Hemostatic activity in vitro of lectin-containing substances of bryathypes on the example of some Antarctic and Belarus representatives

Olga L. Kandelinskaya , Helena R. Grischenko , Daria V. Grigorieva , Irina V. Gorudko , Dmitriy V. Goreckiy , Eleonora V. Dashkevich , Janna V. Peshnyak , Natallia A. Bukhvald , Oleg M. Maslovsky , Irina P. Sysoi , Yury G. Hihiniak , Egor V. Korzun , Valeria A. Kostevich , Mikhail P. Andreev , Lyubov E. Kurbatova

Medical academic journal ›› 2023, Vol. 23 ›› Issue (3) : 5 -20.

PDF
Medical academic journal ›› 2023, Vol. 23 ›› Issue (3) : 5 -20. DOI: 10.17816/MAJ568187
Original research
research-article

Hemostatic activity in vitro of lectin-containing substances of bryathypes on the example of some Antarctic and Belarus representatives

Author information +
History +
PDF

Abstract

BACKGROUND: The modern market of medical devices in Belarus and Russia is represented by a wide range of hemostatic agents, of which the most popular are local hemostatics of plant origin possessing the significant technological potential for renewal and improvement. A promising reserve for this may be biologically active compounds of mosses, which are characterized by anti-inflammatory, antibacterial and antifungal effects. However, their hemostatic effect is almost not studied, which determines the relevance of this work.

AIM: The aim of this work is to study the effect of lectin-containing substances from mosses of three species collected in East Antarctica and Belarus on the parameters of human blood hemostasis in vitro.

MATERIALS AND METHODS: We studied mosses of the genera Bryum, Ceratodon, and Coscinodon, collected in the area of the Belarusian Antarctic station Gora Vechernyaya in East Antarctica and in Belarus. Lectin-containing substances of mosses were obtained by extracting shoots in 0.05 M tris-HCl buffer (pH 8.0), centrifugation, filtration. The assessment of the biological activity of lectin-containing substances in mosses was carried out by the agglutination reaction of rabbit erythrocytes, as well as the effect on human platelet aggregation and in the test for activated partial thromboplastin time.

RESULTS: It was established that lectin-containing substances of the studied moss species had agglutinating activity against erythrocytes in the range from 11708.28 (Belarusian samples) to 1333979.59 U/mg of protein (Antarctic samples) depending on the species and localization; initiated the aggregation of human platelets (25–80% of the effect of thrombin) regardless of blood group, Rh and gender of donors; influenced the plasma link of hemostasis, reducing activated partial thromboplastin time (by 15–18%).

CONCLUSIONS: It was found that some species of mosses of the genera Bryum, Ceratodon and Coscinodon of Antarctica and Belarus had an agglutinating and hemostatic effect on erythrocytes and platelets, with the greatest activity noted for Antarctic species. A hypothesis has been put forward that the observed phenomenon is due to the structural features of proteins, including lectins. It is assumed that lectins are possible inducers of erythrocyte agglutination and platelet aggregation in mosses. It is shown that the moss species Bryum pseudotriquetrum and Ceratodon purpureus have a certain resource potential in Belarus for their annual harvest. The results obtained expand the list of moss species with hemostatic activity, and can be used to develop new hemostatics of plant origin for local use from Belarusian plant materials.

Keywords

lectins / erythrocytes / aggregation / platelets / thrombin / APTT-test / the moss genera Bryum, Ceratodon and Coscinodon of Antarctica and Belarus / resource potential

Cite this article

Download citation ▾
Olga L. Kandelinskaya, Helena R. Grischenko, Daria V. Grigorieva, Irina V. Gorudko, Dmitriy V. Goreckiy, Eleonora V. Dashkevich, Janna V. Peshnyak, Natallia A. Bukhvald, Oleg M. Maslovsky, Irina P. Sysoi, Yury G. Hihiniak, Egor V. Korzun, Valeria A. Kostevich, Mikhail P. Andreev, Lyubov E. Kurbatova. Hemostatic activity in vitro of lectin-containing substances of bryathypes on the example of some Antarctic and Belarus representatives. Medical academic journal, 2023, 23(3): 5-20 DOI:10.17816/MAJ568187

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bondarev GA, Lipatov VA, Lazarenko SV, et al. Analysis of opinion of surgeons on the role of topical hemostatic agents. Pirogov Russian Journal of Surgery. 2020;(8):61–68. (In Russ.) DOI: 10.17116/hirurgia202008161

[2]

Бондарев Г.А., Липатов В.А., Лазаренко С.В. и др. Исследование мнения врачей-хирургов об использовании гемостатических аппликационных материалов // Хирургия. Журнал им. Н.И. Пирогова. 2020. № 8. С. 61–68. DOI: 10.17116/hirurgia202008161

[3]

Chernyavsky AM, Grigor’ev IA, Morozov SV, et al. Local hemostasis control by using of oxidized cellulose drugs. Pirogov Russian Journal of Surgery. 2014;(8):71–75. (In Russ.)

[4]

Чернявский А.М., Григорьев И.А., Морозов С.В. и др. Контроль локального гемостаза с помощью препаратов окисленной целлюлозы // Хирургия. Журнал им. Н.И. Пирогова. 2014. № 8. С. 71–75.

[5]

Lipatov VA, Severinov DA, Saakyan AR. Local applicational blood reestablishing instruments in surgery of the XXI century. Innova. 2019;(1):16–22. (In Russ.) DOI: 10.21626/innova/2019.1/03

[6]

Липатов В.А., Северинов Д.А., Саакян А.Р. Локальные гемостатики в хирургии XXI века // Innova. 2019. № 1(14). С. 16–22. DOI: 10.21626/innova/2019.1/03

[7]

Podterob AP, Zubets EV. A history of the medicinal use of plants of the genus Sphagnum. Pharm Chem J. 2002;36(4):192–194. DOI: 10.1023/A:1019884605441

[8]

Подтероб А.П., Зубец Е.В. История применения растений рода Sphagnum в медицине // Химико-фармацевтический журнал. 2002. Т. 36, № 4. С. 27–29. DOI: 10.30906/0023-1134-2002-36-4-27-29

[9]

Babeshina LG, Kelus NV, Kotlyar M. History and perspectives of Sphagnum mosses in medicine. Vrach. 2016;(12):31–33. (In Russ.)

[10]

Бабешина Л.Г., Келус Н.В., Котляр М. История и перспективы применения сфагновых мхов в медицине // Врач. 2016. № 12. С. 31–33.

[11]

Asakawa Y. Biologically active compounds from bryophytes. Pure Appl Chem. 2007:79(4):557–580. DOI: 10.1351/pac200779040557

[12]

Asakawa Y. Biologically active compounds from bryophytes // Pure Appl. Chem. 2007. Vol. 79, No. 4. P. 557–580. DOI: 10.1351/pac200779040557

[13]

Klavina L, Springe G, Nikolajeva V, et al. Chemical composition analysis, antimicrobial activity and cytotoxicity screening of moss extracts (moss phytochemistry). Molecules. 2015;20(9):17221–17243. DOI: 10.3390/molecules200917221

[14]

Klavina L., Springe G., Nikolajeva V. et al. Chemical composition analysis, antimicrobial activity and cytotoxicity screening of moss extracts (moss phytochemistry) // Molecules. 2015. Vol. 20, No. 9. P. 17221–17243. DOI: 10.3390/molecules200917221

[15]

Drobnik J, Stebel A. Four centuries of medicinal mosses and liverworts in European ethnopharmacy and scientific pharmacy: a review. Plants (Basel). 2021;10(7):1296. DOI: 10.3390/plants10071296

[16]

Drobnik J., Stebel A. Four centuries of medicinal mosses and liverworts in European ethnopharmacy and scientific pharmacy: a review // Plants (Basel). 2021. Vol. 10, No. 7. P. 1296. DOI: 10.3390/plants10071296

[17]

Benek A, Canlı K, Altuner EM. Traditional medicinal uses of mosses. Anatolian Bryol. 2022;8(1):57–65. DOI: 10.26672/anatolianbryology.1061190

[18]

Benek A., Canlı K., Altuner E.M. Traditional medicinal uses of mosses // Anatolian Bryol. 2022. Vol. 8, No. 1. P. 57–65. DOI: 10.26672/anatolianbryology.1061190

[19]

Waterman MJ, Nugraha AS, Hendra R, et al. Antarctic moss biflavonoids show high antioxidant and ultraviolet-screening activity. J Nat Prod. 2017;80(8):2224–2231. DOI: 10.1021/acs.jnatprod.7b00085

[20]

Waterman M.J., Nugraha A.S., Hendra R. et al. Antarctic moss biflavonoids show high antioxidant and ultraviolet-screening activity // J. Nat. Prod. 2017. Vol. 80, No. 8. P. 2224–2231. DOI: 10.1021/acs.jnatprod.7b00085

[21]

Adebiyi AO, Oyedeji AA, Chikwendu EE, Fatoke OA. Phytochemical screening of two tropical moss plants: Thidium gratum P. beauv and Barbula indica brid grown in Southwestern ecological zone of Nigeria. Am J Anal Chem. 2012;(3):836–839. DOI: 10.4236/ajac.2012.312110

[22]

Adebiyi A.O., Oyedeji A.A., Chikwendu E.E., Fatoke O.A. Phytochemical screening of two tropical moss plants: thidium gratum P. Beauv and Barbula indica brid grown in Southwestern ecological zone of Nigeria // Am. J. Anal. Chem. 2012. No. 3. P. 836–839. DOI: 10.4236/ajac.2012.312110

[23]

Elkhateeb WA, Daba GM. Occurrence of terpenes, polyketides, and tannins in some Japanese lichens and green mosses. Egypt Pharm J. 2021;(26):216–223. DOI: 10.4103/epj.epj_17_20

[24]

Elkhateeb W.A., Daba G.M. Occurrence of terpenes, polyketides, and tannins in some Japanese lichens and green mosses // Egypt. Pharm. J. 2021. No 26. P. 216–223. DOI: 10.4103/epj.epj_17_20

[25]

Ebrahimi F, Torbati M, Mahmoudi F, Valizadeh H. Medicinal plants as potential hemostatic agents. J Pharm Pharm Sci. 2020;23(1):11–23. DOI: 10.18433/jpps30446

[26]

Ebrahimi F., Torbati M., Mahmoudi F., Valizadeh H. Medicinal plants as potential hemostatic agents // J. Pharm. Pharm. Sci. 2020. Vol. 23. P. 10–23. DOI: 10.18433/jpps30446

[27]

Marcińczyk N, Gromotowicz-Popławska A, Tomczyk M, Chabielska E. Tannins as hemostasis modulators. Front Pharmacol. 2022;12:806891. DOI: 10.3389/fphar.2021.806891

[28]

Marcińczyk N., Gromotowicz-Popławska A., Tomczyk M., Chabielska E. Tannins as hemostasis modulators // Front. Pharmacol. 2022. Vol. 12. P. 806891. DOI: 10.3389/fphar.2021.806891

[29]

Liu F, Li L, Tian X, et al. Chemical constituents and pharmacological activities of steroid saponins isolated from Rhizoma Paridis. J Chem. 2021;2021:1–7. DOI: 10.1155/2021/1442906

[30]

Liu F., Li L., Tian X. et al. Chemical constituents and pharmacological activities of steroid saponins isolated from rhizoma paridis // J. Chem. 2021. Vol. 2021. P. 1–7. DOI: 10.1155/2021/1442906

[31]

Ma WY, Xie J, Yu LL, et al. Isolation and identification of hemostatic steroidal glycosides from Ypsilandra thibetica. Bioorg Chem. 2023;130:106268. DOI: 10.1016/j.bioorg.2022.106268

[32]

Ma W.Y., Xie J., Yu L.L. et al. Isolation and identification of hemostatic steroidal glycosides from Ypsilandra thibetica // Bioorg. Chem. 2023. Vol. 130. P. 106268. DOI: 10.1016/j.bioorg.2022.106268

[33]

Van Damme EJM. 35 years in plant lectin research: a journey from basic science to applications in agriculture and medicine. Glycoconj J. 2022;39:83–97. DOI: 10.1007/s10719-021-10015-x

[34]

Van Damme E.J.M. 35 years in plant lectin research: a journey from basic science to applications in agriculture and medicine // Glycoconj. J. 2022. Vol. 39. P. 83–97. DOI: 10.1007/s10719-021-10015-x

[35]

De Coninck T, Van Damme EJM. Review: The multiple roles of plant lectins. Plant Sci. 2021;313:111096. DOI: 10.1016/j.plantsci.2021.111096

[36]

De Coninck T., Van Damme E.J.M. Review: The multiple roles of plant lectins // Plant Sci. 2021. Vol. 313. P. 111096. DOI: 10.1016/j.plantsci.2021.111096

[37]

Gorudko IV, Buko IV, Cherenkevich SN, et al. Lectin-induced aggregates of blood cells from patients with acute coronary syndromes. Arch Med Res. 2008;(39):674–681. DOI: 10.1016/j.arcmed.2008.06.002

[38]

Gorudko I.V., Buko I.V., Cherenkevich S.N. et al. Lectin-induced aggregates of blood cells from patients with acute coronary syndromes // Arch. Med. Res. 2008. Vol. 39, No. 7. P. 674–681. DOI: 10.1016/j.arcmed.2008.06.002

[39]

Shamova EV, Gorudko IV, Drozd ES, et al. Redox regulation of morphology, cell stiffness, and lectin-induced aggregation of human platelets. Eur Biophys. J. 2011;40:195–208. DOI: 10.1007/s00249-010-0639-2

[40]

Shamova E.V., Gorudko I.V., Drozd E.S. et al. Redox regulation of morphology, cell stiffness, and lectin-induced aggregation of human platelets // Eur. Biophys. J. 2011. Vol. 40. P. 195–208. DOI: 10.1007/s00249-010-0639-2

[41]

Signorello MG, Leoncini G. The molecular mechanisms involved in lectin-induced human platelet aggregation. Biol Chem. 2017;398(12):1335–1346. DOI: 10.1515/hsz-2017-0115

[42]

Signorello M.G., Leoncini G. The molecular mechanisms involved in lectin-induced human platelet aggregation // Biol. Chem. 2017. Vol. 398, No. 12. P. 1335–1346. DOI: 10.1515/hsz-2017-0115

[43]

Gorudko IV, Loiko EN, Cherenkevich SN, Timoshenko AV. Formation of stable platelet aggregates by lectin from Solanum tuberosum. Biophysics. 2007;52(5):476–480. DOI: 10.1134/S0006350907050041

[44]

Горудко И.В., Локо Е.Н., Черенкевич С.Н., Тимошенко А.В. Формирование стабильных агрегатов тромбоцитов при действии лектина Solatium tuberosum // Биофизика. 2007. Т. 52, № 5. С. 882–887.

[45]

Cannone N, Convey P, Guglielmin M. Diversity trends of bryophytes in continental Antarctica. Polar Biology. 2012;36(2):259–271. DOI: 10.1007/s00300-012-1257-5

[46]

Cannone N., Convey P., Guglielmin M. Diversity trends of bryophytes in continental Antarctica // Polar Biology. 2012. Vol. 36, No. 2. P. 259–271. DOI: 10.1007/s00300-012-1257-5

[47]

Deng L, Qi Y, Liu Z, et al. Effect of tannic acid on blood components and functions. Colloids Surf B Biointerfaces. 2019;184:110505. DOI: 10.1016/j.colsurfb.2019.110505

[48]

Deng L., Qi Y., Liu Z. et al. Effect of tannic acid on blood components and functions // Colloids Surf. B Biointerfaces. 2019. Vol. 184. P. 110505. DOI: 10.1016/j.colsurfb.2019.110505

[49]

Ochyra R, Lewis Smith RI, Bendarek-Ochyra H. Illustrated moss flora of Antarctica. Cambridge: Cambridge University Press; 2008. 685 p.

[50]

Ochyra R., Lewis Smith R.I., Bendarek-Ochyra H. Illustrated moss flora of Antarctica. Cambridge, 2008. 685 p.

[51]

European Treaty Series (ETS) No 123. European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes. Strasburg, 18.03.1986 [Internet]. Available from: https://rm.coe.int/168007a6a8. Accessed: 02.08.2023.

[52]

Серия Европейских Договоров (СЕД) № 123. Европейская конвенция о защите позвоночных животных, используемых для экспериментов или в иных научных целях. Страсбург, 18.03.1986 г. [Электронный ресурс]. Режим доступа: https://rm.coe.int/168007a6a8. Дата обращения: 02.08.2023.

[53]

Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes [Internet]. Available from: https://ruslasa.ru/wp-content/uploads/2017/06/Directive_201063_rus.pdf. Accessed: 02.08.2023.

[54]

Директива 2010/63/EU Европейского парламента и Совета Европейского Союза от 22 сентября 2010 г. по охране животных, используемых в научных целях [Электронный ресурс]. Режим доступа: https://ruslasa.ru/wp-content/uploads/2017/06/Directive_201063_rus.pdf. Дата обращения: 02.08.2023.

[55]

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;7(72):248–254. DOI: 10.1006/abio.1976.9999

[56]

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. Vol. 7, No. 72. P. 248–254. DOI: 10.1006/abio.1976.9999

[57]

Kotova YN, Podoplelova NA, Obydennyy SI, et al. Binding of coagulation factor XIII zymogen to activated platelet subpopulations: Roles of Integrin αIIbβ3 and Fibrinogen. Thromb Haemost. 2019;119(6):906–915. DOI: 10.1055/s-0039-1683912

[58]

Kotova Y.N., Podoplelova N.A., Obydennyy S.I. et al. Binding of coagulation factor XIII zymogen to activated platelet subpopulations: Roles of Integrin αIIbβ3 and Fibrinogen // Thromb. Haemost. 2019. Vol. 119, No. 6. P. 906–915. DOI: 10.1055/s-0039-1683912

[59]

Maslovsky OM, Levkovich AV, Sysoi IP, et al. The state plant cadastre of belarus. fundamentals of the cadastre. Primary survey 2002–2017 years. Minsk: Belorusskaya nauka; 2019. (In Russ.)

[60]

Масловский О.М., Левкович А.В., Сысой И.П. и др. Государственный кадастр растительного мира Республики Беларусь. Основы кадастра. Первичное обследование 2002–2017 гг. Минск: Беларуская навука, 2019.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

86

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/