Gene expression of antimicrobial peptides in rat intestine under conditions of chronic stress

Aleksei V. Berezhnoy , Irina A. Yankelevich , Galina M. Aleshina , Olga V. Shamova

Medical academic journal ›› 2023, Vol. 23 ›› Issue (4) : 33 -42.

PDF
Medical academic journal ›› 2023, Vol. 23 ›› Issue (4) : 33 -42. DOI: 10.17816/MAJ623704
Original research
research-article

Gene expression of antimicrobial peptides in rat intestine under conditions of chronic stress

Author information +
History +
PDF

Abstract

BACKGROUND: Severe stress causes an array of dysfunctions in the immune, neuroendocrine, cardiovascular, digestive and other systems, resulting in an emergence of various types of pathology. Common manifestations of a chronic stress are the disorders in the gastrointestinal tract, such as irritable bowel syndrome, functional dyspepsia, biliary dyskinesia, dysbiosis, inflammatory processes that determine the development of gastritis and one of the most widespread post-stress pathologies of the gastrointestinal tract — stomach ulcers. The disclosure of the molecular mechanisms of a pathogenesis of diseases associated with gastrointestinal dysfunction related to chronic stress as well as a search for new ways to correct these disorders are important tasks of fundamental and clinical medicine. The present work is focused on evaluating a participation of molecular factors of the innate immunity in intestine, such as antimicrobial peptides secreted by intestinal epithelial cells upon infection, in a response to the chronic stress.

AIM: The aim of the study was to estimate the gene expression of a number of antimicrobial peptides: intestinal α- and β-defensins of laboratory animals (rats) under chronic stress conditions.

MATERIALS AND METHODS: Modeling of a chronic stress was performed by daily forced swimming of laboratory animals in cold water. An expression of α- and β-defensin genes was evaluated using a real-time polymerase chain reaction.

RESULTS: We found an increase in the level of expression of the rat α-defensin-5 and β-defensin-3 genes in response to chronic stress, while the expression of β-defensin-2 gene was not changed compared to the control.

CONCLUSIONS: Considering that changes in the concentration and spectrum of peptides with antibacterial activity, caused by prolonged stress, can contribute to modification of the composition of the intestinal microbiota, the data obtained can expand our understanding of the molecular basis of the pathogenesis of diseases associated with disorders in the composition of microbiota under stress.

Keywords

chronic stress / antimicrobial peptides / defensins

Cite this article

Download citation ▾
Aleksei V. Berezhnoy, Irina A. Yankelevich, Galina M. Aleshina, Olga V. Shamova. Gene expression of antimicrobial peptides in rat intestine under conditions of chronic stress. Medical academic journal, 2023, 23(4): 33-42 DOI:10.17816/MAJ623704

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ouellette AJ. Defensin-mediated innate immunity in the small intestine. Best Pract Res Clin Gastroenterol. 2004;18:405–419. DOI: 10.1016/j.bpg.2003.10.010

[2]

Ouellette A.J. Defensin-mediated innate immunity in the small intestine // Best Pract. Res. Clin. Gastroenterol. 2004. Vol. 18. P. 405–419. DOI: 10.1016/j.bpg.2003.10.010

[3]

Wehkamp J, Wang G, Kübler I, et al. The Paneth cell alpha-defensin deficiency of ileal Crohn’s disease is linked to Wnt/Tcf-4. J. Immunol. 2007;179:3109–3118. DOI: 10.4049/jimmunol.179.5.3109

[4]

Wehkamp J., Wang G., Kübler I. et al. The Paneth cell alpha-defensin deficiency of ileal Crohn’s disease is linked to Wnt/Tcf-4 // J. Immunol. 2007. Vol. 179. P. 3109–3118. DOI: 10.4049/jimmunol.179.5.3109

[5]

Wilson CL, Ouellette AJ, Satchell DP, et al. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science. 1999;286:113–117. DOI: 10.1126/science.286.5437.113

[6]

Wilson C.L., Ouellette A.J., Satchell D.P. et al. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense // Science. 1999. Vol. 286. P. 113–117. DOI: 10.1126/science.286.5437.113

[7]

Salzman NH, Ghosh D, Huttner KM, et al. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature. 2003;422:522–526. DOI: 10.1038/nature01520

[8]

Salzman N.H., Ghosh D., Huttner K.M. et al. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin // Nature. 2003. Vol. 422. P. 522–526. DOI: 10.1038/nature01520

[9]

Young VB. The role of the microbiome in human health and disease: an introduction for clinicians. BMJ. 2017;356:j831. DOI: 10.1136/bmj.j831

[10]

Young V.B. The role of the microbiome in human health and disease: an introduction for clinicians // BMJ. 2017. Vol. 356. P. j831. DOI: 10.1136/bmj.j831

[11]

Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. Curr Opin Gastroenterol. 2015;31(1):69–75. DOI: 10.1097/MOG.0000000000000139

[12]

Shreiner A.B., Kao J.Y., Young V.B. The gut microbiome in health and in disease // Curr. Opin. Gastroenterol. 2015. Vol. 31, No. 1. P. 69–75. DOI: 10.1097/MOG.0000000000000139

[13]

Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179. DOI: 10.1136/bmj.k2179

[14]

Valdes A.M., Walter J., Segal E., Spector T.D. Role of the gut microbiota in nutrition and health // BMJ. 2018. Vol. 361. P. k2179. DOI: 10.1136/bmj.k2179

[15]

Pittayanon R, Lau JT, Yuan Y, et al. Gut microbiota in patients with irritable bowel syndrome – a systematic review. Gastroenterology. 2019;157(1):97–108. DOI: 10.1053/j.gastro.2019.03.049

[16]

Pittayanon R., Lau J.T., Yuan Y. et al. Gut microbiota in patients with irritable bowel syndrome – a systematic review // Gastroenterology. 2019. Vol. 157, No. 1. P. 97–108. DOI: 10.1053/j.gastro.2019.03.049

[17]

Menees S, Chey W. The gut microbiome and irritable bowel syndrome. F1000Res. 2018;7:F1000 Faculty Rev-1029. DOI: 10.12688/f1000research.14592.1

[18]

Menees S., Chey W. The gut microbiome and irritable bowel syndrome // F1000Res. 2018. Vol. 7. P. F1000 Faculty Rev-1029. DOI: 10.12688/f1000research.14592.1

[19]

Sharma S, Tripathi P. Gut microbiome and type 2 diabetes: where we are and where to go? J Nutr Biochem. 2019;63:101–108. DOI: 10.1016/j.jnutbio.2018.10.003

[20]

Sharma S., Tripathi P. Gut microbiome and type 2 diabetes: where we are and where to go? // J. Nutr. Biochem. 2019. Vol. 63. P. 101–108. DOI: 10.1016/j.jnutbio.2018.10.003

[21]

Das T, Jayasudha R, Chakravarthy S, et al. Alterations in the gut bacterial microbiome in people with type 2 diabetes mellitus and diabetic retinopathy. Sci Rep. 2021;11(1):2738. DOI: 10.1038/s41598-021-82538-0

[22]

Das T., Jayasudha R., Chakravarthy S. et al. Alterations in the gut bacterial microbiome in people with type 2 diabetes mellitus and diabetic retinopathy // Sci. Rep. 2021. Vol. 11, No 1. P. 2738. DOI: 10.1038/s41598-021-82538-0

[23]

Kirby TO, Ochoa-Repáraz J. The gut microbiome in multiple sclerosis: a potential therapeutic avenue. Med Sci (Basel, Switzerland). 2018;6(3):69. DOI: 10.3390/medsci6030069

[24]

Kirby T.O., Ochoa-Repáraz J. The gut microbiome in multiple sclerosis: a potential therapeutic avenue // Med. Sci. (Basel). 2018. Vol. 6, No 3. P. 69. DOI: 10.3390/medsci6030069

[25]

Boziki MK, Kesidou E, Theotokis P, et al. Microbiome in multiple sclerosis; Where are we, what we know and do not know. Brain Sci. 2020;10(4):234. DOI: 10.3390/brainsci10040234

[26]

Boziki M.K., Kesidou E., Theotokis P. et al. Microbiome in multiple sclerosis; where are we, what we know and do not know // Brain Sci. 2020. Vol. 10, No. 4. P. 234. DOI: 10.3390/brainsci10040234

[27]

Baldini F, Hertel J, Sandt E, et al. Parkinson’s disease-associated alterations of the gut microbiome predict disease-relevant changes in metabolic functions. BMC Biol. 2020;18(1):62. DOI: 10.1186/s12915-020-00775-7

[28]

Baldini F., Hertel J., Sandt E. et al. Parkinson’s disease-associated alterations of the gut microbiome predict disease-relevant changes in metabolic functions // BMC Biol. 2020. Vol. 18, No. 1. P. 62. DOI: 10.1186/s12915-020-00775-7

[29]

Mayer EA, Knight R, Mazmanian SK, et al. Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci. 2014;34(46):15490–15496. DOI: 10.1523/JNEUROSCI.3299-14.2014

[30]

Mayer E.A., Knight R., Mazmanian S.K. et al. Gut microbes and the brain: paradigm shift in neuroscience // J. Neurosci. 2014. Vol. 34, No. 46. P. 15490–15496. DOI: 10.1523/JNEUROSCI.3299-14.2014

[31]

Mukherjee S, Hooper LV. Antimicrobial defense of the intestine. Immunity. 2015;42(1):28–39. DOI: 10.1016/j.immuni.2014.12.028

[32]

Mukherjee S., Hooper L.V. Antimicrobial defense of the intestine // Immunity. 2015. Vol. 42, No. 1. P. 28–39. DOI: 10.1016/j.immuni.2014.12.028

[33]

Muniz LR, Knosp C, Yeretssian G. Intestinal antimicrobial peptides during homeostasis, infection, and disease. Front Immunol. 2012;3:310. DOI: 10.3389/fimmu.2012.00310

[34]

Muniz L.R., Knosp C., Yeretssian G. Intestinal antimicrobial peptides during homeostasis, infection, and disease // Front. Immunol. 2012. Vol. 3. P. 310. DOI: 10.3389/fimmu.2012.00310

[35]

Sankaran-Walters S, Hart R, Dills C. Guardians of the gut enteric defensins. Front Microbiol. 2017;8:647. DOI: 10.3389/fmicb.2017.00647

[36]

Sankaran-Walters S., Hart R., Dills C. Guardians of the gut enteric defensins // Front. Microbiol. 2017. Vol. 8. P. 647. DOI: 10.3389/fmicb.2017.00647

[37]

Schroeder BO, Ehmann D, Precht JC, et al. Paneth cell α-defensin 6 (HD-6) is an antimicrobial peptide. Mucosal Immunol. 2015;8(3):661–671. DOI: 10.1038/mi.2014.100

[38]

Schroeder B.O., Ehmann D., Precht J.C. et al. Paneth cell α-defensin 6 (HD-6) is an antimicrobial peptide // Mucosal Immunol. 2015. Vol. 8, No. 3. P. 661–671. DOI: 10.1038/mi.2014.100

[39]

Wilson SS, Wiens ME, Holly MK, et al. Defensins at the mucosal surface: latest insights into defensin-virus interactions. J Virol. 2016;90(11):5216–5218. DOI: 10.1128/JVI.00904-15

[40]

Wilson S.S., Wiens M.E., Holly M.K. et al. Defensins at the mucosal surface: latest insights into defensin-virus interactions // J. Virol. 2016. Vol. 90, No. 11. P. 5216–5218. DOI: 10.1128/JVI.00904-15

[41]

Park MS, Kim JI, Lee I, et al. Towards the application of human defensins as antivirals. Biomol Ther (Seoul). 2018;26(3):242–254. DOI: 10.4062/biomolther.2017.172

[42]

Park M.S., Kim J.I., Lee I. et al. Towards the application of human defensins as antivirals // Biomol. Ther. (Seoul). 2018. Vol. 26, No. 3. P. 242–254. DOI: 10.4062/biomolther.2017.172

[43]

Harvey L, Kohlgraf K, Mehalick L, et al. Defensin DEFB103 bidirectionally regulates chemokine and cytokine responses to a pro-inflammatory stimulus. Sci Rep. 2013;3:1232. DOI: 10.1038/srep01232

[44]

Harvey L., Kohlgraf K., Mehalick L. et al. Defensin DEFB103 bidirectionally regulates chemokine and cytokine responses to a pro-inflammatory stimulus // Sci. Rep. 2013. Vol. 3. P. 1232. DOI: 10.1038/srep01232

[45]

Agier J, Efenberger M, Brzezińska-Błaszczyk E. Cathelicidin impact on inflammatory cells. Cent Eur J Immunol. 2015;40(2):225–235. DOI: 10.5114/ceji.2015.51359

[46]

Agier J., Efenberger M., Brzezińska-Błaszczyk E. Cathelicidin impact on inflammatory cells // Cent. Eur. J. Immunol. 2015. Vol. 40, No. 2. P. 225–235. DOI: 10.5114/ceji.2015.51359

[47]

Yankelevich IA, Filatenkova TA, Shustov MV. The effect of chronic emotional and chronic stress on the indicators of neuroendocrine and immune systems. Medical Academic Journal. 2019;19(1):85–90. (In Russ.) DOI: 10.17816/MAJ19185-90

[48]

Янкелевич И.А., Филатенкова Т.А., Шустов М.В. Влияние хронического эмоционально-хронического стресса на показатели нейроэндокринной и иммунной систем // Медицинский академический журнал. 2019. T. 19, № 1. С. 85–90. DOI: 10.17816/MAJ19185-90

[49]

Gruver AL, Sempowski GD. Cytokines, leptin, and stress-induced thymic atrophy. J Leukoc Biol. 2008;84(4):915–923. DOI: 10.1189/jlb.0108025

[50]

Gruver A.L., Sempowski G.D. Cytokines, leptin, and stress-induced thymic atrophy // J. Leukoc. Biol. 2008. Vol. 84, No. 4. P. 915–923. DOI: 10.1189/jlb.0108025

[51]

Bulgakova OS, Barantseva VI. General clinical blood analysis as a method for determining post-stress rehabilitation. Advances in current natural sciences. 2009;6:22–27. (In Russ.)

[52]

Булгакова О.С., Баранцева В.И. Общий клинический анализ крови как метод определения постстрессорной реабилитации // Успехи современного естествознания. 2009. № 6. С. 22–27.

[53]

Kiseleva NM, Kuzmenko LG, Nkane Nzola MM. Stress and lymphocytes. Pediatrics. The journal named after G.N. Speransky. 2012;91(1):137–143. (In Russ.)

[54]

Киселева Н.М., Кузьменко Л.Г., Нкане Нзола М.М. Стресс и лимфоциты // Педиатрия. Журнал им. Г.Н. Сперанского. 2012. Т. 91, № 1. С. 137–143.

[55]

Swan MP, Hickman DL. Evaluation of the neutrophil-lymphocyte ratio as a measure of distress in rats. Lab Animal. 2014;43:276–282. DOI: 10.1038/laban.529

[56]

Swan M.P., Hickman D.L. Evaluation of the neutrophil-lymphocyte ratio as a measure of distress in rats // Lab. Animal. 2014. Vol. 43. P. 276–282. DOI: 10.1038/laban.529

[57]

Nishitani N, Sakakibara H. Association of psychological stress response of fatigue with white blood cell count in male daytime workers. Ind Health. 2014;52(6):531–534. DOI: 10.2486/indhealth.2013-0045

[58]

Nishitani N., Sakakibara H. Association of psychological stress response of fatigue with white blood cell count in male daytime workers // Ind. Health. 2014. Vol. 52, No. 6. P. 531–534. DOI: 10.2486/indhealth.2013-0045

[59]

Mallampali RK, Wang G, Wiles K, et al. Molecular cloning and characterization of rat genes encoding homologues of human beta-defensins. Infect Immun. 1999;67(9):4827–4833. DOI: 10.1128/IAI.67.9.4827-4833.1999

[60]

Mallampali R.K., Wang G., Wiles K. et al. Molecular cloning and characterization of rat genes encoding homologues of human beta-defensins // Infect. Immun. 1999. Vol. 67, No. 9. P. 4827–4833. DOI: 10.1128/IAI.67.9.4827-4833.1999

[61]

Inaba Y, Ashida T, Ito T, et al. Expression of the antimicrobial peptide alpha-defensin/cryptdins in intestinal crypts decreases at the initial phase of intestinal inflammation in a model of inflammatory bowel disease, IL-10-deficient mice. Inflamm Bowel Dis. 2010;16(9):1488–1495. DOI: 10.1002/ibd.21253

[62]

Inaba Y., Ashida T., Ito T. et al. Expression of the antimicrobial peptide alpha-defensin/cryptdins in intestinal crypts decreases at the initial phase of intestinal inflammation in a model of inflammatory bowel disease, IL-10-deficient mice // Inflamm. Bowel Dis. 2010. Vol. 16, No. 9. P. 1488–1495. DOI: 10.1002/ibd.21253

[63]

Mathew B, Nagaraj R. Antimicrobial activity of human α-defensin 5 and its linear analogs: N-terminal fatty acylation results in enhanced antimicrobial activity of the linear analogs. Peptides. 2015;71:128–140. DOI: 10.1016/j.peptides.2015.07.009

[64]

Mathew B., Nagaraj R. Antimicrobial activity of human α-defensin 5 and its linear analogs: N-terminal fatty acylation results in enhanced antimicrobial activity of the linear analogs // Peptides. 2015. Vol. 71. P. 128–140. DOI: 10.1016/j.peptides.2015.07.009

[65]

Aoki-Yoshida A, Aoki R, Moriya N, et al. Omics studies of the murine intestinal ecosystem exposed to subchronic and mild social defeat stress. J Proteome Res. 2016;15(9):3126–3138. DOI: 10.1021/acs.jproteome.6b00262

[66]

Aoki-Yoshida A., Aoki R., Moriya N. et al. Omics studies of the murine intestinal ecosystem exposed to subchronic and mild social defeat stress // J. Proteome Res. 2016. Vol. 15, No. 9. P. 3126–3138. DOI: 10.1021/acs.jproteome.6b00262

[67]

Estienne M, Claustre J, Clain-Gardechaux G, et al. Maternal deprivation alters epithelial secretory cell lineages in rat duodenum: role of CRF-related peptides. Gut. 2010;59:744–751. DOI: 10.1136/gut.2009.190728

[68]

Estienne M., Claustre J., Clain-Gardechaux G. et al. Maternal deprivation alters epithelial secretory cell lineages in rat duodenum: role of CRF-related peptides // Gut. 2010. Vol. 59. P. 744–751. DOI: 10.1136/gut.2009.190728

[69]

uniprot.org [Internet]. Q32ZI4 · DEFB3_RAT. Available from: https://www.uniprot.org/uniprot/Q32ZI4. Accessed: 22.11.2023.

[70]

uniprot.org [электронный ресурс]. Q32ZI4 · DEFB3_RAT. Режим доступа: https://www.uniprot.org/uniprot/Q32ZI4. Дата обращения: 22.11.2023

[71]

Su KH, Dai C. mTORC1 senses stresses: Coupling stress to proteostasis. Bioessays. 2017;39(5):10.1002/bies.201600268. DOI: 10.1002/bies.201600268

[72]

Su K.H., Dai C. mTORC1 senses stresses: Coupling stress to proteostasis // Bioessays. 2017. Vol. 39, No. 5. P. 10.1002/bies.201600268. DOI: 10.1002/bies.201600268

[73]

Tang Z, Shi B, Sun W, et al. Tryptophan promoted β-defensin-2 expression via the mTOR pathway and its metabolites: kynurenine banding to aryl hydrocarbon receptor in rat intestine. RSC Adv. 2020;10(6):3371–3379. DOI: 10.1039/c9ra10477a

[74]

Tang Z., Shi B., Sun W. et al. Tryptophan promoted β-defensin-2 expression via the mTOR pathway and its metabolites: kynurenine banding to aryl hydrocarbon receptor in rat intestine // RSC Adv. 2020. Vol. 10, No. 6. P. 3371–3379. DOI: 10.1039/c9ra10477a

[75]

Radek KA. Antimicrobial anxiety: the impact of stress on antimicrobial immunity. J Leukoc Biol. 2010;88(2):263–277. DOI: 10.1189/jlb.1109740

[76]

Radek K.A. Antimicrobial anxiety: the impact of stress on antimicrobial immunity // J. Leukoc. Biol. 2010. Vol. 88, No. 2. P. 263–277. DOI: 10.1189/jlb.1109740

[77]

Aberg KM, Radek KA, Choi EH. Psychological stress downregulates epidermal antimicrobial peptide expression and increases severity of cutaneous infections in mice. J Clin Invest. 2007;117(11):3339–3349. DOI: 10.1172/JCI31726

[78]

Aberg K.M., Radek K.A., Choi E.H. Psychological stress downregulates epidermal antimicrobial peptide expression and increases severity of cutaneous infections in mice // J. Clin. Invest. 2007. Vol. 117, No. 11. P. 3339–3349. DOI: 10.1172/JCI31726

[79]

Sugi Y, Takahashi K, Kurihara K, et al. α-Defensin 5 gene expression is regulated by gut microbial metabolites. Biosci Biotech Biochem. 2017;81(2):242–248. DOI: 10.1080/09168451.2016.1246175

[80]

Sugi Y., Takahashi K., Kurihara K. et al. α-Defensin 5 gene expression is regulated by gut microbial metabolites // Biosci. Biotech. Biochem. 2017. Vol. 81, No. 2. P. 242–248. DOI: 10.1080/09168451.2016.1246175

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/