Changes in DNMT1 expression as a marker of epigenetic regulation disturbanses in multiple sclerosis patients
Evgenia A. Tsymbalova , Ekaterina А. Chernyavskaya , Darja Е. Ryzhkova , Gennady N. Bisaga , Irina N. Abdurasulova , Viktoria I. Lioudyno
Medical academic journal ›› 2023, Vol. 23 ›› Issue (3) : 41 -53.
Changes in DNMT1 expression as a marker of epigenetic regulation disturbanses in multiple sclerosis patients
BACKGROUND: Multiple sclerosis is a chronic neurodegenerative autoimmune disease characterized by the presence of foci of inflammation and demyelination in the central nervous system. The initiation of pathological processes in multiple sclerosis is caused by a complex interaction of genetic factors, unfavorable environmental factors and epigenetic influences. Progressive neurological symptoms caused by axonal conduction disorders, axonal death and neurodestruction lead to a significant decreased patients’ quality of life and disability. The search for a new markers to improve diagnostic and therapeutic methods, including taking into account the genetic background and epigenetic interactions, is an urgent task.
AIM: The work was aimed to study the changes in DNMT1 mRNA expression in multiple sclerosis patients with different disease duration, to analyze methylation of DNMT1 promoter, and compare the changes in the level of DNMT1 expression with the homocysteine content in the blood, and the presence of polymorphic variants in genes coding the key folate cycle enzymes.
MATERIALS AND METHODS: The level of DNMT1 mRNA expression in peripheral mononuclear blood cells was assessed by reversed transcription followed by polymerase chain reaction. Fluorescent polymerase chain reaction followed by methyl-sensitive analysis of high-resolution melting curves was used to analyze methylation of the DNMT1 promoter. The content of homocysteine in the blood was determined by chemiluminescence immunoassay. The real-time polymerase chain reaction was used for genotyping by polymorphism of folate cycle genes; the fluorescent probes with the LNA modifications were used to discriminate alleles.
RESULTS: It has been shown that in multiple sclerosis patients, including those at the onset of the disease, the level of DNMT1 mRNA expression is significantly lower than in the control group. No relationship was found between the decrease in DNMT1 expression and the level of promoter methylation. Strong positive relationship between the level of DNMT1 mRNA expression and homocysteine content in patients with multiple sclerosis and the combined effects of the genotypes of MTR A2756G and MTHFR C677T polymorphism on the expression of DNMT1 have been shown. These findings suggest that genetically determined features of folate metabolism may contribute to the disruption of epigenetic regulation in multiple sclerosis.
CONCLUSIONS: The obtained results indicate the promise of research aimed to identifying the factors causing epigenetic changes in multiple sclerosis. Studying the mechanisms of the folate cycle genes polymorphic variants contribution to the pathogenesis of multiple sclerosis could be one of the possible ways to improve diagnostic and therapeutic approaches.
multiple sclerosis / epigenetics / methylation / DNMT1 / gene polymorphism / folate cycle
| [1] |
Liu L, Li Y, Tollefsbol TO. Gene-environment interactions and epigenetic basis of human diseases. Curr Issues Mol Biol. 2008;10(1-2):25–36. |
| [2] |
Liu L., Li Y., Tollefsbol T.O. Gene-environment interactions and epigenetic basis of human diseases // Curr. Issues Mol. Biol. 2008. Vol. 10, No. 1-2. P. 25–36. |
| [3] |
Pogribny IP, Beland FA. DNA hypomethylation in the origin and pathogenesis of human diseases. Cell Mol Life Sci. 2009;66(14):2249–2261. DOI: 10.1007/s00018-009-0015-5 |
| [4] |
Pogribny I.P., Beland F.A. DNA hypomethylation in the origin and pathogenesis of human diseases // Cell. Mol. Life Sci. 2009. Vol. 66, No. 14. P. 2249–2261. DOI: 10.1007/s00018-009-0015-5 |
| [5] |
Riggs AD. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet. 1975;14(1):9–25. DOI: 10.1159/000130315 |
| [6] |
Riggs A.D. X inactivation, differentiation, and DNA methylation // Cytogenet. Cell Genet. 1975. Vol. 14, No. 1. P. 9–25. DOI: 10.1159/000130315 |
| [7] |
Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem. 2005;74:481–514. DOI: 10.1146/annurev.biochem.74.010904.153721 |
| [8] |
Goll M.G., Bestor T.H. Eukaryotic cytosine methyltransferases // Annu. Rev. Biochem. 2005. Vol. 74. P. 481–514. DOI: 10.1146/annurev.biochem.74.010904.153721 |
| [9] |
Mattei AL, Bailly N, Meissner A. DNA methylation: a historical perspective. Trends Genet. 2022;38(7):676–707. DOI: 10.1016/j.tig.2022.03.010 |
| [10] |
Mattei A.L., Bailly N., Meissner A. DNA methylation: a historical perspective // Trends Genet. 2022. Vol. 38, No. 7. P. 676–707. DOI: 10.1016/j.tig.2022.03.010 |
| [11] |
Hervouet E, Peixoto P, Delage-Mourroux R, et al. Specific or not specific recruitment of DNMTs for DNA methylation, an epigenetic dilemma. Clin Epigenetics. 2018;10:17. DOI: 10.1186/s13148-018-0450-y |
| [12] |
Hervouet E., Peixoto P., Delage-Mourroux R. et al. Specific or not specific recruitment of DNMTs for DNA methylation, an epigenetic dilemma // Clin. Epigenetics. 2018. Vol. 10. P. 17. DOI: 10.1186/s13148-018-0450-y |
| [13] |
Mizuno S, Chijiwa T, Okamura T, et al. Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood. 2001;97(5):1172–1179. DOI: 10.1182/blood.v97.5.1172 |
| [14] |
Mizuno S., Chijiwa T., Okamura T. et al. Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia // Blood. 2001. Vol. 97, No. 5. P. 1172–1179. DOI: 10.1182/blood.v97.5.1172 |
| [15] |
Wong KK, Lawrie CH, Green TM. Oncogenic roles and inhibitors of DNMT1, DNMT3A, and DNMT3B in acute myeloid leukaemia. Biomark Insights. 2019;14:1177271919846454. DOI: 10.1177/1177271919846454 |
| [16] |
Wong K.K., Lawrie C.H., Green T.M. Oncogenic roles and inhibitors of DNMT1, DNMT3A, and DNMT3B in acute myeloid leukaemia // Biomark. Insights. 2019. Vol. 14. P. 1177271919846454. DOI: 10.1177/1177271919846454 |
| [17] |
Zhang TJ, Zhang LC, Xu ZJ, Zhou JD. Expression and prognosis analysis of DNMT family in acute myeloid leukemia. Aging (Albany NY). 2020;12(14):14677–14690. DOI: 10.18632/aging.103520 |
| [18] |
Zhang T.J., Zhang L.C., Xu Z.J., Zhou J.D. Expression and prognosis analysis of DNMT family in acute myeloid leukemia // Aging (Albany NY). 2020. Vol. 12, No. 14. P. 14677–14690. DOI: 10.18632/aging.103520 |
| [19] |
Grossi E, Stoccoro A, Tannorella P, et al. Artificial neural networks link one-carbon metabolism to gene-promoter methylation in Alzheimer’s disease. J Alzheimers Dis. 2016;53(4):1517–1522. DOI: 10.3233/JAD-160210 |
| [20] |
Grossi E., Stoccoro A., Tannorella P. et al. Artificial neural networks link one-carbon metabolism to gene-promoter methylation in Alzheimer’s disease // J. Alzheimers Dis. 2016. Vol. 53, No. 4. P. 1517–1522. DOI: 10.3233/JAD-160210 |
| [21] |
Mohd Murshid N, Aminullah Lubis F, Makpol S. Epigenetic changes and its intervention in age-related neurodegenerative diseases. Cell Mol Neurobiol. 2022;42(3):577–595. DOI: 10.1007/s10571-020-00979-z |
| [22] |
Mohd Murshid N., Aminullah Lubis F., Makpol S. Epigenetic changes and its intervention in age-related neurodegenerative diseases // Cell. Mol. Neurobiol. 2022. Vol. 42, No. 3. P. 577–595. DOI: 10.1007/s10571-020-00979-z |
| [23] |
Younesian S, Yousefi AM, Momeny M, et al. The DNA methylation in neurological diseases. Cells. 2022;11(21):3439. DOI: 10.3390/cells11213439 |
| [24] |
Younesian S., Yousefi A.M., Momeny M. et al. The DNA methylation in neurological diseases // Cells. 2022. Vol. 11, No. 21. P. 3439. DOI: 10.3390/cells11213439 |
| [25] |
Hartung T, Rhein M, Kalmbach N, et al. Methylation and expression of mutant FUS in motor neurons differentiated from induced pluripotent stem cells from ALS patients. Front Cell Dev Biol. 2021;9:774751. DOI: 10.3389/fcell.2021.774751 |
| [26] |
Hartung T., Rhein M., Kalmbach N. et al. Methylation and expression of mutant FUS in motor neurons differentiated from induced pluripotent stem cells from ALS patients // Front. Cell Dev. Biol. 2021. Vol. 9. P. 774751. DOI: 10.3389/fcell.2021.774751 |
| [27] |
Compston A., Coles A. Multiple sclerosis. Lancet. 2008;372(9648):1502–1517. DOI: 10.1016/S0140-6736(08)61620-7 |
| [28] |
Compston A., Coles A. Multiple sclerosis // Lancet. 2008. Vol. 372, No. 9648. P. 1502–1517. DOI: 10.1016/S0140-6736(08)61620-7 |
| [29] |
Calabrese R, Zampieri M, Mechelli R, et al. Methylation-dependent PAD2 upregulation in multiple sclerosis peripheral blood. Mult Scler. 2012;18(3):299–304. DOI: 10.1177/1352458511421055 |
| [30] |
Calabrese R., Zampieri M., Mechelli R. et al. Methylation-dependent PAD2 upregulation in multiple sclerosis peripheral blood // Mult. Scler. 2012. Vol. 18, No. 3. P. 299–304. DOI: 10.1177/1352458511421055 |
| [31] |
Zheleznyakova GY, Piket E, Marabita F, et al. Epigenetic research in multiple sclerosis: progress, challenges, and opportunities. Physiol Genomics. 2017;49(9):447–461. DOI: 10.1152/physiolgenomics.00060.2017 |
| [32] |
Zheleznyakova G.Y., Piket E., Marabita F. et al. Epigenetic research in multiple sclerosis: progress, challenges, and opportunities // Physiol. Genomics. 2017. Vol. 49, No. 9. P. 447–461. DOI: 10.1152/physiolgenomics.00060.2017 |
| [33] |
Ruhrmann S, Ewing E, Piket E, et al. Hypermethylation of MIR21 in CD4+ T cells from patients with relapsing-remitting multiple sclerosis associates with lower miRNA-21 levels and concomitant up-regulation of its target genes. Mult Scler. 2018;24(10):1288–1300. DOI: 10.1177/1352458517721356 |
| [34] |
Ruhrmann S., Ewing E., Piket E. et al. Hypermethylation of MIR21 in CD4+ T cells from patients with relapsing-remitting multiple sclerosis associates with lower miRNA-21 levels and concomitant up-regulation of its target genes // Mult. Scler. 2018. Vol. 24, No. 10. P. 1288–1300. DOI: 10.1177/1352458517721356 |
| [35] |
Garcia-Manteiga JM, Clarelli F, Bonfiglio S, et al. Identification of differential DNA methylation associated with multiple sclerosis: A family-based study. J Neuroimmunol. 2021;356:577600. DOI: 10.1016/j.jneuroim.2021.577600 |
| [36] |
Garcia-Manteiga J.M., Clarelli F., Bonfiglio S. et al. Identification of differential DNA methylation associated with multiple sclerosis: A family-based study // J. Neuroimmunol. 2021. Vol. 356. P. 577600. DOI: 10.1016/j.jneuroim.2021.577600 |
| [37] |
Calabrese R, Valentini E, Ciccarone F, et al. TET2 gene expression and 5-hydroxymethylcytosine level in multiple sclerosis peripheral blood cells. Biochim Biophys Acta. 2014;1842(7):1130–1136. DOI: 10.1016/j.bbadis.2014.04.010 |
| [38] |
Calabrese R., Valentini E., Ciccarone F. et al. TET2 gene expression and 5-hydroxymethylcytosine level in multiple sclerosis peripheral blood cells // Biochim. Biophys. Acta. 2014. Vol. 1842, No. 7. P. 1130–1136. DOI: 10.1016/j.bbadis.2014.04.010 |
| [39] |
Friso S, Choi SW. Gene-nutrient interactions and DNA methylation. J Nutr. 2002;132(8 Suppl):2382S–2387S. DOI: 10.1093/jn/132.8.2382S |
| [40] |
Friso S., Choi S.W. Gene-nutrient interactions and DNA methylation // J. Nutr. 2002. Vol. 132, No. 8 Suppl. P. 2382S–2387S. DOI: 10.1093/jn/132.8.2382S |
| [41] |
Clare CE, Brassington AH, Kwong WY, Sinclair KD. One-carbon metabolism: Linking nutritional biochemistry to epigenetic programming of long-term development. Annu Rev Anim Biosci. 2019;7:263–287. DOI: 10.1146/annurev-animal-020518-115206 |
| [42] |
Clare C.E., Brassington A.H., Kwong W.Y., Sinclair K.D. One-carbon metabolism: Linking nutritional biochemistry to epigenetic programming of long-term development // Annu. Rev. Anim. Biosci. 2019. Vol. 7. P. 263–287. DOI: 10.1146/annurev-animal-020518-115206 |
| [43] |
Mentch SJ, Locasale JW. One-carbon metabolism and epigenetics: understanding the specificity. Ann N Y Acad Sci. 2016;1363(1):91–98. DOI: 10.1111/nyas.12956 |
| [44] |
Mentch S.J., Locasale J.W. One-carbon metabolism and epigenetics: understanding the specificity // Ann. N. Y. Acad. Sci. 2016. Vol. 1363, No. 1. P. 91–98. DOI: 10.1111/nyas.12956 |
| [45] |
Ponnaluri VKC, Estève PO, Ruse CI, Pradhan S. S-adenosylhomocysteine hydrolase participates in DNA methylation inheritance. J Mol Biol. 2018;430(14):2051–2065. DOI: 10.1016/j.jmb.2018.05.014 |
| [46] |
Ponnaluri V.K.C., Estève P.O., Ruse C.I., Pradhan S. S-adenosylhomocysteine hydrolase participates in DNA methylation inheritance // J. Mol. Biol. 2018. Vol. 430, No. 14. P. 2051–2065. DOI: 10.1016/j.jmb.2018.05.014 |
| [47] |
Polman CH, Reingold SC, Edan G, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol. 2005;58(6):840–846. DOI: 10.1002/ana.20703 |
| [48] |
Polman C.H., Reingold S.C., Edan G. et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria” // Ann. Neurol. 2005. Vol. 58, No. 6. P. 840–846. DOI: 10.1002/ana.20703 |
| [49] |
Usarek E, Barańczyk-Kuźma A, Kaźmierczak B, et al. Validation of qPCR reference genes in lymphocytes from patients with amyotrophic lateral sclerosis. PLoS One. 2017;12(3):e0174317. DOI: 10.1371/journal.pone.0174317 |
| [50] |
Usarek E., Barańczyk-Kuźma A., Kaźmierczak B. et al. Validation of qPCR reference genes in lymphocytes from patients with amyotrophic lateral sclerosis // PLoS One. 2017. Vol. 12, No. 3. P. e0174317. DOI: 10.1371/journal.pone.0174317 |
| [51] |
Migheli F, Stoccoro A, Coppedè F, et al. Comparison study of MS-HRM and pyrosequencing techniques for quantification of APC and CDKN2A gene methylation. PLoS One. 2013;8(1):e52501. DOI: 10.1371/journal.pone.0052501 |
| [52] |
Migheli F., Stoccoro A., Coppedè F. et al. Comparison study of MS-HRM and pyrosequencing techniques for quantification of APC and CDKN2A gene methylation // PLoS One. 2013. Vol. 8, No. 1. P. e52501. DOI: 10.1371/journal.pone.0052501 |
| [53] |
Wojdacz TK, Dobrovic A, Hansen LL. Methylation-sensitive high-resolution melting. Nat Protoc. 2008;3(12):1903–1908. DOI: 10.1038/nprot.2008.191 |
| [54] |
Wojdacz T.K., Dobrovic A., Hansen L.L. Methylation-sensitive high-resolution melting // Nat. Protoc. 2008. Vol. 3, No. 12. P. 1903–1908. DOI: 10.1038/nprot.2008.191 |
| [55] |
Wojdacz TK, Hansen LL, Dobrovic A. A new approach to primer design for the control of PCR bias in methylation studies. BMC Res Notes. 2008;1:54. DOI: 10.1186/1756-0500-1-54 |
| [56] |
Wojdacz T.K., Hansen L.L., Dobrovic A. A new approach to primer design for the control of PCR bias in methylation studies // BMC Res. Notes. 2008. Vol. 1. P. 54. DOI: 10.1186/1756-0500-1-54 |
| [57] |
Coppedè F, Stoccoro A, Tannorella P, Migliore L. Plasma homocysteine and polymorphisms of genes involved in folate metabolism correlate with DNMT1 Gene methylation levels. Metabolites. 2019;9(12):298. DOI: 10.3390/metabo9120298 |
| [58] |
Coppedè F., Stoccoro A., Tannorella P., Migliore L. Plasma homocysteine and polymorphisms of genes involved in folate metabolism correlate with DNMT1 gene methylation levels // Metabolites. 2019. Vol. 9, No. 12. P. 298. DOI: 10.3390/metabo9120298 |
| [59] |
Tannorella P, Stoccoro A, Tognoni G, et al. Methylation analysis of multiple genes in blood DNA of Alzheimer’s disease and healthy individuals. Neurosci Lett. 2015;600:143–147. DOI: 10.1016/j.neulet.2015.06.009 |
| [60] |
Tannorella P., Stoccoro A., Tognoni G. et al. Methylation analysis of multiple genes in blood DNA of Alzheimer’s disease and healthy individuals // Neurosci. Lett. 2015. Vol. 600. P. 143–147. DOI: 10.1016/j.neulet.2015.06.009 |
| [61] |
Samsø Mathiasen S, Bińkowski J, Kjeldsen T, et al. Methylation levels assessment with Methylation-Sensitive High-Resolution Melting (MS-HRM). PLoS One. 2022;17(9):e0273058. DOI: 10.1371/journal.pone.0273058 |
| [62] |
Samsø Mathiasen S., Bińkowski J., Kjeldsen T. et al. Methylation levels assessment with Methylation-Sensitive High-Resolution Melting (MS-HRM) // PLoS One. 2022. Vol. 17, No. 9. P. e0273058. DOI: 10.1371/journal.pone.0273058 |
| [63] |
Kiselev IS, Kulakova OG, Boyko AN, Favorova OO. DNA Methylation as an epigenetic mechanism in the development of multiple sclerosis. Acta Naturae. 2021;13(2):45–57. DOI: 10.32607/actanaturae.11043 |
| [64] |
Kiselev I.S., Kulakova O.G., Boyko A.N., Favorova O.O. DNA Methylation as an epigenetic mechanism in the development of multiple sclerosis // Acta Naturae. 2021. Vol. 13, No. 2. P. 45–57. DOI: 10.32607/actanaturae.11043 |
| [65] |
Mastronardi FG, Noor A, Wood DD, et al. Peptidyl argininedeiminase 2 CpG island in multiple sclerosis white matter is hypomethylated. J Neurosci Res. 2007;85(9):2006–2016. DOI: 10.1002/jnr.21329 |
| [66] |
Mastronardi F.G., Noor A., Wood D.D. et al. Peptidyl argininedeiminase 2 CpG island in multiple sclerosis white matter is hypomethylated // J. Neurosci. Res. 2007. Vol. 85, No. 9. P. 2006–2016. DOI: 10.1002/jnr.21329 |
| [67] |
Castro K, Casaccia P. Epigenetic modifications in brain and immune cells of multiple sclerosis patients. Mult Scler. 2018;24(1):69–74. DOI: 10.1177/1352458517737389 |
| [68] |
Castro K., Casaccia P. Epigenetic modifications in brain and immune cells of multiple sclerosis patients // Mult. Scler. 2018. Vol. 24, No. 1. P. 69–74. DOI: 10.1177/1352458517737389 |
| [69] |
Kular L, Ewing E, Needhamsen M, et al. DNA methylation changes in glial cells of the normal-appearing white matter in multiple sclerosis patients. Epigenetics. 2022;17(11):1311–1330. DOI: 10.1080/15592294.2021.2020436 |
| [70] |
Kular L., Ewing E., Needhamsen M. et al. DNA methylation changes in glial cells of the normal-appearing white matter in multiple sclerosis patients // Epigenetics. 2022. Vol. 17, No. 11. P. 1311–1330. DOI: 10.1080/15592294.2021.2020436 |
| [71] |
Wang X, Wang J, Yu Y, et al. Decitabine inhibits T cell proliferation via a novel TET2-dependent mechanism and exerts potent protective effect in mouse auto- and allo-immunity models. Oncotarget. 2017;8(34):56802–56815. DOI: 10.18632/oncotarget.18063 |
| [72] |
Wang X., Wang J., Yu Y. et al. Decitabine inhibits T cell proliferation via a novel TET2-dependent mechanism and exerts potent protective effect in mouse auto- and allo-immunity models // Oncotarget. 2017. Vol. 8, No. 34. P. 56802–56815. DOI: 10.18632/oncotarget.18063 |
| [73] |
Rasmi Y, Shokati A, Hassan A, et al. The role of DNA methylation in progression of neurological disorders and neurodegenerative diseases as well as the prospect of using DNA methylation inhibitors as therapeutic agents for such disorders. IBRO Neurosci Rep. 2022;14:28–37. DOI: 10.1016/j.ibneur.2022.12.002 |
| [74] |
Rasmi Y., Shokati A., Hassan A. et al. The role of DNA methylation in progression of neurological disorders and neurodegenerative diseases as well as the prospect of using DNA methylation inhibitors as therapeutic agents for such disorders // IBRO Neurosci. Rep. 2022. Vol. 14. P. 28–37. DOI: 10.1016/j.ibneur.2022.12.002 |
| [75] |
Kantor B, Tagliafierro L, Gu J, et al. Downregulation of SNCA expression by targeted editing of DNA methylation: a potential strategy for precision therapy in PD. Mol Ther. 2018;26(11):2638–2649. DOI: 10.1016/j.ymthe.2018.08.019 |
| [76] |
Kantor B., Tagliafierro L., Gu J. et al. Downregulation of SNCA expression by targeted editing of DNA methylation: a potential strategy for precision therapy in PD // Mol. Ther. 2018. Vol. 26, No. 11. P. 2638–2649. DOI: 10.1016/j.ymthe.2018.08.019 |
| [77] |
Fuso A, Nicolia V, Cavallaro RA, et al. B-vitamin deprivation induces hyperhomocysteinemia and brain S-adenosylhomocysteine, depletes brain S-adenosylmethionine, and enhances PS1 and BACE expression and amyloid-beta deposition in mice. Mol Cell Neurosci. 2008;37(4):731–746. DOI: 10.1016/j.mcn.2007.12.018 |
| [78] |
Fuso A., Nicolia V., Cavallaro R.A. et al. B-vitamin deprivation induces hyperhomocysteinemia and brain S-adenosylhomocysteine, depletes brain S-adenosylmethionine, and enhances PS1 and BACE expression and amyloid-beta deposition in mice // Mol. Cell. Neurosci. 2008. Vol. 37, No. 4. P. 731–746. DOI: 10.1016/j.mcn.2007.12.018 |
| [79] |
Fuso A, Nicolia V, Cavallaro RA, Scarpa S. DNA methylase and demethylase activities are modulated by one-carbon metabolism in Alzheimer’s disease models. J Nutr Biochem. 2011;22(3):242–251. DOI: 10.1016/j.jnutbio.2010.01.010 |
| [80] |
Fuso A., Nicolia V., Cavallaro R.A., Scarpa S. DNA methylase and demethylase activities are modulated by one-carbon metabolism in Alzheimer’s disease models // J. Nutr. Biochem. 2011. Vol. 22, No. 3. P. 242–251. DOI: 10.1016/j.jnutbio.2010.01.010 |
| [81] |
Weiner AS, Boyarskikh UA, Voronina EN, et al. Methylenetetrahydrofolate reductase C677T and methionine synthase A2756G polymorphisms influence on leukocyte genomic DNA methylation level. Gene. 2014;533(1):168–172. DOI: 10.1016/j.gene.2013.09.098 |
| [82] |
Weiner A.S., Boyarskikh U.A., Voronina E.N. et al. Methylenetetrahydrofolate reductase C677T and methionine synthase A2756G polymorphisms influence on leukocyte genomic DNA methylation level // Gene. 2014. Vol. 533, No. 1. P. 168–172. DOI: 10.1016/j.gene.2013.09.098 |
| [83] |
Ni G, Qin J, Chen Z, et al. Associations between genetic variation in one-carbon metabolism and leukocyte DNA methylation in valproate-treated patients with epilepsy. Clin Nutr. 2018;37(1):308–312. DOI: 10.1016/j.clnu.2017.01.004 |
| [84] |
Ni G., Qin J., Chen Z. et al. Associations between genetic variation in one-carbon metabolism and leukocyte DNA methylation in valproate-treated patients with epilepsy // Clin. Nutr. 2018. Vol. 37, No. 1. P. 308–312. DOI: 10.1016/j.clnu.2017.01.004 |
| [85] |
Li WX, Dai SX, Zheng JJ, et al. Homocysteine metabolism gene polymorphisms (MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G) jointly elevate the risk of folate deficiency. Nutrients. 2015;7:6670–6687. DOI: 10.3390/nu7085303 |
| [86] |
Li W.X., Dai S.X., Zheng J.J. et al. Homocysteine metabolism gene polymorphisms (MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G) jointly elevate the risk of folate deficiency // Nutrients. 2015. Vol. 7. P. 6670–6687. DOI: 10.3390/nu7085303 |
| [87] |
Raghubeer S, Matsha TE. Methylenetetrahydrofolate (MTHFR), the one-carbon cycle, and cardiovascular risks. Nutrients. 2021;13:4562. DOI: 10.3390/nu13124562 |
| [88] |
Raghubeer S., Matsha T.E. Methylenetetrahydrofolate (MTHFR), the one-carbon cycle, and cardiovascular risks // Nutrients. 2021. Vol. 13. P. 4562. DOI: 10.3390/nu13124562 |
| [89] |
Tsai MY, Bignell M, Yang F, et al. Polygenic influence on plasma homocysteine: association of two prevalent mutations, the 844ins68 of cystathionine beta-synthase and A(2756)G of methionine synthase, with lowered plasma homocysteine levels. Atherosclerosis. 2000;149:131–137. DOI: 10.1016/s0021-9150(99)00297-x |
| [90] |
Tsai M.Y., Bignell M., Yang F. et al. Polygenic influence on plasma homocysteine: association of two prevalent mutations, the 844ins68 of cystathionine beta-synthase and A(2756)G of methionine synthase, with lowered plasma homocysteine levels // Atherosclerosis. 2000. Vol. 149. P. 131–137. DOI: 10.1016/s0021-9150(99)00297-x |
Eco-Vector
/
| 〈 |
|
〉 |