Reactive changes of kisspeptin-producing hypothalamic neuroendocrine cells during hypogonadism and its replacement therapy by the kisspeptin analogue in rats
Anatoly D. Lisovsky , Andrey V. Droblenkov , Paul S. Bobkov , Alekber A. Bairamov
Medical academic journal ›› 2023, Vol. 23 ›› Issue (3) : 55 -63.
Reactive changes of kisspeptin-producing hypothalamic neuroendocrine cells during hypogonadism and its replacement therapy by the kisspeptin analogue in rats
BACKGROUND: This study is devoted to the morphological substantiation of the model of male hypogonadism and to establishing the effectiveness of its replacement therapy at the level of the central link of the hypothalamic-pituitary-testicular axis using morphological methods. Information about reactive changes in neuroendocrine cells that synthesize the peptide kisspeptin, which regulates the production of gonadoliberin when modeling male and female hypogonadism, has not been described in the literature, which prevents the creation of a micro-morphological basis for the development of models of hypogonadism and the implementation of further preclinical studies of the effectiveness of its replacement therapy. The goal is to carry out a morphological analysis of kisspeptin-producing neuroendocrine cells of the hypothalamus in normal conditions, with experimental hypogonadism and after replacement therapy.
AIM: To carry out a morphological analysis of kisspeptin-producing neuroendocrine cells of the hypothalamus in normal conditions, with experimental hypogonadism and after replacement therapy.
MATERIALS AND METHODS: The objects of the study were 3 groups of adult male Wistar rats 6–8 months of age. In animals of the first and second groups, after anesthesia, total ischemia of both testicles was caused by ligating the left and right spermatic cord with the vascular bundle of the testicle for 60 minutes. Rats of the second group, a few minutes after restoration of testicular blood flow, were given replacement therapy by daily administration of a synthetic analogue of kisspeptin KS6 for 7 days. Control animals of the third group were subjected to sham surgery. After 10 days, all animals were sacrificed, their brains were removed and embedded in paraffin. Nissl-stained frontal histological sections of the most massive areas of the kisspeptin-producing nuclei of the hypothalamus-periventricular and arcuate-were examined using the Imagescope program (Electronic Analysis, Russia). The number of cell bodies of viable and dead neurons was counted (under the control of immunohistochemical identification of the caspase-3 antigen), and the area of the body, nucleus and cytoplasm of viable cells was calculated. Statistical processing of the data was carried out using the GraphPad PRISM (USA) program to determine the median, upper and lower quartiles. Differences were considered significant at p < 0.01.
RESULTS: Simulation of acute ischemia caused a significant increase in the number of dead neurons, a slight decrease in the number of viable neurons and a decrease in the area of their cytoplasm in both kisspeptin-producing nuclei. As a result of KS6 replacement therapy, most neuronal cell bodies retained their original phenotype, but the number of dead neurons was high in both experimental groups.
CONCLUSIONS: Modeling of male hypogonadism using the method of bilateral acute testicular ischemia induces death and partially reversible degenerative changes in kisspeptin-producing neuroendocrine cells of the hypothalamus. Neuropeptide KS6 has a pronounced restorative effect on kisspeptin-producing neurons of the hypothalamus, which is due to its specific activating effect on endocrine cells of all parts of the hypothalamic-pituitary-testicular axis.
neuroendocrine cells of the hypothalamus / reactive changes / medial arcuate nucleus / periventricular nucleus / kisspeptin / hypogonadism / morphometry
| [1] |
Lotti F, Maggi M. Ultrasound of the male genital tract in relation to male reproductive health. Hum Reprod. 2015;21(1):56–83. DOI: 10.1093/humupd/dmu042 |
| [2] |
Lotti F., Maggi M. Ultrasound of the male genital tract in relation to male reproductive health // Hum. Reprod. 2015. Vol. 21, No. 1. Р. 56–83. DOI: 10.1093/humupd/dmu042 |
| [3] |
Pandruvada S, Roifman R, Shah TA, et al. Lack of trusted diagnostic tools for undetermined male infertility. J Assist Reprod Genet. 2021;38(2):265–276. DOI: 10.1007/s10815-020-02037-5 |
| [4] |
Pandruvada S., Roifman R., Shah T.A. et al. Lack of trusted diagnostic tools for undetermined male infertility // J. Assist. Reprod. Genet. 2021. Vol. 38, No. 2. Р. 265–276. DOI: 10.1007/s10815-020-02037-5 |
| [5] |
Kauffman AS, Gottsch ML, Roa J, et al. Sexual differentiation of kiss1 gene expression in the brain of the rat. Endocrinology. 2007;148(4):1774–1783. DOI: 10.1210/en.2006-1540 |
| [6] |
Kauffman A.S., Gottsch M.L., Roa J. et al. Sexual differentiation of kiss1 gene expression in the brain of the rat // Endocrinology. 2007. Vol. 148, No. 4. Р. 1774–1783. DOI: 10.1210/en.2006-1540 |
| [7] |
Conn PM, Hsueh AJW, Crowley WFJ. Gonadotropin-releasing hormone: Molecular and cell biology, physiology, and clinical applications. Fed Proc. 1984;43(9):2351–2361. |
| [8] |
Conn P.M., Hsueh A.J.W., Crowley W.F.J. Gonadotropin-releasing hormone: Molecular and cell biology, physiology, and clinical applications // Fed. Proc. 1984. Vol. 43, No. 9. Р. 2351–2361. |
| [9] |
Messager S, Chatzidaki EE, Ma D, et al. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G proteincoupled receptor 54. Proc Natl Acad Sci USA. 2005;102(5):1761–1766. DOI: 10.1073/pnas.0409330102 |
| [10] |
Messager S., Chatzidaki E.E., Ma D. et al. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G proteincoupled receptor 54 // Proc. Natl. Acad. Sci. USA. 2005. Vol. 102, No. 5. Р. 1761–1766. DOI: 10.1073/pnas.0409330102. |
| [11] |
Ronnekleiv OK, Kelly MJ. Kisspeptin excitation of GnRH neurons. Adv Exp Med Biol. 2013;784:113–131. DOI: 10.1007/978-1-4614-6199-9_6 |
| [12] |
Ronnekleiv O.K., Kelly M.J. Kisspeptin excitation of GnRH neurons // Adv. Exp. Med. Biol. 2013. Vol. 784. Р. 113–131. DOI: 10.1007/978-1-4614-6199-9_6. |
| [13] |
Novaira HJ, Ng Y, Wolfe A, Radovick S. Kisspeptin increases GnRH mRNA expression and secretion in GnRH secreting neuronal cell lines. Mol Cel Endocrinol. 2009;311:126–134. DOI: 10.1016/j.mce.2009.06.011 |
| [14] |
Novaira H.J., Ng Y., Wolfe A., Radovick S. Kisspeptin increases GnRH mRNA expression and secretion in GnRH secreting neuronal cell lines // Mol. Cel. Endocrinol. 2009. Vol. 311. Р. 126–134. DOI: 10.1016/j.mce.2009.06.011 |
| [15] |
Niktina IL, Bayramov AA, Khoduleva YuN, Shabanov PD. Kisspeptins in physiology and pathology of sex development – new diagnostic and therapeutic approaches. Reviews on Clinical Pharmacology and Drug Therapy. 2014;12(4):3–12. (In Russ.) DOI: 10.17816/RCF1243-12 |
| [16] |
Никтина И.Л., Байрамов А.А., Ходулева Ю.Н., Шабанов П.Д. Кисспептины в физиологии и патологии полового развития – новые диагностические и терапевтические возможности // Обзоры по клинической фармакологии и лекарственной терапии. 2014. Т. 12, № 4. С. 3–12. DOI: 10.17816/RCF1243-12 |
| [17] |
Khabriyev KU. Rukovodstvo po eksperimental’nomu (doklinicheskomu) izucheniyu novykh farmakologicheskikh veshchestv. Moscow: Meditsina; 2005. 832 p. |
| [18] |
Хабриев К.У. Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ. Москва: Медицина, 2005. 832 с. |
| [19] |
Magradze RN, Lisovskiy DA, Lisovskiy AD, et al. Reactive changes in ovarian endocrine cells in experimental ischemic damage. Vestnik NovSU Medical Sciences. 2022;127(2):38–42. DOI: 10.34680/2076-8052.2022.2(127).38-42 |
| [20] |
Маградзе Р.Н., Лисовский Д.А., Лисовский А.Д. и др. Реактивные изменения эндокринных клеток яичника при экспериментальном ишемическом повреждении // Вестник НовГУ. 2022. Т. 127, № 2. С. 38–42. DOI: 10.34680/2076-8052.2022.2(127).38-42 |
| [21] |
Magradze RN, Lisovskiy DA, Lisovskiy AD, et al. Modeling the female hypogonadism by means of ovarian ischemization and its morphofunctional justification. Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(3):289–295. DOI: 10.17816/RCF203289-295 |
| [22] |
Маградзе Р.Н., Лисовский Д.А., Лисовский А.Д. и др. Моделирование женского гипогонадизма путем ишемизации яичника и его морфофункциональное обоснование // Обзоры по клинической фармакологии и лекарственной терапии. 2022. Т. 20, № 3. С. 289–295. DOI: 10.17816/RCF203289-295 |
| [23] |
Lebedev AA, Blazhenko AA, Gol’ts VA, et al. Effects of kisspeptin analogues on the behavior of Danio rerio. Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(2):201–210. DOI: 10.17816/RCF202201-210 |
| [24] |
Лебедев А.А., Блаженко А.А., Гольц В.А. и др. Действие аналогов кисспептина на поведение Danio rerio // Обзоры по клинической фармакологии и лекарственной терапии. 2022. Т. 20, № 2. C. 201–210. DOI: 10.17816/RCF202201-210 |
| [25] |
Paxinos G, Watson C. The rat brain atlas in stereotaxic coordinates. Fourth Edition. Elsevier Acad. Press; 1998. |
| [26] |
Paxinos G., Watson C. The rat brain atlas in stereotaxic coordinates. Fourth Edition. Elsevier Acad. Press, 1998. |
| [27] |
Lisovskiy AD, Popkovskiy NA, Bobkov PS, Droblenkov AV. Morphology of kisspeptin-producing nuclei in the rat hypothalamus Medical Academic Journal. 2022;22(4):69–78. DOI: 10.17816/MAJ109714 |
| [28] |
Лисовский А.Д., Попковский Н.А., Бобков П.С., Дробленков А.В. Морфология кисспептин-продуцирующих ядер гипоталамуса у крыс // Медицинский академический журнал. 2022. Т. 22, № 4. С. 69–78. DOI: 10.17816/MAJ109714 |
| [29] |
Ramaswamy S, Guerriero KA, Gibbs RB, Plant TM. Structural interactions between Kisspeptin and GnRH neurons in the mediobasal hypothalamus of the male rhesus monkey (macaca mulatta) as revealed by double immunofluorescence and confocal microscopy. Endocrinology. 2008;149(9):4387–4395. DOI: 10.1210/en.2008-0438 |
| [30] |
Ramaswamy S., Guerriero K.A., Gibbs R.B., Plant T.M. Structural interactions between Kisspeptin and GnRH neurons in the mediobasal hypothalamus of the male rhesus monkey (macaca mulatta) as revealed by double immunofluorescence and confocal microscopy // Endocrinology. 2008. Vol. 149, No. 9. Р. 4387–4395. DOI: 10.1210/en.2008-0438 |
| [31] |
Droblenkov AV, Fedorov AV, Shabanov PD. Strukturnyye osobennosti dofaminergicheskikh yader ventral’noy pokryshki srednego mozga. Narkologiya. 2018;17(3):41–45. DOI: 10.25557/1682-8313.2018.03.41-45 |
| [32] |
Дробленков А.В., Федоров А.В., Шабанов П.Д. Структурные особенности дофаминергических ядер вентральной покрышки среднего мозга // Наркология. 2018. Т. 17, № 3. С. 41–45. DOI: 10.25557/1682-8313.2018.03.41-45 |
| [33] |
Droblenkov AV, Proshina LG, Yukhlina YuN, et al. Testosterone-dependent changes in neurons of hypothalamic arcuate nucleus and reversibility of these changes by modeled male hypogonadism. Pathological physiology and experimental therapy. 2017;61(4):21–30. DOI: 10.25557/IGPP.2017.4.8519 |
| [34] |
Дробленков А.В., Прошина Л.Г., Юхлина Ю.Н. и др. Тестостерон-зависимые изменения нейронов аркуатного ядра гипоталамуса и их обратимость при моделировании мужского гипогонадизма // Патологическая физиология и экспериментальная терапия. 2017. Т. 61, № 4. С. 21–30. DOI: 10.25557/IGPP.2017.4.8519 |
| [35] |
Droblenkov AV, Shabanov PD. Morfologiya ishemizirovannogo mozga. Saint Petersburg: Art-Xpress; 2018. 208 p. (In Russ.) |
| [36] |
Дробленков А.В., Шабанов П.Д. Морфология ишемизированного мозга. Санкт-Петербург: Art-Xpress, 2018. 208 c. |
| [37] |
Rey RA, Grinspon RP. Normal male sexual differentiation and aetiology of disorders of sex development. Best Pract Res Clin Endocrinol Metab. 2011;25(2):221–238. DOI: 10.1016/j.beem.2010.08.013 |
| [38] |
Rey R.A., Grinspon R.P. Normal male sexual differentiation and aetiology of disorders of sex development // Best Pract. Res. Clin. Endocrinol. Metab. 2011. Vol. 25, No. 2. P. 221–238. DOI: 10.1016/j.beem.2010.08.013 |
| [39] |
Keil KP, Alber LL, Laporta J, et al. Androgen receptor DNA methylation regulates the timing and androgen sensitivity of mouse prostate ductal development. Dev Biol. 2014;396(2):237–245. DOI: 10.1016/j.ydbio.2014.10.006 |
| [40] |
Keil K.P., Alber L.L., Laporta J. et al. Androgen receptor DNA methylation regulates the timing and androgen sensitivity of mouse prostate ductal development // Dev. Biol. 2014. Vol. 396, No. 2. Р. 237–245. DOI: 10.1016/j.ydbio.2014.10.006 |
| [41] |
Asuthkar S, Demirkhanyan L, Sun X, et al. The TRPM8 protein is a testosterone receptor. J Biol Chem. 2015;290(5):2670–2688. DOI: 10.1074/jbc.M114.610873 |
| [42] |
Asuthkar S., Demirkhanyan L., Sun X. et al. The TRPM8 protein is a tectocterone receptor // J. Biol. Chem. 2015. Vol. 290, No. 5. Р. 2670–2688. DOI: 10.1074/jbc.M114.610873. |
| [43] |
Leranth C, Petnehazi O, MacLusky NJ, et al. Gonodal gormones affect spine synaptic density ih the CA1 hippocapmal subfield of the mile rats. J Neurosci. 2003;23(5):1588–1592. DOI: 10.1523/JNEUROSCI.23-05-01588.2003 |
| [44] |
Leranth C., Petnehazi O., MacLusky N.J. et al. Gonodal gormones affect spine synaptic density ih the CA1 hippocapmal subfield of the mile rats // J. Neurosci. 2003. Vol. 23, No. 5. Р. 1588–1592. DOI: 10.1523/JNEUROSCI.23-05-01588.2003 |
| [45] |
Moghadami S, Jahanshahi M, Sepehri H, Amini H. Gonadectomy reduces the density of androgen receptor-immunoreactive neurons in male rat’s hippocampus: testosterone replacement compensates it. Behav Brain Funct. 2016;12(1):5. DOI: 10.1186/s12993-016-0089-9 |
| [46] |
Moghadami S., Jahanshahi M., Sepehri H., Amini H. Gonadectomy reduces the density of androgen receptor-immunoreactive neurons in male rat’s hippocampus: testosterone replacement compensates it // Behav. Brain Funct. 2016. Vol. 12, No. 1. Р. 5. DOI: 10.1186/s12993-016-0089-9 |
| [47] |
Smith MD, Jones LS, Wilson MA. Sex differences in hippocampal slice excitability: role of testosterone. Neuroscience. 2002;109(3):517–530. DOI: 10.1016/s0306-4522(01)00490-0 |
| [48] |
Smith M.D., Jones L.S., Wilson M.A. Sex differences in hippocampal slice excitability: role of testosterone // Neuroscience. 2002. Vol. 109, No. 3. Р. 517–530. DOI: 10.1016/s0306-4522(01)00490-0 |
| [49] |
Laws SC, Beggs JM, Webster JC, Miller WL. Inhibin increases and progesterone decrease receptor for gonadotropin-releasing hormone in ovine pituitary cultures. Endocrinology. 1990;127:373–380. DOI: 10.1210/endo-127-1-373 |
| [50] |
Laws S.C., Beggs J.M., Webster J.C., Miller W.L. Inhibin increases and progesterone decrease receptor for gonadotropin-releasing hormone in ovine pituitary cultures // Endocrinology. 1990. Vol. 127. P. 373–380. DOI: 10.1210/endo-127-1-373 |
| [51] |
Quinones-Jenab V, Jenab S, Ogawa S, et al. Estrogen regulation of gonadotropin-releasing hormone receptor messenger RNA in female rat pituitary tissue. Brain Res Mol Brain Res. 1996;38(2):243–250. DOI: 10.1016/0169-328x(95)00322-j |
| [52] |
Quinones-Jenab V., Jenab S., Ogawa S. et al. Estrogen regulation of gonadotropin-releasing hormone receptor messenger RNA in female rat pituitary tissue // Brain Res. Mol. Brain Res. 1996. Vol. 38, No. 2. P. 243–250. DOI: 10.1016/0169-328x(95)00322-j |
Eco-Vector
/
| 〈 |
|
〉 |