибиторы // Медицинский академический журнал. 2021. Т. 21, № 4. C. 85–106. DOI: 10.17816/MAJ83049

[27]

Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes. J Inflamm Res. 2020;13:1057–1073. DOI: 10.2147/JIR.S275595

[28]

Checa J., Aran J.M. Reactive oxygen species: drivers of physiological and pathological processes // J. Inflamm. Res. 2020. Vol. 13. P. 1057–1073. DOI: 10.2147/JIR.S275595

[29]

Pimentel E. Neurotrophic growth factors. In: Handbook of growth factors. CRC Press Inc.; 1994. Vol. 2. Chap. 5. P. 217–240.

[30]

Pimentel E. Neurotrophic growth factors // Handbook of growth factors: CRC Press Inc., 1994. Vol. 2. Chap. 5. P. 217–240.

[31]

Levi-Montalcini R. The nerve growth factor: thirty-five years later. EMBO J. 1987;6(5):1146–1154.

[32]

Levi-Montalcini R. The nerve growth factor: thirty-five years later // EMBO J. 1987. Vol. 6, No. 5. P. 1146–1154.

[33]

McDonald NQ, Lapatto R, Murray-Rust J, et al. New protein fold revealed by a 2.3-A resolution crystal structure of nerve growth factor. Nature. 1991;354(6352):411–414. DOI: 10.1038/354411a0

[34]

McDonald N.Q., Lapatto R., Murray-Rust J. et al. New protein fold revealed by a 2.3-A resolution crystal structure of nerve growth factor // Nature. 1991. Vol. 354, No. 6352. P. 411–414. DOI: 10.1038/354411a0

[35]

Kalyunov VN. Biologiya faktora rosta nervnoi tkani. Minsk: Nauka i tekhnika; 1986. 208 p. (In Russ.)

[36]

Калюнов В.Н. Биология фактора роста нервной ткани. Минск: Наука и техника, 1986. 208 с.

[37]

Farina AR, Di Ianni N, Cappabianca L. et al. TrkAIII promotes microtubule nucleation and assembly at the centrosome in SH-SY5Y neuroblastoma cells, contributing to an undifferentiated anaplastic phenotype. Biomed Res Int. 2013:2013:740187. DOI: 10.1155/2013/740187

[38]

Farina A.R., Di Ianni N., Cappabianca L. et al. TrkAIII promotes microtubule nucleation and assembly at the centrosome in SH-SY5Y neuroblastoma cells, contributing to an undifferentiated anaplastic phenotype // Biomed. Res. Int. 2013. Vol. 2013. P. 740187. DOI: 10.1155/2013/740187

[39]

Vaishnavi A, Le T, Doebele RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 2015;5(1):25–34. DOI: 10.1158/2159-8290.CD-14-0765

[40]

Vaishnavi A., Le T., Doebele R.C. TRKing down an old oncogene in a new era of targeted therapy // Cancer Discov. 2015. Vol. 5, No. 1. P. 25–34. DOI: 10.1158/2159-8290.CD-14-0765

[41]

Giannakopoulou D, Daguin-Nerrière V, Mitsacos A. et al. Ectopic expression of TrkA in the adult rat basal ganglia induces both nerve growth factor-dependent and independent neuronal responses. J Neurosci Res. 2012;90(8):1507–1521. DOI: 10.1002/jnr.23031

[42]

Giannakopoulou D., Daguin-Nerrière V., Mitsacos A. et al. Ectopic expression of TrkA in the adult rat basal ganglia induces both nerve growth factor-dependent and independent neuronal responses // J. Neurosci. Res. 2012. Vol. 90, No. 8. P. 1507–1521. DOI: 10.1002/jnr.23031

[43]

Kraemer BR, Yoon SO, Carter BD. The biological functions and signaling mechanisms of the p75 neurotrophin receptor. Handb Exp Pharmacol. 2014;220:121–164. DOI: 10.1007/978-3-642-45106-5_6

[44]

Kraemer B.R., Yoon S.O., Carter B.D. The biological functions and signaling mechanisms of the p75 neurotrophin receptor // Handb. Exp. Pharmacol. 2014. Vol. 220. P. 121–164. DOI: 10.1007/978-3-642-45106-5_6

[45]

Isaev NK, Stelmashuk EV, Henrikhs EE. Role of nerve growth factor in plasticity of forebrain cholinergic neurons. Biochemistry. (Mosc). 2017;82(3):291–300. DOI: 10.1134/S0006297917030075

[46]

Исаев Н.К., Стельмашук Е.В., Генрихс Е.Е. Роль фактора роста нервов в пластических перестройках холинэргических нейронов базальных ядер переднего мозга // Биохимия. 2017. Т. 82, № 3. C. 429–440. DOI: 10.1134/S0006297917030075

[47]

Deppmann CD, Mihalas S, Sharma N, et al. A model for neuronal competition during development. Science. 2008;320(5874):369–373. DOI: 10.1126/science.1152677

[48]

Deppmann C.D., Mihalas S., Sharma N. et al. A model for neuronal competition during development // Science. 2008. Vol. 320, No. 5874. P. 369–373. DOI: 10.1126/science.1152677

[49]

Tacconelli A, Farina AR, Cappabianca L, et al. TrkA alternative splicing: a regulated tumor-promoting switch in human neuroblastoma. Cancer Cell. 2004;6(4):347–360. DOI: 10.1016/j.ccr.2004.09.011

[50]

Tacconelli A., Farina A.R., Cappabianca L. et al. TrkA alternative splicing: a regulated tumor-promoting switch in human neuroblastoma // Cancer Cell. 2004. Vol. 6, No. 4. P. 347–360. DOI: 10.1016/j.ccr.2004.09.011

[51]

Ho R, Minturn JE, Simpson AM, et al. The effect of P75 on Trk receptors in neuroblastomas. Сancer Lett. 2011;305(1):76–85. DOI: 10.1016/j.canlet.2011.02.029

[52]

Ho R., Minturn J.E., Simpson A.M. et al. The effect of P75 on Trk receptors in neuroblastomas // Сancer Lett. 2011. Vol. 305, No. 1. P. 76–85. DOI: 10.1016/j.canlet.2011.02.029

[53]

Nakagawara A, Arima-Nakagawara M, Scavarda NJ, et al. Association between high levels of expression of the trk gene and favorable outcome of human neuroblastoma. N Engl J Med. 1993;328(12):847–854. DOI: 10.1056/NEJM199303253281205

[54]

Nakagawara A., Arima-Nakagawara M., Scavarda N.J. et al. Association between high levels of expression of the trk gene and favorable outcome of human neuroblastoma // N. Engl. J. Med. 1993. Vol. 328, No. 12. P. 847–854. DOI: 10.1056/NEJM199303253281205

[55]

Bassili M, Birman E, Schor NF, et al. Differential roles of Trk and p75 neurotrophin receptors in tumorigenesis and chemoresistance ex vivo and in vivo. Cancer Chemother Pharmacol. 2010;65(6):1047–1056. DOI: 10.1007/s00280-009-1110-x

[56]

Bassili M., Birman E., Schor N.F. et al. Differential roles of Trk and p75 neurotrophin receptors in tumorigenesis and chemoresistance ex vivo and in vivo // Cancer Chemother. Pharmacol. 2010. Vol. 65, No. 6. P. 1047–1056. DOI: 10.1007/s00280-009-1110-x

[57]

Mendonça LM, da Silva Machado C, Correia Teixeira CC, et al. Curcumin reduces cisplatin-induced neurotoxicity in NGF-differentiated PC12 cells. Neurotoxicology. 2013:34:205–211. DOI: 10.1016/j.neuro.2012.09.011

[58]

Mendonça L.M., da Silva Machado C., Correia Teixeira C.C. et al. Curcumin reduces cisplatin-induced neurotoxicity in NGF-differentiated PC12 cells // Neurotoxicology. 2013. Vol. 34. P. 205–211. DOI: 10.1016/j.neuro.2012.09.011

[59]

Zhang S, Xie R, Wan F, et al. Identification of U251 glioma stem cells and their heterogeneous stem-like phenotypes. Oncol Lett. 2013;6(6):1649–1655. DOI: 10.3892/ol.2013.1623

[60]

Zhang S., Xie R., Wan F. et al. Identification of U251 glioma stem cells and their heterogeneous stem-like phenotypes // Oncol. Lett. 2013. Vol. 6, No. 6. P. 1649–1655. DOI: 10.3892/ol.2013.1623

[61]

Buravlev VM, Veprintsev BN, Viktorov IV, et al. Rukovodstvo po kul’tivirovaniyu nervnoi tkani. Metody. Tekhnika. Problemy. Moscow: Nauka; 1988. 315 p. (In Russ.)

[62]

Буравлев В.М., Вепринцев Б.Н., Викторов И.В. и др. Руководство по культивированию нервной ткани. Методы. Техника. Проблемы. Москва: Наука, 1988. 315 с.

[63]

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63. DOI: 10.1016/0022-1759(83)90303-4

[64]

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays // J. Immunol. Methods. 1983. Vol. 65, No. 1–2. P. 55–63. DOI: 10.1016/0022-1759(83)90303-4

[65]

Mohamadi N, Maryam Kazemi S, Mohammadian M, et al. Toxicity of cisplatin-loaded poly butyl cyanoacrylate nanoparticles in a brain cancer cell line: anionic polymerization results. Asian Pac J Cancer Prev. 2017;18(3):629–632. DOI: 10.22034/APJCP.2017.18.3.629

[66]

Mohamadi N., Maryam Kazemi S., Mohammadian M. et al. Toxicity of cisplatin-loaded poly butyl cyanoacrylate nanoparticles in a brain cancer cell line: anionic polymerization results // Asian Pac. J. Cancer Prev. 2017. Vol. 18, No. 3. P. 629–632. DOI: 10.22034/APJCP.2017.18.3.629

[67]

Ghinelli E, Johansson J, Ríos JD, et al. Presence and localization of neurotrophins and neurotrophin receptors in rat lacrimal gland. Invest Ophthalmol Vis Sci. 2003;44(8):3352–3357. DOI: 10.1167/iovs.03-0037

[68]

Ghinelli E., Johansson J., Ríos J.D. et al. Presence and localization of neurotrophins and neurotrophin receptors in rat lacrimal gland // Invest. Ophthalmol. Vis. Sci. 2003. Vol. 44, No. 8. P. 3352–3357. DOI: 10.1167/iovs.03-0037

[69]

van Belle G, Fisher LD, Heagerty PJ, et al. Biostatistics: a methodology for the health sciences. Canada: Jonh Wiley and Sons Inc.; 2004. 889 p.

[70]

van Belle G., Fisher L.D., Heagerty P.J. et al. Biostatistics: a methodology for the health sciences. Canada: Jonh Wiley and Sons Inc., 2004. 889 p.

[71]

IA Carboplatin + Radiotherapy in Relapsing GBM: Clinical Trials [Internet]. NBTS. Available from: https://clinicaltrials.gov/ct2/show/NCT03672721. Accessed: 21.11.2023.

[72]

IA Carboplatin + Radiotherapy in Relapsing GBM: Clinical Trials [Электронный ресурс] // NBTS. Режим доступа: https://clinicaltrials.gov/ct2/show/NCT03672721. Дата обращения: 21.11.2023.

[73]

Fernandes C, Costa A, Osório L, et al. Current standards of care in glioblastoma therapy. In: Glioblastoma [Internet]. Ed. by S. De Vleeschouwer. Codon Publications Brisbane, Australia, 2017. Chap. 11. P. 197–241. DOI: 10.15586/codon.glioblastoma.2017.ch11

[74]

Fernandes C., Costa A., Osório L. et al. Current standards of care in glioblastoma therapy // Glioblastoma [Internet]. Ed. by S. De Vleeschouwer. Codon Publications Brisbane, Australia, 2017. Chap. 11. P. 197–241. DOI: 10.15586/codon.glioblastoma.2017.ch11

[75]

Díaz R, Jordá MV, Reynés G, et al. Neoadjuvant cisplatin and etoposide, with or without tamoxifen, prior to radiotherapy in high-grade gliomas: a single-center experience. Anticancer Drugs. 2005;16(3):323–329. DOI: 10.1097/00001813-200503000-00012

[76]

Díaz R., Jordá M.V., Reynés G. et al. Neoadjuvant cisplatin and etoposide, with or without tamoxifen, prior to radiotherapy in high-grade gliomas: a single-center experience // Anticancer Drugs. 2005. Vol. 16, No. 3. P. 323–329. DOI: 10.1097/00001813-200503000-00012

[77]

Bunyatyan ND, Vasil’ev AN, Zhuravleva MV, et al. Rukovodstvo po provedeniyu doklinicheskikh issledovanii lekarstvennykh sredstv. Chast’ pervaya. Moscow: Grif i K; 2012. 944 p. (In Russ.)

[78]

Бунятян Н.Д., Васильев А.Н., Журавлева М.В. и др. Руководство по проведению доклинических исследований лекарственных средств. Часть первая. Москва: Гриф и К, 2012. 944 с.

[79]

Barbagallo GM, Paratore S, Caltabiano R, et al. Long-term therapy with temozolomide is a feasible option for newly diagnosed glioblastoma: a single-institution experience with as many as 101 temozolomide cycles. Neurosurg Focus. 2014;37(6):E4. DOI: 10.3171/2014.9.FOCUS14502

[80]

Barbagallo G.M., Paratore S., Caltabiano R. et al. Long-term therapy with temozolomide is a feasible option for newly diagnosed glioblastoma: a single-institution experience with as many as 101 temozolomide cycles // Neurosurg. Focus. 2014. Vol. 37, No. 6. P. E4. DOI: 10.3171/2014.9.FOCUS14502

[81]

Konoplya NE. Lechenie medulloblastomy u detei mladshe chetyrekh let. Medical journal. 2009;(1):112–114. (In Russ.)

[82]

Конопля Н.Е. Лечение медуллобластомы у детей младше четырех лет // Медицинский журнал. 2009. № 1. С. 112–114.

[83]

Wang Y, Kong X, Guo Y, et al. Continuous dose-intense temozolomide and cisplatin in recurrent glioblastoma patients. Medicine (Baltimore). 2017;96(10):e6261. DOI: 10.1097/MD.0000000000006261

[84]

Wang Y., Kong X., Guo Y. et al. Continuous dose-intense temozolomide and cisplatin in recurrent glioblastoma patients // Medicine (Baltimore). 2017. Vol. 96, No. 10. P. e6261. DOI: 10.1097/MD.0000000000006261

[85]

Chu E, Kim R, De Vita Jr. V, et al. Chemotherapy of malignant neoplasms. Ed. by E. Chu, De Vita Jr. Per. s angl. S.V. Kuznetsova, E.A. Okishevoi, A.A. Moiseeva. Moscow: Praktika; 2008. 447 p.

[86]

Химиотерапия злокачественных новообразований / под ред. Э. Чу, В. Де Виты-младшего; пер. с англ. С.В. Кузнецова, Е.А. Окишевой, А.А. Моисеева. Москва: Практика, 2008. 447 с.

[87]

Watanabe Т, Katayama Y, Kimura S, et al. Control of proliferation and survival of C6 glioma cells with modification of the nerve growth factor autocrine system. J Neurooncol. 1999;41(2):121–128. DOI: 10.1023/a:1006127624487

[88]

Watanabe Т., Katayama Y., Kimura S. et al. Control of proliferation and survival of C6 glioma cells with modification of the nerve growth factor autocrine system // J. Neurooncol. 1999. Vol. 41, No. 2. P. 121–128. DOI: 10.1023/a:1006127624487

[89]

Singer H, Hansen B, Martinie D, et al. Mitogenesis in glioblastoma multiforme cell lines: a role for NGF and its TrkA receptors. J Neurooncol. 1999;45(1):1–8. DOI: 10.1023/a:1006323523437

[90]

Singer H., Hansen B., Martinie D. et al. Mitogenesis in glioblastoma multiforme cell lines: A role for NGF and its TrkA receptors // J. Neurooncol. 1999. Vol. 45, No. 1. P. 1–8. DOI: 10.1023/a:1006323523437

[91]

Weis C, Wiesenhofer B, Humpel C. Nerve growth factor plays a divergent role in mediating growth of rat C6 glioma cells via binding to the P75 neurotrophin receptor. J Neurooncol. 2002;56(1):59–67. DOI: 10.1023/a:1014410519935

[92]

Weis C., Wiesenhofer B., Humpel C. Nerve growth factor plays a divergent role in mediating growth of rat C6 glioma cells via binding to the P75 neurotrophin receptor // J. Neurooncol. 2002. Vol. 56, No. 1. P. 59–67. DOI: 10.1023/a:1014410519935

[93]

Emmett CJ. McNeeley PA, Jonson RM. Evaluation of human astrocytoma and glioblastoma cell lines for nerve growth factor release. Neurochem Int. 1997;30(4–5):465–474. DOI: 10.1016/s0197-0186(96)00083-6

[94]

Emmett C.J., McNeeley P.A., Jonson R.M. Evaluation of human astrocytoma and glioblastoma cell lines for nerve growth factor release // Neurochem. Int. 1997. Vol. 30, No. 4–5. P. 465–474. DOI: 10.1016/s0197-0186(96)00083-6

[95]

Tоrnatоre C, Rabin S, Baker-Cairns B, et al. Engraftment of C6-2B cells into the striatum of ACI nude rats as a tool for comparison of the in vitro and in vivo phenotype of a glioma cell line. Cell Transplant. 1997;6(3):317–326. DOI: 10.1177/096368979700600314

[96]

Tоrnatоre C., Rabin S., Baker-Cairns B. et al. Engraftment of C6-2B cells into the striatum of ACI nude rats as a tool for comparison of the in vitro and in vivo phenotype of a glioma cell line // Cell Transplant. 1997. Vol. 6, No. 3. P. 317–326. DOI: 10.1177/096368979700600314

[97]

Chou TT, Trojanowski JQ, Lee VM. A novel apoptotic pathway induced by nerve growth factor-mediated TrkA activation in medulloblastoma. J Biol Chem. 2000;275(1):565–570. DOI: 10.1074/jbc.275.1.565

[98]

Chou T.T., Trojanowski J.Q., Lee V.M. A novel apoptotic pathway induced by nerve growth factor-mediated TrkA activation in medulloblastoma // J. Biol. Chem. 2000. Vol. 275, No. 1. P. 565–570. DOI: 10.1074/jbc.275.1.565

[99]

Vaishnavi A, Le AT, Doebele RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 2015;5(1):25–34. DOI: 10.1158/2159-8290.CD-14-0765

[100]

Vaishnavi A., Le A.T., Doebele RC. TRKing down an old oncogene in a new era of targeted therapy // Cancer Discov. 2015. Vol. 5, No. 1. P. 25-34. DOI:10.1158/2159-8290.CD-14-0765

[101]

Bodnarchuk TW, Napper S, Rapin N, Misra V. Mechanism for the induction of cell death in ONS-76 medulloblastoma cells by Zhangfei/CREB-ZF. J Neurooncol. 2012;109(3):485–501. DOI: 10.1007/s11060-012-0927-z

[102]

Bodnarchuk TW, Napper S, Rapin N. et al. Mechanism for the induction of cell death in ONS-76 medulloblastoma cells by Zhangfei/CREB-ZF // J. Neurooncol. 2012. Vol. 109, No. 3. P. 485–501. DOI: 10.1007/s11060-012-0927-z

[103]

Stetson LC, Dazard J-E, Barnholtz-Sloan JS. Protein markers predict survival in glioma patients. Mol Cell Proteomics. 2016;15(7):2356–2365. DOI: 10.1074/mcp.M116.060657

[104]

Stetson LC, Dazard J-E, Barnholtz-Sloan JS. Protein markers predict survival in glioma patients // Mol. Cell Proteomics. 2016. Vol. 15, No. 7. P. 2356–2365. DOI: 10.1074/mcp.M116.060657

[105]

Nakagawara A, Arima-Nakagawara M, Scavarda NJ, et al. Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med. 1993;328(12):847–854. DOI: 10.1056/NEJM199303253281205

[106]

Nakagawara A., Arima-Nakagawara M., Scavarda N.J. et al. Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma // N. Engl. J. Med. 1993. Vol. 328, No. 12. P. 847–854. DOI: 10.1056/NEJM199303253281205

[107]

Antonelli A, Lenzi L, Nakagawara A, et al. Tumor suppressor proteins are differentially affected in human ependymoblastoma and medulloblastoma cells exposed to nerve growth factor. Cancer Invest. 2007;25(2):94–101. DOI: 10.1080/07357900701205689

[108]

Antonelli A., Lenzi L., Nakagawara A. et al. Tumor suppressor proteins are differentially affected in human ependymoblastoma and medulloblastoma cells exposed to nerve growth factor // Cancer Invest. 2007. Vol. 25, No. 2. P. 94–101. DOI: 10.1080/07357900701205689

[109]

Bassili M, Birman E, Schor NF, et al. Differential roles of Trk and p75 neurotrophin receptors in tumorigenesis and chemoresistance ex vivo and in vivo. Cancer Chemother Pharmacol. 2010;65(6):1047–1056. DOI: 10.1007/s00280-009-1110-x

[110]

Bassili M., Birman E., Schor N.F. et al. Differential roles of Trk and p75 neurotrophin receptors in tumorigenesis and chemoresistance ex vivo and in vivo // Cancer Chemother. Pharmacol. 2010. Vol. 65, No. 6. P. 1047–1056. DOI: 10.1007/s00280-009-1110-x

[111]

Aloe L, Rocco ML, Balzamino BO, et al. Nerve growth factor: role in growth, differentiation and controlling cancer cell development. J Exp Clin Cancer Res. 2016;35:116. DOI: 10.1186/s13046-016-0395-y

[112]

Aloe L., Rocco M.L., Balzamino B.O. et al. Nerve growth factor: role in growth, differentiation and controlling cancer cell development // J. Exp. Clin. Cancer Res. 2016. Vol. 35. P. 116. DOI: 10.1186/s13046-016-0395-y

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1082KB)

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/