Features of determining the severity of the condition of victims exposed to the chemical factor of fire
Pavel G. Tolkach , Oleg A. Kuznetsov , Dmitry Yu. Anokhin , Alexey N. Lodyagin , Sergey V. Gayduk , Vadim A Basharin
Medical academic journal ›› 2025, Vol. 25 ›› Issue (1) : 24 -30.
Features of determining the severity of the condition of victims exposed to the chemical factor of fire
BACKGROUND: To determine the severity of the condition of the victims exposed to the chemical factor of the fire, they are guided by the content of carboxyhemoglobin in the blood. Inhalation exposure of combustion products of polymeric materials with pulmonotoxic effect leads to disruption of the structure and function of the respiratory system, which plays an important role in aggravating the condition of the victims and predicting the outcome.
AIM: To identify the features of determining the severity of the condition of victims exposed to the chemical factor of fire, depending on the calculated initial concentration of carboxyhemoglobin in the blood and the presence of interstitial changes in lung tissues.
METHODS: When conducting a retrospective analysis of the medical histories of victims exposed to the chemical factor of fire, the initial concentration of carboxyhemoglobin in the blood was calculated, X-rays of the chest cavity organs performed on the first day after admission were analyzed.
RESULTS: Depending on the calculated initial concentration of carboxyhemoglobin in the blood, patients with severe (59 [55; 60]%), moderate (42 [36; 43]%) and mild (18 [15; 24]%) severity. The duration of hospitalization of patients did not depend on a certain degree of severity. It was found that the duration of hospitalization (5 [4; 8] days) of patients with interstitial changes in the lungs detected on radiographs (47 ± 7% of victims) was higher (p = 0.03) compared (3 [2; 5] days) with patients in whom interstitial changes were not detected (53 ± 7% of victims). A moderate correlation (r = 0.31, p < 0.05) was determined between the duration of hospitalization of patients and the presence of interstitial changes on the part of the respiratory system.
CONCLUSION: The presence of interstitial changes in lung tissues identified during radiography should be considered as an unfavorable prognostic sign and taken into account when organizing medical care for victims exposed to the chemical factor of fire.
combustion products / carbon monoxide / severity of condition / carboxyhemoglobin / radiography / lung lesions
| [1] |
Tolkach PG, Lodyagin AN, Basharin VA, et al. Analysis of the structure of fire victims in St. Petersburg and Leningrad Region in 2021. Medline.ru. 2023;24(49):667–675. (In Russ.) EDN: QQOGPY |
| [2] |
Толкач П.Г., Лодягин А.Н., Башарин В.А., и др. Анализ структуры пострадавших на пожаре в Санкт-Петербурге и Ленинградской области в 2021 году // Медлайн.ру. 2023. Т. 24, № 49. С. 667–675. EDN: QQOGPY |
| [3] |
Madorsky S. Thermal degradation of organic polymers. Transl. from Engl. Ed. by S.R. Rafikov. Moscow: Mir; 1967. 328 p. (In Russ.) |
| [4] |
Мадорский С. Термическое разложение органических полимеров: пер. с англ. / под. ред. С.Р. Рафикова. Москва: Мир, 1967. 328 с. |
| [5] |
Sagin P. Heat insulation made of foamed polyurethane is it innovate insulation or chemically hazardous material? Krovel’nye i izolyacionnye materialy. 2014;(4):18–19. (In Russ.) EDN: THVGQZ |
| [6] |
Сагин П. Теплоизоляция из пенополиуретана – инновационный утеплитель или химическиопасный материал? // Кровельные и изоляционные материалы. 2014. № 4. С. 18–19. EDN: THVGQZ |
| [7] |
Federal clinical guidelines. Toxic effect of carbon monoxide. Toxic effect of other gases fumes and vapors. 2020. (In Russ.) |
| [8] |
Федеральные клинические рекомендации. Токсическое действие окиси углерода. Токсическое действие других газов, дымов и паров. 2020. |
| [9] |
Basharin VA, Chepur SV, Tolkach PG, et al. Toxicology of combustion products of polymeric materials. Study guide. Saint Petersburg: Levsha; 2022. 104 p. (In Russ.) |
| [10] |
Башарин В.А., Чепур С.В., Толкач П.Г., и др. Токсикология продуктов горения полимерных материалов: учебное пособие. Санкт-Петербург: Левша, 2022. 104 с. |
| [11] |
Zobnin YuV, editor. Carbon monoxide poisoning (carbon monoxide). Saint Petersburg: Tactic Studio; 2011. 79 p. (In Russ.) |
| [12] |
Отравление монооксидом углерода (угарным газом) / под ред. Ю.В. Зобнина. Санкт-Петербург: Тактик-Студио, 2011. 79 с. |
| [13] |
Hampson NB, Hauff NM. Carboxyhemoglobin levels in carbon monoxide poisoning: do they correlate with the clinical picture? Am J Emerg Med. 2008;26(6):665–669. doi: 10.1016/j.ajem.2007.10.005 |
| [14] |
Hampson N.B., Hauff N.M. Carboxyhemoglobin levels in carbon monoxide poisoning: do they correlate with the clinical picture? // Am J Emerg Med. 2008. Vol. 26, N 6. P. 665–669. doi: 10.1016/j.ajem.2007.10.005 |
| [15] |
Alexandrov NP. Selection of the experimental animals for developing standards for carbon monoxide. Hygiene and sanitation. 1973;38(1):92–95. (In Russ.) |
| [16] |
Александров Н.П. Выбор экспериментальных животных для разработки нормативов окиси углерода // Гигиена и санитария. 1973. Т. 38, № 1. C. 92–95. |
| [17] |
Trishkin DV, Chepur SV, Basharin VA, et al. Pulmonotoxicyty of synthetic polymers combustion products. Siberian Scientific Medical Journal. 2018;38(4):114–120. (In Russ.) EDN: XWBYQH doi: 10.15372/SSMJ20180415 |
| [18] |
Тришкин Д.В., Чепур С.В., Башарин В.А., и др. Пульмонотоксичность продуктов горения синтетических полимеров // Сибирский научный медицинский журнал. 2018. Т. 38, № 4. С. 114–120. EDN: XWBYQH doi: 10.15372/SSMJ20180415 |
Eco-Vector
/
| 〈 |
|
〉 |