Effects prenatal exposure to peat smoke on the emotional behavior of rat offspring and its correction with fabomotizole

Dinara M. Ivashova , Svetlana A. Litvinova , Tatiana A. Voronina , Iosif B. Tsorin

Medical academic journal ›› 2021, Vol. 21 ›› Issue (1) : 47 -58.

PDF
Medical academic journal ›› 2021, Vol. 21 ›› Issue (1) : 47 -58. DOI: 10.17816/MAJ60528
Original research
research-article

Effects prenatal exposure to peat smoke on the emotional behavior of rat offspring and its correction with fabomotizole

Author information +
History +
PDF

Abstract

Relevance. Long-term smoke from forest fires cause a wide range of health disorders, including somatic state, emotional status, and cognitive functions. The question of the consequences of exposure to combustion products of peat and wood during pregnancy for offspring remains open.

Intention. The goal is to explore the disorders (anxiety, reflex behavior, aggression, etc.) that occur in the offspring of rats exposed to peat smoke in the early and late postnatal periods and the effect of fabomotizole on these disorders.

Methodology. The research was conducted on the offspring of rats of both sexes from females forcibly exposed to peat smoke (1-20 days). The effect of peat smoke on rats and the protective effect of fabomotizole (1 and 10 mg / kg / 20 days of gestation) were studied in the early (5 days) and late (60-80 days) postnatal periods. The formation of the sensory-motor reflex, anxiety, aggression, and motor activity were assessed.

Results and discussion. Exposure to peat smoke of pregnant females (from 1-20 days of gestation) causes a perturb in the formation of a sensory-motor reflex in the early postnatal period ( 5 days), a decrease in the level of natural adaptive reactions and intraspecific aggression, as well as an increase in locomotor activity in mature animals (60-80 days). Fabomotizole, when administered prenatally (1-20 days of gestation) at doses of 1 and 10 mg / kg, corrected the formation of a conditioned sensory-motor reflex in male and female rat pups, data of the emotional status and motor activity of sexually mature animals.

Conclusion. The protective effect of fabomotizole on the offspring of rats prenatally exposed to peat smoke from the toxic effects of peat combustion products was revealed. Fabomotizole returns the studied behavioral reactions, disturbed by peat, to the level of the physiological norm, which confirms the previously established cyto- and neuroprotective properties of the drug.

Keywords

peat smoke / fabomotizole / behavior / offsprings

Cite this article

Download citation ▾
Dinara M. Ivashova, Svetlana A. Litvinova, Tatiana A. Voronina, Iosif B. Tsorin. Effects prenatal exposure to peat smoke on the emotional behavior of rat offspring and its correction with fabomotizole. Medical academic journal, 2021, 21(1): 47-58 DOI:10.17816/MAJ60528

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Settele J, Scholes R, Betts R, et al. A Case Study: The Implementation of a nature-based engineering solution to restore a fallopia japonica-dominated brook embankment 2014; New York: Camb. Univers. Press; 2014;(A):271–359. DOI: 10.1016/j.envpol.2018.02.078

[2]

Settele J., Scholes R., Betts R. et al. A Case Study: The Implementation of a nature-based engineering solution to restore a fallopia japonica-dominated brook embankment 2014; New York: Camb. Univers. Press, 2014. No. A. P. 271–359. DOI: 10.4236/ojf.2019.93009

[3]

Westerling AL, Hidalgo HG, Cayan DR, et al. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science. 2006;313:940–943. DOI: 10.1126/science.1128834

[4]

Westerling A.L., Hidalgo H.G., Cayan D.R. et al. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity // Science. 2006. Vol. 313. P. 940–943. DOI: 10.1126/science.1128834

[5]

Report on climate risks in the Russian Federation. Ed. by V.M. Kattsov. Roshydromet. Saint Petersburg; 2017. (In Russ.)

[6]

Доклад о климатических рисках на территории Российской Федерации / под ред. В.М. Катцова // Росгидромет. СПб., 2017.

[7]

Report on the peculiarities of the climate on the territory of the Russian Federation for 2016. Roshydromet. Moscow; 2017. (In Russ.)

[8]

Доклад об особенностях климата на территории Российской Федерации за 2016 год // Росгидромет. М., 2017.

[9]

Gao M, Li Y, Long J, et al. Y Induction of oxidative stress and DNA damage in cervix in acute treatment with benzo[a]pyrene. Mutation Research. 2011;719(1-2): 52–59. DOI: 10.1016/j.mrgentox.2010.11.008

[10]

Gao M., Li Y., Long J. et al. Induction of oxidative stress and DNA damage in cervix in acute treatment with benzo[a]pyrene // Mutation Research. 2011. Vol. 719, No. 1-2. P. 52–9. DOI: 10.1016/j.mrgentox.2010.11.008

[11]

Genuis SJ. Elimination of persistent toxicants from the human body. Hum Exp Toxicol. 2011;30(1):3–18. DOI: 10.1177/096032711036841

[12]

Genuis S.J. Elimination of persistent toxicants from the human body // Hum. Exp. Toxicol. 2011. Vol. 30, No. 1. P. 3–18. DOI: 10.1177/096032711036841

[13]

Mortamais M, Pujol J, van Drooge BL, et al. Effect of exposure to polycyclic aromatic hydrocarbons on basal ganglia and attention-deficit hyperactivity disorder symptoms in primary school children. Environ Int. 2017;(105):12–19. DOI: 10.1016/j.envint.2017.04.011

[14]

Mortamais M., Pujol J., van Drooge B.L. et al. Effect of exposure to polycyclic aromatic hydrocarbons on basal ganglia and attention-deficit hyperactivity disorder symptoms in primary school children // Environ. Int. 2017. No. 105. P. 12–19. DOI: 10.1016/j.envint.2017.04.011

[15]

Dobrykh VA, Zakharycheva TA. Smoke of forest fires and health. Khabarovsk; 2009. (In Russ.)

[16]

Добрых В.А., Захарычева Т.А. Дым лесных пожаров и здоровье. Хабаровск, 2009.

[17]

Mattison DR. Environmental exposures and development. Cur Opin Pediatr. 2010;22(2):208–218. DOI: 10.1097/MOP.0b013e32833779bf

[18]

Mattison D.R. Environmental exposures and development // Cur. Opin. Pediatr. 2010. Vol. 22, No. 2. P. 208–218. DOI: 10.1097/MOP.0b013e32833779bf

[19]

Perera FP, Tang D, Wang S, et al. Prenatal polycyclic aromatic hydrocarbon (PAH) exposure and child behavior at age 6-7 years. Environ Health Perspect. 2012;120(6):921–926. DOI: 10.1289/ehp.1104315

[20]

Perera F.P., Tang D., Wang S. et al. Prenatal polycyclic aromatic hydrocarbon (PAH) exposure and child behavior at age 6-7 years // Environ. Health Perspect. 2012. Vol. 120, No. 6. P. 921–926. DOI: 10.1289/ehp.1104315

[21]

Ryabkova VA, Bryleva IN. Health state of population in the khabarovsk region under the influence of forest fires. The Far Eastern State Medical University. 2002;3:41–44. (In Russ.)

[22]

Рябкова В.А., Брылева И.Н. Состояние здоровья населения Хабаровского края в условиях воздействия лесных пожаров // Дальневосточный медицинский журнал. 2002. № 3. С. 41–44.

[23]

Bolton JL, Dunlap T. Formation and biological targets of quinones: cytotoxic versus cytoprotective effects. Chem Res Toxicol. 2017;30(1):13–37. DOI: 10.1021/acs.chemrestox.6b00256

[24]

Bolton J.L., Dunlap T. Formation and biological targets of quinones: cytotoxic versus cytoprotective effects // Chem. Res.Toxicol. 2017. Vol. 30, No. 1. P. 13–37. DOI: 10.1021/acs.chemrestox.6b00256

[25]

Gelboin HV. Benzo[a]pyrene metabolism, activation and carcinogenesis: role and regulation of mixed function oxidases and related enzymes. Physiol Rev. 1980;60(4):1107–1116. DOI: 10.1152/physrev.1980.60.4.1107

[26]

Gelboin H.V. Benzo[a]pyrene metabolism, activation and carcinogenesis: role and regulation of mixed function oxidases and related enzymes // Physiol. Rev. 1980. Vol. 60, No. 4. P. 1107–1116. DOI: 10.1152/physrev.1980.60.4.1107

[27]

Squadrito GL, Cueto R, Dellinger B, Pryor WA. Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free Radic Biol Med. 2001;31(9):1132–1138. DOI: 10.1016/s0891-5849(01)00703-1

[28]

Squadrito G.L., Cueto R., Dellinger B., Pryor W.A. Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter // Free Radic. Biol. Med. 2001. Vol. 31, No. 9. P. 1132–1138. DOI: 10.1016/s0891-5849(01)00703-1

[29]

Kumagai Y, Taira J, Sagai M. Apparent inhibition of superoxide dismutase activity in vitro by diesel exhaust particles. Free Radic Biol Med. 1995;18(2):365–371. DOI: 10.1016/0891-5849(94)00125-4

[30]

Kumagai Y., Taira J., Sagai M. Apparent inhibition of superoxide dismutase activity in vitro by diesel exhaust particles // Free Radic. Biol. Med. 1995. Vol. 18, No. 2. P. 365–371. DOI: 10.1016/0891-5849(94)00125-4

[31]

Iinuma Y, Brüggemann E, Gnauk T, et al. Source characterization of biomass burning particles: The combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat. Journal of Geophysical Research. 2007;112(D8):D08209. DOI: 10.1029/2006jd007120

[32]

Iinuma Y., Brüggemann E., Gnauk T. et al. Source characterization of biomass burning particles: The combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat // Journal of Geophysical Research. 2007. Vol. 112, No. D8. P. D08209. DOI:10.1029/2006jd007120

[33]

Fine PM, Simoneit B. Chemical characterization of fine particle emissions from the fireplace combustion of woods grown in the southern United States. Environ Sci Technol. 2002;36(7):1442–1451. DOI: 10.1021/es0108988

[34]

Fine P.M., Simoneit B. Chemical characterization of fine particle emissions from the fireplace combustion of woods grown in the southern United States // Environ. Sci. Technol. 2002. Vol. 36, No. 7. P. 1442–1451. DOI: 10.1021/es0108988

[35]

Valavanidis A, Fiotakis K, Bakeas E, Vlahogianni T. Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter. Redox Rep. 2005;10(1):37–51. DOI: 10.1179/135100005X21606

[36]

Valavanidis A., Fiotakis K., Bakeas E., Vlahogianni T. Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter // Redox Rep. 2005. Vol. 10, No. 1. P. 37–51. DOI: 10.1179/135100005X21606

[37]

Stoddard EG, Killinger BJ, Nag SA, et al. Benzo[a]pyrene induction of glutathione s-transferases: an activity-based protein profiling investigation.Chem Res Toxicol. 2019;32(6):1259–1267. DOI: 10.1021/acs.chemrestox.9b00069

[38]

Stoddard E.G., Killinger B.J., Nag S.A. et al. Benzo[a]pyrene induction of glutathione s-transferases: an activity-based protein profiling investigation // Chem. Res. Toxicol. 2019. Vol. 32, No. 6. P. 1259–1267. DOI: 10.1021/acs.chemrestox.9b00069

[39]

Liu Y, Wu Y-M, Yu Y, et al. Curcumin and resveratrol in combination modulate drug-metabolizing enzymes as well as antioxidant indices during lung carcinogenesis in mice. Hum Exp Toxicol. 2015;34(6):620–627. DOI: 10.1177/0960327114551396

[40]

Liu Y., Wu Y.-M., Yu Y. et al. Curcumin and resveratrol in combination modulate drug-metabolizing enzymes as well as antioxidant indices during lung carcinogenesis in mice // Hum. Exp. Toxicol. 2015. Vol. 34, No. 6. P. 620–627. DOI: 10.1177/0960327114551396

[41]

Reybier K, Perio P, Ferry G, et al. Insights into the redox cycle of human quinone reductase 2. Free Radic Res. 2011;45(10):1184–1195. DOI: 10.3109/10715762.2011.605788

[42]

Reybier K., Perio P., Ferry G. et al. Insights into the redox cycle of human quinone reductase 2 // Free Radic. Res. 2011. Vol. 45, No. 10. P. 1184–1195. DOI: 10.3109/10715762.2011.605788

[43]

Wang W, Jaiswal AK. Sp3 repression of polymorphic human NRH:quinone oxidoreductase 2 gene promoter. Free Radic Biol Med. 2004;(37):1231–1243. DOI: 10.1016/j.freeradbiomed.2004.06.042

[44]

Wang W., Jaiswal A.K. Sp3 repression of polymorphic human NRH:quinone oxidoreductase 2 gene promoter // Free Radic. Biol. Med. 2004. No. 37. P. 1231–1243. DOI: 10.1016/j.freeradbiomed.2004.06.042

[45]

Long II DJ, Iskander K, Gaikwad A, et al. Disruption of dihydronicotinamide riboside:quinone oxidoreductase 2 (NQO2) leads to myeloid hyperplasia of bone marrow and decreased sensitivity to menadione toxicity. J Biol Chem. 2002;277(48):46131–46139. DOI: 10.1074/jbc.M208675200

[46]

Long II D.J., Iskander K., Gaikwad A. et al. Disruption of dihydronicotinamide riboside:quinone oxidoreductase 2 (NQO2) leads to myeloid hyperplasia of bone marrow and decreased sensitivity to menadione toxicity // J. Biol. Chem. 2002. Vol. 277, No. 48. P. 46131–46139. DOI: 10.1074/jbc.M208675200

[47]

Janda E, Lascala A, Carresi C, et al. Parkinsonian toxin-induced oxidative stress inhibits basal autophagy in astrocytes via NQO2/quinone oxidoreductase 2: Implications for neuroprotection. Autophagy. 2015;11(7):1063–1080. DOI: 10.1080/15548627.2015.1058683

[48]

Janda E., Lascala A., Carresi C. et al. Parkinsonian toxin-induced oxidative stress inhibits basal autophagy in astrocytes via NQO2/quinone oxidoreductase 2: Implications for neuroprotection // Autophagy. 2015. Vol. 11, No. 7. 1063–1080. DOI: 10.1080/15548627.2015.1058683

[49]

Janda E, Nepveu F, Calamini B, et al. Molecular pharmacology of NRH:quinone oxidoreductase 2: A detoxifying enzyme acting as an undercover toxifying enzyme. Mol Pharmacol. 2020;98(5):620–633. DOI: 10.1124/molpharm.120.000105

[50]

Janda E., Nepveu F., Calamini B. et al. Molecular pharmacology of NRH:quinone oxidoreductase 2: A detoxifying enzyme acting as an undercover toxifying enzyme // Mol. Pharmacol. 2020. Vol. 98, No. 5. P. 620–633. DOI: 10.1124/molpharm.120.000105

[51]

Cassagnes LE, Perio P, Ferry G, et al. In cellulo monitoring of quinone reductase activity and reactive oxygen species production during the redox cycling of 1,2 and 1,4 quinones. Free Radic Biol Med. 2015;(89):126–134. DOI: 10.1016/j.freeradbiomed.2015.07.150

[52]

Cassagnes L.E., Perio P., Ferry G. et al. In cellulo monitoring of quinone reductase activity and reactive oxygen species production during the redox cycling of 1,2 and 1,4 quinones // Free Radic. Biol. Med. 2015. No. 89. P. 126–134. DOI: 10.1016/j.freeradbiomed.2015.07.150

[53]

Buryanovskyy L, Fu Y, Boyd M, et al. Crystal structure of suinone seductase 2 in complex with resveratrol. Biochemistry. 2004;43(36):11417–11426. DOI: 10.1021/bi049162o

[54]

Buryanovskyy L., Fu Y., Boyd M. et al. Crystal structure of suinone seductase 2 in complex with resveratrol // Biochemistry. 2004. Vol. 43, No. 36. P. 11417–11426. DOI: 10.1021/bi049162o

[55]

Murawska-Cialowicz E, Jethon Z, Magdalan J, et al. Effects of melatonin on lipid peroxidation and antioxidative enzyme activities in the liver, kidneys and brain of rats administered with benzo(a)pyrene. Exp Toxicol Pathol. 2011;63(1–2):97–103. DOI:10.1016/j.etp.2009.10.002

[56]

Murawska-Cialowicz E., Jethon Z., Magdalan J. et al. Effects of melatonin on lipid peroxidation and antioxidative enzyme activities in the liver, kidneys and brain of rats administered with benzo(a)pyrene // Exp. Toxicol. Pathol. 2011. Vol. 63, No. 1–2. P. 97–103. DOI: 10.1016/j.etp.2009.10.002

[57]

Cassagnes L-E, Chhour M, Perio P, et al. Oxidative stress and neurodegeneration: The possible contribution of quinone reductase 2. Free Radic Biol Med. 2018;(120):56–61. DOI: 10.1016/j.freeradbiomed.2018.03.002

[58]

Cassagnes L.-E., Chhour M., Perio P. et al. Oxidative stress and neurodegeneration: The possible contribution of quinone reductase 2 // Free Radic. Biol. Med. 2018. No. 120. P. 56–61. DOI: 10.1016/j.freeradbiomed.2018.03.002

[59]

Nolan KA, Dunstan MS, Caraher MC, et al. In silico screening reveals structurally diverse, nanomolar inhibitors of NQO2 that are functionally active in cells and can modulate NF-κB signaling. Mol Cancer Ther. 2012;11(1):194–203. DOI: 10.1158/1535-7163.MCT-11-0543

[60]

Nolan K.A., Dunstan M.S., Caraher M.C. et al. In silico screening reveals structurally diverse, nanomolar inhibitors of NQO2 that are functionally active in cells and can modulate NF-κB signaling // Mol. Cancer Ther. 2012. Vol. 11, No. 1. P. 194–203. DOI: 10.1158/1535-7163.MCT-11-0543

[61]

Seredenin SB, Voronin MV. Neuroreceptor mechanisms of afobazole. Experimental and clinical pharmacology. 2009;72(1):3–11. DOI: 10.30906/0869-2092-2009-72-1-3-11

[62]

Середенин С.Б., Воронин М.В. Нейрорецепторный механизмы действия афобазола // Экспериментальная и клиническая фармакология. 2009. Т. 72, № 1. С. 3–11.

[63]

Zenina TA, Gavrish IV, Melkumyan DS, et al. Study of the neuroprotective properties of afobazole in in vitro experiments. Bulletin of Experimental Biology and Medicine. 2005;140(8):161–163.

[64]

Зенина Т.А., Гавриш И.В., Мелкумян Д.С. и др. Изучение нейропротекторных свойств афобазола в опытах in vitro // Бюллетень экспериментальной биологии и медицины. 2005. Т. 140, № 8. С. 161–163.

[65]

Durnev AD, Seredenin SB. Mutagens. Screening and pharmacological prevention of exposures. Moscow: Medicine; 1998. (In Russ.)

[66]

Дурнев А.Д., Середенин С.Б. Мутагены. Cкрининг и фармакологическая профилактика воздействий. М.: Медицина, 1998.

[67]

Durnev AD, Solomina AS, Zhanataev AK, et al. Effect of afobazole on genotoxic effects of tobacco smoke in the placenta and embryonic tissues of rats. Bulletin of Experimental Biology and Medicine. 2010;149(3):311–313. (In Russ.)

[68]

Дурнев А.Д., Соломина А.С., Жанатаев А.К. и др. Влияние афобазола на генотоксические эффекты табачного дыма в плаценте и тканях эмбрионов крыс // Бюллетень экспериментальной биологии и медицины. 2010. Т. 149, № 3. С. 286–289.

[69]

Shreder OV, Shreder ED, Durnev AD, Seredenin SB. Association of genotoxic and teratogenic effects induced by cyclophosphamide and their modification with afobazole. Hygiene and sanitation. 2011;5:64–68. (In Russ.)

[70]

Шредер О.В., Шредер Е.Д., Дурнев А.Д., Середенин С.Б. Сопряженность генотоксических и тератогенных эффектов, вызываемых циклофосфамидом, и их модификация афобазолом // Гигиена и санитария. 2011. № 5. С. 64–68.

[71]

Shreder ED, Shreder OV, Zabrodina VV, et al. Afobazole modifies the neurotoxic and genotoxic effects in rat prenatal alcoholization model. Bulletin of Experimental Biology and Medicine. 2014;157(4):492–495. (In Russ.)

[72]

Шредер Е.Д., Шредер О.В., Забродина В.В. и др. Влияние афобазола на генотоксические и нейротоксические эффекты в модели пренатальной алкоголизации крыс // Бюллетень экспериментальной биологии и медицины. 2014. Т. 157, № 4. C. 492–495.

[73]

Gorbatova DM, Nemova EP, Solomina AS, et al. Prenatal effects of peat combustion products and afobazole correction thereof in the rat progeny. Bulletin of Experimental Biology and Medicine. 2015;158(5):654–658. (In Russ.). DOI: 10.1007/s10517-015-2829-5

[74]

Горбатова Д.М., Немова Е.П., Соломина А.С. и др. Пренатальные эффекты продуктов сгорания торфа и их коррекция афобазолом у потомства крыс // Бюллетень экспериментальной биологии и медицины. 2014. Т. 158, № 11. С. 604–608.

[75]

Gorbatova DM, Zhanataev AK, Nemova EP, Durnev AD. DNA damage in placenta and embryos of rats exposed to peat smoke; antigenotoxic effects of afobazole. Ecological genetics. 2016;14(2):50–56. (In Russ.). DOI: 10.17816/ecogen14250-56

[76]

Горбатова Д.М., Жанатаев А.К., Немова Е.П., Дурнев А.Д. Повреждения ДНК в клетках плацент и эмбрионов крыс, подвергнутых воздействию торфяного дыма; антигенотоксический эффект афобазола // Экологическая генетика. 2016. Т. 14, № 2. С. 50–56. DOI: 10.17816/ecogen14250-56

[77]

Gorbatova DM, Litvinova SA, Durnev AD, Seredenin SB. Afobazole protects rats exposed to peat smoke in utero. Bulletin of Experimental Biology and Medicine. 2015;158(5):664–669. (In Russ.). DOI: 10.1007/s10517-015-2830-z

[78]

Горбатова Д.М., Литвинова С.А., Дурнев А.Д., Середенин С.Б. Протективное влияние афобазола на потомство крыс, подвергнутых действию торфяного дыма // Бюллетень экспериментальной биологии и медицины. 2014. Т. 158, № 11. С. 614–619.

[79]

Guidelines for conducting preclinical studies of drugs. Ed. by A.N. Mironov. Moscow: Grif i K; 2012. (In Russ.)

[80]

Руководство по проведению доклинических исследований лекарственных средств / под ред. А.Н. Миронова. М.: Гриф и К, 2012.

[81]

McCallister MM, Maguire M, Ramesh A, et al. Prenatal exposure to benzo(a)pyrene impairs later-life cortical neuronal function. Neurotoxicology. 2008;29(5):846–854. DOI: 10.1016/j.neuro.2008.07.008

[82]

McCallister M.M., Maguire M., Ramesh A. et al. Prenatal exposure to benzo(a)pyrene impairs later-life cortical neuronal function // Neurotoxicology. 2008. Vol. 29, No. 5. P. 846–854. DOI: 10.1016/j.neuro.2008.07.008

[83]

McCallister MM, Li Z, Zhang T, et al. Revealing behavioral learning deficit phenotypes subsequent to in utero exposure to benzo(a)pyrene. Toxicol Sci. 2016;149(1):42–54. DOI: 10.1093/toxsci/kfv212

[84]

McCallister M.M., Li Z., Zhang T. et al. Revealing behavioral learning deficit phenotypes subsequent to in utero exposure to benzo(a)pyrene // Toxicol. Sci. 2016. Vol. 149, No. 1. P. 42–54. DOI: 10.1093/toxsci/kfv212

[85]

Bouayed J, Desor F, Rammal H, et al. Effects of lactational exposure to benzo[alpha]pyrene (B[alpha]P) on postnatal neurodevelopment, neuronal receptor gene expression and behaviour in mice. Toxicology. 2009;259(3):97–106. DOI: 10.1016/j.tox.2009.02.010

[86]

Bouayed J., Desor F., Rammal H. et al. Effects of lactational exposure to benzo[alpha]pyrene (B[alpha]P) on postnatal neurodevelopment, neuronal receptor gene expression and behaviour in mice // Toxicology. 2009. Vol. 259, No. 3. P. 97–106. DOI: 10.1016/j.tox.2009.02.010

[87]

Patel B, Das SK, Patri M. Neonatal benzo[a]pyrene exposure induces oxidative stress and DNA damage causing neurobehavioural changes during the early adolescence period in rats. Dev Neurosci. 2016;38(2):150–162. DOI: 10.1159/000446276

[88]

Patel B., Das S.K., Patri M. Neonatal benzo[a]pyrene exposure induces oxidative stress and DNA damage causing neurobehavioural changes during the early adolescence period in rats // Dev. Neurosci. 2016. Vol. 38, No. 2. P. 150–162. DOI: 10.1159/000446276

[89]

Grova N, Schroeder H, Farinelle S, et al. Sub-acute administration of benzo[a]pyrene (B[a]P) reduces anxiety-related behaviour in adult mice and modulates regional expression of N-methyl-D-aspartate (NMDA) receptors genes in relevant brain regions. Chemosphere. 2008;731(1Suppl):S295–302. DOI: 10.1016/j.chemosphere.2007.12.037

[90]

Grova N., Schroeder H., Farinelle S. et al. Sub-acute administration of benzo[a]pyrene (B[a]P) reduces anxiety-related behaviour in adult mice and modulates regional expression of N-methyl-D-aspartate (NMDA) receptors genes in relevant brain regions // Chemosphere. 2008. Vol. 73, No. 1 (Suppl). P. S295–302. DOI: 10.1016/j.chemosphere.2007.12.037

[91]

Chen C, Tang Y, Jiang X, et al. Early postnatal benzo(a)pyrene exposure in sprague-dawley rats causes persistent neurobehavioral impairments that emerge postnatally and continue into adolescence and adulthood. Toxicol Sci. 2012;125(1):248–261. DOI:10.1093/toxsci/kfr265

[92]

Chen C., Tang Y., Jiang X. et al. Early postnatal benzo(a)pyrene exposure in sprague-dawley rats causes persistent neurobehavioral impairments that emerge postnatally and continue into adolescence and adulthood // Toxicol. Sci. 2012. Vol. 125, No. 1. P. 248–261. DOI:10.1093/toxsci/kfr265

[93]

Das L, Patel B, Patri M. Adolescence benzo[a]pyrene treatment induces learning and memory impairment and anxiolytic like behavioral response altering neuronal morphology of hippocampus in adult male Wistar rats. Toxicol Rep. 2019;6:1104–1113. DOI: 10.1016/j.toxrep.2019.10.014

[94]

Das L., Patel B., Patri M. Adolescence benzo[a]pyrene treatment induces learning and memory impairment and anxiolytic like behavioral response altering neuronal morphology of hippocampus in adult male Wistar rats // Toxicol. Rep. 2019. Vol. 6. P. 1104–1113. DOI: 10.1016/j.toxrep.2019.10.014

[95]

Zhu L, Chadalapaka G, Ramesh A, et al. PAH particles perturb prenatal processes and phenotypes: protection from deficits in object discrimination afforded by dampening of brain oxidoreductase following in utero exposure to inhaled benzo(a)pyrene. Toxicol Sci. 2012;125(1):233–247. DOI: 10.1093/toxsci/kfr261

[96]

Zhu Li, Chadalapaka G., Ramesh A. et al. PAH particles perturb prenatal processes and phenotypes: protection from deficits in object discrimination afforded by dampening of brain oxidoreductase following in utero exposure to inhaled benzo(a)pyrene // Toxicol. Sci. 2012. Vol. 125, No. 1. P. 233–247. DOI: 10.1093/toxsci/kfr261

[97]

Jee S-C, Kim M, Kim KS, et al. Protective effects of myricetin on benzo[a]pyrene-induced 8-hydroxy-20-deoxyguanosine and BPDE-DNA adduct. Antioxidants (Basel). 2020;9(5):446. DOI: 10.3390/antiox9050446

[98]

Jee S.-C., Kim M., Kim K.S. et al. Protective effects of myricetin on benzo[a]pyrene-induced 8-hydroxy-20-deoxyguanosine and BPDE-DNA adduct // Antioxidants (Basel). 2020. Vol. 9, No. 5. P. 446. DOI: 10.3390/antiox9050446

[99]

Berge G, Øvrebø S, Botnen IV, et al. Resveratrol inhibits benzo[a]pyrene–DNA adduct formation in human bronchial epithelial cells. Br J Cancer. 2004;91(2):333–338. DOI: 10.1038/sj.bjc.6601898

[100]

Berge G., Øvrebø S., Botnen I.V. et al. Resveratrol inhibits benzo[a]pyrene–DNA adduct formation in human bronchial epithelial cells // Br. J. Cancer. 2004. Vol. 91, No. 2. P. 333–338. DOI: 10.1038/sj.bjc.6601898

[101]

Huderson AC, Rekha Devi PV, Niaz MS, et al. Alteration of benzo(a)pyrene biotransformation by resveratrol in Apc Min/+ mouse model of colon carcinogenesis. Invest New Drugs. 2019;37(2):238–251. DOI: 10.1007/s10637-018-0622-9

[102]

Huderson A.C., Rekha Devi P.V., Niaz M.S. et al. Alteration of benzo(a)pyrene biotransformation by resveratrol in Apc Min/+ mouse model of colon carcinogenesis // Invest. New Drugs. 2019. Vol. 37, No. 2. P. 238–251. DOI: 10.1007/s10637-018-0622-9

[103]

Das L, Patel B, Patri M. Adolescence benzo[a]pyrene treatment induces learning and memory impairment and anxiolytic like behavioral response altering neuronal morphology of hippocampus in adult male Wistar rats. Toxicol Rep. 2019;6:1104–1113. DOI: 10.1016/j.toxrep.2019.10.014

[104]

Das L., Patel B., Patri M. Adolescence benzo[a]pyrene treatment induces learning and memory impairment and anxiolytic like behavioral response altering neuronal morphology of hippocampus in adult male Wistar rats // Toxicol. Rep. 2019. Vol. 6. P. 1104–1113. DOI: 10.1016/j.toxrep.2019.10.014

[105]

Tigranyan RA. Stress and its importance for the body. Moscow: Nauka; 1988. (In Russ.)

[106]

Тигранян Р.А. Стресс и его значение для организма. М.: Наука, 1988.

[107]

Cameron HA, Schoenfeld TJ. Behavioral and structural adaptations to stress. Front Neuroendocrinol. 2018;49:106–113. DOI: 10.1016/j.yfrne.2018.02.002

[108]

Cameron H.A., Schoenfeld T.J. Behavioral and structural adaptations to stress // Front. Neuroendocrinol. 2018. Vol. 49. P. 106–113. DOI: 10.1016/j.yfrne.2018.02.002

[109]

Trofimov SS, Ostrovskaia RU, Smol’nikova NM, et al. Sodium oxybutyrate normalizes the central nervous system functions in the progeny of rats subjected to hypobaric hypoxia during pregnancy. Eksp Klin Farmakol. 1993;56(6):8–11. (In Russ.)

[110]

Трофимов С.С., Островская Р.У., Смольникова Н.М. и др. Натрия оксибутират нормализует функции центральной нервной системы у потомства крыс, подвергнутых гипобарической гипоксии во время беременности // Экспериментальная клиническая фармакология. 1993. Т. 56. № 6. С. 8–11.

[111]

Banerjee B, Nandi P, Chakraborty S, et al. Resveratrol ameliorates benzo(a)pyrene induced testicular dysfunction and apoptosis: involvement of p38 MAPK/ATF2/iNOS signalling. J Nutr Biochem. 2016;34:17–29. DOI: 10.1016/j.jnutbio.2016.04.003

[112]

Banerjee B., Nandi P., Chakraborty S. et al. Resveratrol ameliorates benzo(a)pyrene induced testicular dysfunction and apoptosis: involvement of p38 MAPK/ATF2/iNOS signalling // J. Nutr. Biochem. 2016. Vol. 34. P. 17–29. DOI: 10.1016/j.jnutbio.2016.04.003

[113]

Seunghoon Oh. Disturbance in testosterone production in leydig cells by polycyclic aromatic hydrocarbons. Dev Rerprod. 2014;18(4):187–195. DOI: 10.12717/DR.2014.18.4.187

[114]

Seunghoon Oh. Disturbance in testosterone production in leydig cells by polycyclic aromatic hydrocarbons // Dev. Rerprod. 2014. Vol. 18, No. 4. P. 187–195. DOI: 10.12717/DR.2014.18.4.187

[115]

Antipova TA, Sapozhnikova DS, Stepanichev MYu, et al. Effects of selective anxiolytic afobazole on active caspase-3. Bulletin of Experimental Biology and Medicine. 2010;149(2):201–203. (In Russ.)

[116]

Анипова Т.А., Сапожникова Д.С., Степаничева М.Ю. и др. Изучение влияния селективного анксиолитика афобазола на активную каспазу-3 // Бюллетень экспериментальной биологии и медицины. 2010. Т. 149. № 2. С. 161–164.

RIGHTS & PERMISSIONS

Ivashova D.M., Litvinova S.A., Voronina T.A., Tsorin I.B.

AI Summary AI Mindmap
PDF

51

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/