Gap junction protein connexin-43 and its distribution in different tissues
Mikhail S. Filippov , Dmitrii E. Korzhevskii
Medical academic journal ›› 2023, Vol. 23 ›› Issue (3) : 103 -116.
Gap junction protein connexin-43 and its distribution in different tissues
Connexins is the family of proteins which in vertebrates form gap junctions – intercellular contacts allowing the passage of small molecules between cells. Connexin-43 is the most abundant member of connexin family in human. Its cellular functions are diverse, and its localization in the human body is the most wide across all connexins. Most intensive research is devoted to the investigation of соnnexin-43 role in intercellular communication and its functional features in the vital organs — heart and brain. Due to high abundance in different tissues, at the moment there is the large amount of various experimental data, which are hard to assemble into global picture. This work aims to present generalized information about the distribution and functions of соnnexin-43 in various tissues and further prospects for studying this protein using the currently available literature data.
connexin-43 / gap junctions / intercellular communication
| [1] |
Beyer EC, Berthoud VM. The family of connexin genes. Connexins. 2009:3–26. DOI: 10.1007/978-1-59745-489-6_1 |
| [2] |
Beyer E.C., Berthoud V.M. The family of connexin genes // Connexins: A Guide. Ed. by A. Harris, D. Locke. Humana Press; New York, 2009. P. 3–26. DOI: 10.1007/978-1-59745-489-6_1 |
| [3] |
Laird DW. Life cycle of connexins in health and disease. Biochem J. 2006;394(Pt 3):527–543. DOI: 10.1042/BJ20051922 |
| [4] |
Laird D.W. Life cycle of connexins in health and disease // Biochem. J. 2006. Vol. 394. P. 527–543. DOI: 10.1042/BJ20051922 |
| [5] |
Pfeifer I, Anderson C, Werner R, Oltra E. Redefining the structure of the mouse connexin43 gene: selective promoter usage and alternative splicing mechanisms yield transcripts with different translational efficiencies. Nucleic Acids Res. 2004;32(15):4550–4562. DOI: 10.1093/nar/gkh792 |
| [6] |
Pfeifer I., Anderson C., Werner R., Oltra E. Redefining the structure of the mouse connexin43 gene: selective promoter usage and alternative splicing mechanisms yield transcripts with different translational efficiencies // Nucleic Acids Res. 2004. Vol. 32, No. 15. P. 4550–4562. DOI: 10.1093/nar/gkh792 |
| [7] |
Beyer EC, Paul DL, Goodenough DA. Connexin43: a protein from rat heart homologous to a gap junction protein from liver. J Cell Biol. 1987;105(6 Pt 1):2621–2629. DOI: 10.1083/jcb.105.6.2621 |
| [8] |
Beyer E.C., Paul D.L., Goodenough D.A. Connexin43: a protein from rat heart homologous to a gap junction protein from liver // J. Cell Biol. 1987. Vol. 105, No. 6. Pt 1. P. 2621–2629. DOI: 10.1083/jcb.105.6.2621 |
| [9] |
Schiavi A, Hudder A, Werner R. Connexin43 mRNA contains a functional internal ribosome entry site. FEBS Lett. 1999;464(3):118–122. DOI: 10.1016/s0014-5793(99)01699-3 |
| [10] |
Schiavi A., Hudder A., Werner R. Connexin43 mRNA contains a functional internal ribosome entry site // FEBS Lett. 1999. Vol. 464, No. 3. P. 118–122. DOI: 10.1016/s0014-5793(99)01699-3 |
| [11] |
Laird DW. Syndromic and non-syndromic disease-linked Cx43 mutations. FEBS Lett. 2014;588(8):1339–1348. DOI: 10.1016/j.febslet.2013.12.022 |
| [12] |
Laird D.W. Syndromic and non-syndromic disease-linked Cx43 mutations // FEBS Lett. 2014. Vol. 588, No. 8. P. 1339–1348. DOI: 10.1016/j.febslet.2013.12.022 |
| [13] |
Leithe E, Mesnil M, Aasen T. The connexin 43 C-terminus: A tail of many tales. Biochim Biophys Acta Biomembr. 2018;1860(1):48–64. DOI: 10.1016/j.bbamem.2017.05.008 |
| [14] |
Leithe E., Mesnil M., Aasen T. The connexin 43 C-terminus: A tail of many tales // Biochim. Biophys. Acta Biomembr. 2018. Vol. 1860, No. 1. P. 48–64. DOI: 10.1016/j.bbamem.2017.05.008 |
| [15] |
Chatterjee B, Chin AJ, Valdimarsson G, et al. Developmental regulation and expression of the zebrafish connexin43 gene. Dev Dyn. 2005;233(3):890–906. DOI: 10.1002/dvdy.20426 |
| [16] |
Chatterjee B., Chin A.J., Valdimarsson G. et al. Developmental regulation and expression of the zebrafish connexin43 gene // Dev. Dyn. 2005. Vol. 233, No. 3. P. 890–906. DOI: 10.1002/dvdy.20426 |
| [17] |
Laird DW, Puranam KL, Revel JP. Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes. Biochem J. 1991;273(1):67–72. DOI: 10.1042/bj2730067 |
| [18] |
Laird D.W., Puranam K.L., Revel J.P. Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes // Biochem. J. 1991. Vol. 273, No. 1. P. 67–72. DOI: 10.1042/bj2730067 |
| [19] |
Maeda S, Nakagawa S, Suga M, et al. Structure of the connexin 26 gap junction channel at 3.5 A resolution. Nature. 2009;458(7238):597–602. DOI: 10.1038/nature07869 |
| [20] |
Maeda S., Nakagawa S., Suga M. et al. Structure of the connexin 26 gap junction channel at 3.5 Å resolution // Nature. 2009. Vol. 458, No. 7238. P. 597–602. DOI: 10.1038/nature07869 |
| [21] |
Lee HJ, Cha HJ, Jeong H, et al. Conformational changes in the human Cx43/GJA1 gap junction channel visualized using cryo-EM. Nat Commun. 2023;14(1):931. DOI: 10.1038/s41467-023-36593-y |
| [22] |
Lee H.J., Cha H.J., Jeong H. et al. Conformational changes in the human Cx43/GJA1 gap junction channel visualized using cryo-EM // Nat. Commun. 2023. Vol. 14, No. 1. P. 931. DOI: 10.1038/s41467-023-36593-y |
| [23] |
Goodenough DA, Goliger JA, Paul DL. Connexins, connexons, and intercellular communication. Annu Rev Biochem. 1996;65:475–502. DOI: 10.1146/annurev.bi.65.070196.002355 |
| [24] |
Goodenough D.A., Goliger J.A., Paul D.L. Connexins, connexons, and intercellular communication // Ann. Rev. Biochem. 1996. Vol. 65, No. 1. P. 475–502. DOI: 10.1146/annurev.bi.65.070196.002355 |
| [25] |
Goodenough DA, Paul DL. Gap junctions. Cold Spring Harb Perspect Biol. 2009;1(1):a002576. DOI: 10.1101/cshperspect.a002576 |
| [26] |
Goodenough D.A., Paul D.L. Gap junctions // Cold Spring Harb. Perspect Biol. 2009. Vol. 1, No. 1. P. a002576. DOI: 10.1101/cshperspect.a002576 |
| [27] |
Dhein S, Salameh A. Remodeling of cardiac gap junctional cell-cell coupling. Cells. 2021;10(9):2422. DOI: 10.3390/cells10092422 |
| [28] |
Dhein S., Salameh A. Remodeling of cardiac gap junctional cell-cell coupling // Cells. 2021. Vol. 10, No. 9. P. 2422. DOI: 10.3390/cells10092422 |
| [29] |
Thévenin AF, Kowal TJ, Fong JT, et al. Proteins and mechanisms regulating gap-junction assembly, internalization, and degradation. Physiology (Bethesda). 2013;28(2):93–116. DOI: 10.1152/physiol.00038.2012 |
| [30] |
Thévenin A.F., Kowal T.J., Fong J.T. et al. Proteins and mechanisms regulating gap-junction assembly, internalization, and degradation // Physiology (Bethesda). 2013. Vol. 28, No. 2. P. 93–116. DOI: 10.1152/physiol.00038.2012 |
| [31] |
Kehat I, Gepstein A, Spira A, et al. High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes: a novel in vitro model for the study of conduction. Circ Res. 2002;91(8):659–661. DOI: 10.1161/01.res.0000039084.30342.9b |
| [32] |
Kehat I., Gepstein A., Spira A. et al. High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes: a novel in vitro model for the study of conduction // Circ. Res. 2002. Vol. 91, No. 8. P. 659–661. DOI: 10.1161/01.res.0000039084.30342.9b |
| [33] |
Carmeliet E. Conduction in cardiac tissue. Historical reflections. Physiol Rep. 2019;7(1):e13860. DOI: 10.14814/phy2.13860 |
| [34] |
Carmeliet E. Conduction in cardiac tissue. Historical reflections // Physiol. Rep. 2019. Vol. 7, No. 1. P. e13860. DOI: 10.14814/phy2.13860 |
| [35] |
Delmar M, Makita N. Cardiac connexins, mutations and arrhythmias. Curr Opin Cardiol. 2012;27(3):236–241. DOI: 10.1097/HCO.0b013e328352220e |
| [36] |
Delmar M., Makita N. Cardiac connexins, mutations and arrhythmias // Curr. Opin. Cardiol. 2012. Vol. 27, No. 3. P. 236–241. DOI: 10.1097/HCO.0b013e328352220e |
| [37] |
De Mello WC. Exchange of chemical signals between cardiac cells. Fundamental role on cell communication and metabolic cooperation. Exp Cell Res. 2016;346(1):130–136. DOI: 10.1016/j.yexcr.2016.05.009 |
| [38] |
De Mello W.C. Exchange of chemical signals between cardiac cells. Fundamental role on cell communication and metabolic cooperation // Exp. Cell Res. 2016. Vol. 346, No. 1. P. 130–136. DOI: 10.1016/j.yexcr.2016.05.009 |
| [39] |
Jansen JA, Noorman M, Musa H, et al. Reduced heterogeneous expression of Cx43 results in decreased Nav1.5 expression and reduced sodium current that accounts for arrhythmia vulnerability in conditional Cx43 knockout mice. Heart Rhythm. 2012;9(4):600–607. DOI: 10.1016/j.hrthm.2011.11.025 |
| [40] |
Jansen J.A., Noorman M., Musa H. et al. Reduced heterogeneous expression of Cx43 results in decreased Nav1.5 expression and reduced sodium current that accounts for arrhythmia vulnerability in conditional Cx43 knockout mice // Heart Rhythm. 2012. Vol. 9, No. 4. P. 600–607. DOI: 10.1016/j.hrthm.2011.11.025 |
| [41] |
Yang BF, Shi JZ, Li J, et al. Expression of Cx43 and Cx45 in cardiomyocytes of an overworked rat model. Fa Yi Xue Za Zhi. 2019;35(5):567–571. DOI: 10.12116/j.issn.1004-5619.2019.05.010 |
| [42] |
Yang B.F., Shi J.Z, Li J. et al. Expression of Cx43 and Cx45 in cardiomyocytes of an overworked rat model // Fa Yi Xue Za Zhi. 2019. Vol. 35, No. 5. P. 567–571. DOI: 10.12116/j.issn.1004-5619.2019.05.010 |
| [43] |
Duffy HS. The molecular mechanisms of gap junction remodeling. Heart Rhythm. 2012;9(8):1331–1334. DOI: 10.1016/j.hrthm.2011.11.048 |
| [44] |
Duffy H.S. The molecular mechanisms of gap junction remodeling // Heart Rhythm. 2012. Vol. 9, No. 8. P. 1331–1334. DOI: 10.1016/j.hrthm.2011.11.048 |
| [45] |
Mezache L, Nuovo GJ, Suster D, et al. Histologic, viral, and molecular correlates of heart disease in fatal COVID-19. Ann Diagn Pathol. 2022;60:151983. DOI: 10.1016/j.anndiagpath.2022.151983 |
| [46] |
Mezache L., Nuovo G.J., Suster D. et al. Histologic, viral, and molecular correlates of heart disease in fatal COVID-19 // Ann. Diagn. Pathol. 2022. Vol. 60. P. 151983. DOI: 10.1016/j.anndiagpath.2022.151983 |
| [47] |
Wahl CM, Schmidt C, Hecker M, Ullrich ND. Distress-mediated remodeling of cardiac connexin-43 in a novel cell model for arrhythmogenic heart diseases. Int J Mol Sci. 2022;23(17):10174. DOI: 10.3390/ijms231710174 |
| [48] |
Wahl C.M., Schmidt C., Hecker M., Ullrich N.D. Distress-mediated remodeling of cardiac connexin-43 in a novel cell model for arrhythmogenic heart diseases // Int. J. Mol. Sci. 2022. Vol. 23, No. 17. P. 10174. DOI: 10.3390/ijms231710174 |
| [49] |
Michela P, Velia V, Aldo P, Ada P. Role of connexin 43 in cardiovascular diseases. Eur J Pharmacol. 2015;768:71–76. DOI: 10.1016/j.ejphar.2015.10.030 |
| [50] |
Michela P., Velia V., Aldo P., Ada P. Role of connexin 43 in cardiovascular diseases // Eur. J. Pharmacol. 2015. Vol. 768. P. 71–76. DOI: 10.1016/j.ejphar.2015.10.030 |
| [51] |
Dhein S. Gap junction channels in the cardiovascular system: pharmacological and physiological modulation. Trends Pharmacol Sci. 1998;19(6):229–241. DOI: 10.1016/s0165-6147(98)01192-4 |
| [52] |
Dhein S. Gap junction channels in the cardiovascular system: pharmacological and physiological modulation // Trends Pharmacol. Sci. 1998. Vol. 19, No. 6. P. 229–241. DOI: 10.1016/s0165-6147(98)01192-4 |
| [53] |
Eloff BC, Gilat E, Wan X, Rosenbaum DS. Pharmacological modulation of cardiac gap junctions to enhance cardiac conduction: evidence supporting a novel target for antiarrhythmic therapy. Circulation. 2003;108(25):3157–3163. DOI: 10.1161/01.CIR.0000101926.43759.10 |
| [54] |
Eloff B.C., Gilat E., Wan X., Rosenbaum D.S. Pharmacological modulation of cardiac gap junctions to enhance cardiac conduction: evidence supporting a novel target for antiarrhythmic therapy // Circulation. 2003. Vol. 108, No. 25. P. 3157–3163. DOI: 10.1161/01.CIR.0000101926.43759.10 |
| [55] |
De Vuyst E, Boengler K, Antoons G, et al. Pharmacological modulation of connexin-formed channels in cardiac pathophysiology. Br J Pharmacol. 2011;163(3):469–483. DOI: 10.1111/j.1476-5381.2011.01244.x |
| [56] |
De Vuyst E., Boengler K., Antoons G. et al. Pharmacological modulation of connexin-formed channels in cardiac pathophysiology // Br. J. Pharmacol. 2011. Vol. 163, No. 3. P. 469–483. DOI: 10.1111/j.1476-5381.2011.01244.x |
| [57] |
Sufieva DA, Kirik OV, Korzhevskii DE. Astrocyte markers in the tanycytes of the third brain ventricle in postnatal development and aging in rats. Russ J Dev Biol. 2019;50(3):146–153. DOI: 10.1134/S1062360419030068 |
| [58] |
Суфиева Д.А., Кирик О.В., Коржевский Д.Э. Астроцитарные маркеры в таницитах третьего желудочка головного мозга крысы в постнатальном онтогенезе и при старении // Онтогенез. 2019. Т. 50, № 3. С. 205–214. DOI: 10.1134/S0475145019030066 |
| [59] |
Yamamoto T, Ochalski A, Hertzberg EL, Nagy JI. On the organization of astrocytic gap junctions in rat brain as suggested by LM and EM immunohistochemistry of connexin43 expression. J Comp Neurol. 1990;302(4):853–883. DOI: 10.1002/cne.903020414 |
| [60] |
Yamamoto T., Ochalski A., Hertzberg E.L., Nagy J.I. On the organization of astrocytic gap junctions in rat brain as suggested by LM and EM immunohistochemistry of connexin43 expression // J. Comp. Neurol. 1990. Vol. 302, No. 4. P. 853–883. DOI: 10.1002/cne.903020414 |
| [61] |
Rash JE, Yasumura T, Dudek FE, Nagy JI. Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons. J Neurosci. 2001;21(6):1983–2000. DOI: 10.1523/JNEUROSCI.21-06-01983.2001 |
| [62] |
Rash J.E., Yasumura T., Dudek F.E., Nagy J.I. Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons // J. Neurosci. 2001. Vol. 21, No. 6. P. 1983–2000. DOI: 10.1523/JNEUROSCI.21-06-01983.2001 |
| [63] |
Nagy JI, Patel D, Ochalski PA, Stelmack GL. Connexin30 in rodent, cat and human brain: selective expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late developmental appearance. Neuroscience. 1999;88(2):447–468. DOI: 10.1016/s0306-4522(98)00191-2 |
| [64] |
Nagy J., Patel D., Ochalski P., Stelmack G. Connexin30 in rodent, cat and human brain: selective expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late developmental appearance // Neuroscience. 1999. Vol. 88, No. 2. P. 447–468. DOI: 10.1016/s0306-4522(98)00191-2 |
| [65] |
Orthmann-Murphy JL, Abrams CK, Scherer SS. Gap junctions couple astrocytes and oligodendrocytes. J Mol Neurosci. 2008;35(1):101–116. DOI: 10.1007/s12031-007-9027-5 |
| [66] |
Orthmann-Murphy J.L., Abrams C.K., Scherer S.S. Gap junctions couple astrocytes and oligodendrocytes // J. Mol. Neurosci. 2008. Vol. 3, No. 1. P. 101–116. DOI: 10.1007/s12031-007-9027-5 |
| [67] |
Magnotti LM, Goodenough DA, Paul DL. Functional heterotypic interactions between astrocyte and oligodendrocyte connexins. Glia. 2011;59(1):26–34. DOI: 10.1002/glia.21073 |
| [68] |
Magnotti L.M., Goodenough D.A., Paul D.L. Functional heterotypic interactions between astrocyte and oligodendrocyte connexins // Glia. 2011. Vol. 59, No. 1. P. 26–34. DOI: 10.1002/glia.21073 |
| [69] |
Wasseff SK, Scherer SS. Cx32 and Cx47 mediate oligodendrocyte:astrocyte and oligodendrocyte:oligodendrocyte gap junction coupling. Neurobiol Dis. 2011;42(3):506–513. DOI: 10.1016/j.nbd.2011.03.003 |
| [70] |
Wasseff S.K., Scherer S.S. Cx32 and Cx47 mediate oligodendrocyte:astrocyte and oligodendrocyte:oligodendrocyte gap junction coupling // Neurobiol. Dis. 2011. Vol. 42, No. 3. P. 506–513. DOI: 10.1016/j.nbd.2011.03.003 |
| [71] |
Connors BW, Long MA. Electrical synapses in the mammalian brain. Annu Rev Neurosci. 2004;27:393–418. DOI: 10.1146/annurev.neuro.26.041002.131128 |
| [72] |
Connors B.W., Long M.A. Electrical synapses in the mammalian brain // Annu. Rev. Neurosci. 2004. Vol. 27. P. 393–418. DOI: 10.1146/annurev.neuro.26.041002.131128 |
| [73] |
Rash JE, Yasumura T, Davidson KG, et al. Identification of cells expressing Cx43, Cx30, Cx26, Cx32 and Cx36 in gap junctions of rat brain and spinal cord. Cell Commun Adhes. 2001;8(4–6):315–320. DOI: 10.3109/15419060109080745 |
| [74] |
Rash J.E., Yasumura T., Davidson K.G. et al. Identification of cells expressing Cx43, Cx30, Cx26, Cx32 and Cx36 in gap junctions of rat brain and spinal cord // Cell Commun. Adhes. 2001. Vol. 8, No. 4–6. P. 315–320. DOI: 10.3109/15419060109080745 |
| [75] |
Jiménez AJ, Domínguez-Pinos MD, Guerra MM, et al. Structure and function of the ependymal barrier and diseases associated with ependyma disruption. Tissue Barriers. 2014;2:e28426. DOI: 10.4161/tisb.28426 |
| [76] |
Jiménez A.J., Domínguez-Pinos M.D., Guerra M.M. et al. Structure and function of the ependymal barrier and diseases associated with ependyma disruption // Tissue Barriers. 2014. Vol. 2. P. e28426. DOI: 10.4161/tisb.28426 |
| [77] |
Zhang J, Chandrasekaran G, Li W, et al. Wnt-PLC-IP3-Connexin-Ca2+ axis maintains ependymal motile cilia in zebrafish spinal cord. Nat Commun. 2020;11(1):1860. DOI: 10.1038/s41467-020-15248-2 |
| [78] |
Zhang J., Chandrasekaran G., Li W. et al. Wnt-PLC-IP3-Connexin-Ca2+ axis maintains ependymal motile cilia in zebrafish spinal cord // Nat. Commun. 2020. Vol. 11, No. 1. P. 1860. DOI: 10.1038/s41467-020-15248-2 |
| [79] |
Liu X, Bolteus AJ, Balkin DM, et al. GFAP-expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes. Glia. 2006;54(5):394–410. DOI: 10.1002/glia.20392 |
| [80] |
Liu X., Bolteus A.J., Balkin D.M. et al. GFAP-expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes // Glia. 2006. Vol. 54, No. 5. P. 394–410. DOI: 10.1002/glia.20392 |
| [81] |
Roales-Buján R, Páez P, Guerra M, et al. Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus. Acta Neuropathol. 2012;124(4):531–546. DOI: 10.1007/s00401-012-0992-6 |
| [82] |
Roales-Buján R., Páez P., Guerra M. et al. Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus // Acta Neuropathol. 2012. Vol. 124, No. 4. P. 531–546. DOI: 10.1007/s00401-012-0992-6 |
| [83] |
Mambetisaeva ET, Gire V, Evans WH. Multiple connexin expression in peripheral nerve, Schwann cells, and Schwannoma cells. J Neurosci Res. 1999;57(2):166–175. DOI: 10.1002/(SICI)1097-4547(19990715)57:2<166::AID-JNR2>3.0.CO;2-Y |
| [84] |
Mambetisaeva E.T., Gire V., Evans W.H. Multiple connexin expression in peripheral nerve, Schwann cells, and Schwannoma cells // J. Neurosci. Res. 1999. Vol. 57, No. 2. P. 166–175. DOI: 10.1002/(SICI)1097-4547(19990715)57:2<166::AID-JNR2>3.0.CO;2-Y |
| [85] |
Yoshimura T, Satake M, Kobayashi T. Connexin43 is another gap junction protein in the peripheral nervous system. J Neurochem. 1996;67(3):1252–1258. DOI: 10.1046/j.1471-4159.1996.67031252.x |
| [86] |
Yoshimura T., Satake M., Kobayashi T. Connexin43 is another gap junction protein in the peripheral nervous syste // J. Neurochem. 1996. Vol. 67, No. 3. P. 1252–1258. DOI: 10.1046/j.1471-4159.1996.67031252.x |
| [87] |
Procacci P, Magnaghi V, Pannese E. Perineuronal satellite cells in mouse spinal ganglia express the gap junction protein connexin43 throughout life with decline in old age. Brain Res Bull. 2008;75(5):562–569. DOI: 10.1016/j.brainresbull.2007.09.007 |
| [88] |
Procacci P., Magnaghi V., Pannese E. Perineuronal satellite cells in mouse spinal ganglia express the gap junction protein connexin43 throughout life with decline in old age // Brain Res. Bull. 2008. Vol. 75, No. 5. P. 562–569. DOI: 10.1016/j.brainresbull.2007.09.007 |
| [89] |
Risley MS, Tan IP, Roy C, Sáez JC. Cell-, age- and stage-dependent distribution of connexin43 gap junctions in testes. J Cell Sci. 1992;103(1):81–96. DOI: 10.1242/jcs.103.1.81 |
| [90] |
Risley M.S., Tan I.P., Roy C., Sáez J.C. Cell-, age- and stage-dependent distribution of connexin43 gap junctions in testes // J. Cell. Sci. 1992. Vol. 103, No. 1. P. 81–96. DOI: 10.1242/jcs.103.1.81 |
| [91] |
Steger K, Tetens F, Bergmann M. Expression of connexin 43 in human testis. Histochem Cell Biol. 1999;112(3):215–220. DOI: 10.1007/s004180050409 |
| [92] |
Steger K., Tetens F., Bergmann M. Expression of connexin 43 in human testis // Histochem. Cell Biol. 1999. Vol. 112, No. 3. P. 215–220. DOI: 10.1007/s004180050409 |
| [93] |
Knapczyk-Stwora K, Durlej-Grzesiak M, Duda M, Slomczynska M. Expression of connexin 43 in the porcine foetal gonads during development. Reprod Domest Anim. 2013;48(2):272–277. DOI: 10.1111/j.1439-0531.2012.02144.x |
| [94] |
Knapczyk-Stwora K., Durlej-Grzesiak M., Duda M., Slomczynska M. Expression of connexin 43 in the porcine foetal gonads during development // Reprod. Domest. Anim. 2013. Vol. 48, No. 2. P. 272–277. DOI: 10.1111/j.1439-0531.2012.02144.x |
| [95] |
Pérez-Armendariz EM, Lamoyi E, Mason JI, et al. Developmental regulation of connexin 43 expression in fetal mouse testicular cells. Anat Rec. 2001;264(3):237–246. DOI: 10.1002/ar.1164 |
| [96] |
Pérez-Armendariz E.M, Lamoyi E., Mason J.I. et al. Developmental regulation of connexin 43 expression in fetal mouse testicular cells // Anat. Rec. 2001. Vol. 264, No. 3. P. 237–246. DOI: 10.1002/ar.1164 |
| [97] |
Almeida J, Conley AJ, Mathewson L, Ball BA. Expression of anti-Müllerian hormone, cyclin-dependent kinase inhibitor (CDKN1B), androgen receptor, and connexin 43 in equine testes during puberty. Theriogenology. 2012;77(5):847–857. DOI: 10.1016/j.theriogenology.2011.09.007 |
| [98] |
Almeida J., Conley A.J., Mathewson L., Ball B.A. Expression of anti-Müllerian hormone, cyclin-dependent kinase inhibitor (CDKN1B), androgen receptor, and connexin 43 in equine testes during puberty // Theriogenology. 2012. Vol. 77, No. 5. P. 847–857. DOI: 10.1016/j.theriogenology.2011.09.007 |
| [99] |
Rüttinger C, Bergmann M, Fink L, et al. Expression of connexin 43 in normal canine testes and canine testicular tumors. Histochem Cell Biol. 2008;130(3):537–548. DOI: 10.1007/s00418-008-0432-9 |
| [100] |
Rüttinger C., Bergmann M., Fink L. et al. Expression of connexin 43 in normal canine testes and canine testicular tumors // Histochem. Cell Biol. 2008. Vol. 130, No. 3. P. 537–548. DOI: 10.1007/s00418-008-0432-9 |
| [101] |
Ahmed N, Yang P, Chen H, et al. Characterization of inter-Sertoli cell tight and gap junctions in the testis of turtle: Protect the developing germ cells from an immune response. Microb Pathog. 2018;123:60–67. DOI: 10.1016/j.micpath.2018.06.037 |
| [102] |
Ahmed N., Yang P., Chen H. et al. Characterization of inter-Sertoli cell tight and gap junctions in the testis of turtle: Protect the developing germ cells from an immune response // Microb. Pathog. 2018. Vol. 123. P. 60–67. DOI: 10.1016/j.micpath.2018.06.037 |
| [103] |
Izzo G, d’Istria M, Ferrara D, et al. Connexin 43 expression in the testis of the frog Rana esculenta. Zygote. 2006;14(4):349–357. DOI: 10.1017/S096719940600390X |
| [104] |
Izzo G., d’Istria M., Ferrara D. et al. Connexin 43 expression in the testis of the frog Rana esculenta // Zygote. 2006. Vol. 14, No. 4. P. 349–357. DOI: 10.1017/S096719940600390X |
| [105] |
Kotula-Balak M, Hejmej A, Sadowska J, Bilinska B. Connexin 43 expression in human and mouse testes with impaired spermatogenesis. Eur J Histochem. 2007;51(4):261–268. DOI: 10.4081/1150 |
| [106] |
Kotula-Balak M., Hejmej A., Sadowska J., Bilinska B. Connexin 43 expression in human and mouse testes with impaired spermatogenesis // Eur. J. Histochem. 2007. Vol. 51, No. 4. P. 261–268. DOI: 10.4081/1150 |
| [107] |
Rode K, Weider K, Damm OS, et al. Loss of connexin 43 in Sertoli cells provokes postnatal spermatogonial arrest, reduced germ cell numbers and impaired spermatogenesis. Reprod Biol. 2018;18(4):456–466. DOI: 10.1016/j.repbio.2018.08.001 |
| [108] |
Rode K., Weider K., Damm O.S. et al. Loss of connexin 43 in Sertoli cells provokes postnatal spermatogonial arrest, reduced germ cell numbers and impaired spermatogenesis // Reprod. Biol. 2018. Vol. 18, No. 4. P. 456–466. DOI: 10.1016/j.repbio.2018.08.001 |
| [109] |
Günther S, Fietz D, Weider K, et al. Effects of a murine germ cell-specific knockout of Connexin 43 on Connexin expression in testis and fertility. Transgenic Res. 2013;22(3):631–641. DOI: 10.1007/s11248-012-9668-1 |
| [110] |
Günther S., Fietz D., Weider K. et al. Effects of a murine germ cell-specific knockout of Connexin 43 on Connexin expression in testis and fertility // Transgenic Res. 2013. Vol. 22, No. 3. P. 631–641. DOI: 10.1007/s11248-012-9668-1 |
| [111] |
Haverfield JT, Meachem SJ, O’Bryan MK, et al. Claudin-11 and connexin-43 display altered spatial patterns of organization in men with primary seminiferous tubule failure compared with controls. Fertil Steril. 2013;100(3):658–666. DOI: 10.1016/j.fertnstert.2013.04.034 |
| [112] |
Haverfield J.T., Meachem S.J., O’Bryan M.K. et al. Claudin-11 and connexin-43 display altered spatial patterns of organization in men with primary seminiferous tubule failure compared with controls // Fertil. Steril. 2013. Vol.100, No. 3. P. 658–666. DOI: 10.1016/j.fertnstert.2013.04.034 |
| [113] |
Lee NP, Leung KW, Wo JY, et al. Blockage of testicular connexins induced apoptosis in rat seminiferous epithelium. Apoptosis. 2006;11(7):1215–1229. DOI: 10.1007/s10495-006-6981-2 |
| [114] |
Lee N.P., Leung K.W., Wo J.Y. et al. Blockage of testicular connexins induced apoptosis in rat seminiferous epithelium // Apoptosis. 2006. Vol. 11, No. 7. P. 1215–1229. DOI: 10.1007/s10495-006-6981-2 |
| [115] |
Pointis G, Segretain D. Role of connexin-based gap junction channels in testis. Trends Endocrinol Metab. 2005;16(7):300–306. DOI: 10.1016/j.tem.2005.07.001 |
| [116] |
Pointis G., Segretain D. Role of connexin-based gap junction channels in testis // Trends Endocrinol. Metab. 2005. Vol. 16, No. 7. P. 300–306. DOI: 10.1016/j.tem.2005.07.001 |
| [117] |
Sridharan S, Brehm R, Bergmann M, Cooke PS. Role of connexin 43 in Sertoli cells of testis. Ann NY Acad Sci. 2007;1120:131–143. DOI: 10.1196/annals.1411.004 |
| [118] |
Sridharan S., Brehm R., Bergmann M., Cooke P.S. Role of connexin 43 in Sertoli cells of testis // Ann. NY Acad. Sci. 2007. Vol. 1120. P. 131–143. DOI: 10.1196/annals.1411.004 |
| [119] |
Gilleron J, Carette D, Durand P, et al. Connexin 43 a potential regulator of cell proliferation and apoptosis within the seminiferous epithelium. Int J Biochem Cell Biol. 2009;41(6):1381–1390. DOI: 10.1016/j.biocel.2008.12.008 |
| [120] |
Gilleron J., Carette D., Durand P. et al. Connexin 43 a potential regulator of cell proliferation and apoptosis within the seminiferous epithelium // Int. J. Biochem. Cell Biol. 2009. Vol. 41, No. 6. P. 1381–1390. DOI: 10.1016/j.biocel.2008.12.008 |
| [121] |
Chojnacka K, Brehm R, Weider K, et al. Expression of the androgen receptor in the testis of mice with a Sertoli cell specific knock-out of the connexin 43 gene (SCCx43KO(-/-)). Reprod Biol. 2012;12(4):341–346. DOI: 10.1016/j.repbio.2012.10.007 |
| [122] |
Chojnacka K., Brehm R., Weider K. et al. Expression of the androgen receptor in the testis of mice with a Sertoli cell specific knock-out of the connexin 43 gene (SCCx43KO(-/-)) // Reprod. Biol. 2012. Vol. 12, No. 4. P. 341–346. DOI: 10.1016/j.repbio.2012.10.007 |
| [123] |
Rode K, Weider K, Damm OS, et al. Loss of connexin 43 in Sertoli cells provokes postnatal spermatogonial arrest, reduced germ cell numbers and impaired spermatogenesis. Reprod Biol. 2018;18(4):456–466. DOI: 10.1016/j.repbio.2018.08.001 |
| [124] |
Rode K., Weider K., Damm O.S. et al. Loss of connexin 43 in Sertoli cells provokes postnatal spermatogonial arrest, reduced germ cell numbers and impaired spermatogenesis // Reprod. Biol. 2018. Vol. 18, No. 4. P. 456–466. DOI: 10.1016/j.repbio.2018.08.001 |
| [125] |
Gerber J, Heinrich J, Brehm R. Blood-testis barrier and Sertoli cell function: lessons from SCCx43KO mice. Reproduction. 2016;151(2):R15–R27. DOI: 10.1530/REP-15-0366 |
| [126] |
Gerber J., Heinrich J., Brehm R. Blood-testis barrier and Sertoli cell function: lessons from SCCx43KO mice // Reproduction. 2016. Vol. 151, No. 2. P. R15–27. DOI: 10.1530/REP-15-0366 |
| [127] |
Chevallier D, Carette D, Gilleron J, et al. The emerging role of connexin 43 in testis pathogenesis. Curr Mol Med. 2013;13(8):1331–1344. DOI: 10.2174/15665240113139990066 |
| [128] |
Chevallier D., Carette D., Gilleron J. et al. The emerging role of connexin 43 in testis pathogenesis // Curr. Mol. Med. 2013. Vol. 13, No. 8. P. 1331–1344. DOI: 10.2174/15665240113139990066 |
| [129] |
Alves LA, Campos de Carvalho AC, Cirne Lima EO, et al. Functional gap junctions in thymic epithelial cells are formed by connexin 43. Eur J Immunol. 1995;25(2):431–437. DOI: 10.1002/eji.1830250219 |
| [130] |
Alves L.A., Campos de Carvalho A.C., Cirne Lima E.O. et al. Functional gap junctions in thymic epithelial cells are formed by connexin 43 // Eur. J. Immunol. 1995. Vol. 25, No. 2. P. 431–437. DOI: 10.1002/eji.1830250219 |
| [131] |
Dorshkind K, Green L, Godwin A, Fletcher WH. Connexin-43-type gap junctions mediate communication between bone marrow stromal cells. Blood. 1993;82(1):38–45. DOI: 10.1182/blood.v82.1.38.bloodjournal82138 |
| [132] |
Dorshkind K., Green L., Godwin A., Fletcher W.H. Connexin-43-type gap junctions mediate communication between bone marrow stromal cells // Blood. 1993. Vol. 82, No. 1. P. 38–45. DOI: 10.1182/blood.v82.1.38.bloodjournal82138 |
| [133] |
Montecino-Rodriguez E, Dorshkind K. Regulation of hematopoiesis by gap junction-mediated intercellular communication. J Leukoc Biol. 2001;70(3):341–347. DOI: 10.1189/jlb.70.3.341 |
| [134] |
Montecino-Rodriguez E., Dorshkind K. Regulation of hematopoiesis by gap junction-mediated intercellular communication // J. Leukoc. Biol. 2001. Vol. 70, No. 3. P. 341–347. DOI: 10.1189/jlb.70.3.341 |
| [135] |
Krenács T, Rosendaal M. Immunohistological detection of gap junctions in human lymphoid tissue: connexin43 in follicular dendritic and lymphoendothelial cells. J Histochem Cytochem. 1995;43(11):1125–1137. DOI: 10.1177/43.11.7560895 |
| [136] |
Krenacs T., Rosendaal M. Immunohistological detection of gap junctions in human lymphoid tissue: connexin43 in follicular dendritic and lymphoendothelial cells // J. Histochem. Cytochem. 1995. Vol. 43. P. 1125–1137. DOI: 10.1177/43.11.7560895 |
| [137] |
Taniguchi Ishikawa E, Gonzalez-Nieto D, Ghiaur G, et al. Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells. Proc Natl Acad Sci USA. 2012;109(23):9071–9076. DOI: 10.1073/pnas.1120358109 |
| [138] |
Taniguchi Ishikawa E., Gonzalez-Nieto D., Ghiaur G. et al. Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells // Proc. Natl. Acad. Sci. USA. 2012. Vol. 109, No. 23. P. 9071–9076. DOI: 10.1073/pnas.1120358109 |
| [139] |
Oviedo-Orta E, Howard Evans W. Gap junctions and connexin-mediated communication in the immune system. Biochim Biophys Acta. 2004;1662(1–2):102–112. DOI: 10.1016/j.bbamem.2003.10.021 |
| [140] |
Oviedo-Orta E., Howard Evans W. Gap junctions and connexin-mediated communication in the immune system // Biochim. Biophys. Acta. 2004. Vol. 1662, No. 1–2. P. 102–112. DOI: 10.1016/j.bbamem.2003.10.021 |
| [141] |
Wilgenbus KK, Kirkpatrick CJ, Knuechel R, et al. Expression of Cx26, Cx32 and Cx43 gap junction proteins in normal and neoplastic human tissues. Int J Cancer. 1992;51(4):522–529. DOI: 10.1002/ijc.2910510404 |
| [142] |
Wilgenbus K.K., Kirkpatrick C.J., Knuechel R. et al. Expression of Cx26, Cx32 AND Cx43 gap junction proteins in normal and neoplastic human tissues // Int. J. Cancer. 1992. Vol. 51, No. 4. P. 522–529. DOI: 10.1002/ijc.2910510404 |
| [143] |
Salomon D, Masgrau E, Vischer S, et al. Topography of mammalian connexins in human skin. J Invest Dermatol. 1994;103(2):240–247. DOI: 10.1111/1523-1747.ep12393218 |
| [144] |
Salomon D., Masgrau E., Vischer S. et al. Topography of mammalian connexins in human skin // J. Invest. Dermatol. 1994. Vol. 103, No. 2. P. 240–247. DOI: 10.1111/1523-1747.ep12393218 |
| [145] |
Butterweck A, Elfgang C, Willecke K, Traub O. Differential expression of the gap junction proteins connexin45, -43, -40, -31, and -26 in mouse skin. Eur J Cell Biol. 1994;65(1):152–163. |
| [146] |
Butterweck A., Elfgang C., Willecke K., Traub O. Differential expression of the gap junction proteins connexin45, -43, -40, -31, and -26 in mouse skin // Eur. J. Cell Biol. 1994. Vol. 65, No. 1. P. 152–163. |
| [147] |
Tan MLL, Kwong HL, Ang CC, et al. Changes in connexin 43 in inflammatory skin disorders: Eczema, psoriasis, and Steven-Johnson syndrome/toxic epidermal necrolysis. Health Sci Rep. 2021;4(1):e247. DOI: 10.1002/hsr2.247 |
| [148] |
Tan M.L.L., Kwong H.L., Ang C.C. et al. Changes in connexin 43 in inflammatory skin disorders: Eczema, psoriasis, and Steven-Johnson syndrome/toxic epidermal necrolysis // Health Sci. Rep. 2021. Vol. 4, No. 1. P. e247. DOI: 10.1002/hsr2.247 |
| [149] |
Little TL, Beyer EC, Duling BR. Connexin 43 and connexin 40 gap junctional proteins are present in arteriolar smooth muscle and endothelium in vivo. Am J Physiol. 1995;268(2):H729–739. DOI: 10.1152/ajpheart.1995.268.2.H729 |
| [150] |
Little T.L., Beyer E.C., Duling B.R. Connexin 43 and connexin 40 gap junctional proteins are present in arteriolar smooth muscle and endothelium in vivo // Am. J. Physiol. 1995. Vol. 268, No. 2. P. H729–739. DOI: 10.1152/ajpheart.1995.268.2.H729 |
| [151] |
Sedovy MW, Leng X, Leaf MR, et al. Connexin 43 across the vasculature: gap junctions and beyond. J Vasc Res. 2023;60(2):101–113. DOI: 10.1159/000527469 |
| [152] |
Sedovy M.W., Leng X., Leaf M.R. et al. Connexin 43 across the vasculature: gap junctions and beyond // J. Vasc. Res. 2023. Vol. 60, No. 2. P. 101–113. DOI: 10.1159/000527469 |
| [153] |
Wang YF, Daniel EE. Gap junctions in gastrointestinal muscle contain multiple connexins. Am J Physiol Gastrointest Liver Physiol. 2001;281(2):G533–G543. DOI: 10.1152/ajpgi.2001.281.2.G533 |
| [154] |
Wang Y.F., Daniel E.E. Gap junctions in gastrointestinal muscle contain multiple connexins // Am. J. Physiol. Gastrointest. Liver Physiol. 2001. Vol. 281. P. G533–G543. DOI: 10.1152/ajpgi.2001.281.2.G533 |
| [155] |
Neuhaus J, Weimann A, Stolzenburg JU, et al. Smooth muscle cells from human urinary bladder express connexin 43 in vivo and in vitro. World J Urol. 2002;20(4):250–254. DOI: 10.1007/s00345-002-0289-9 |
| [156] |
Neuhaus J., Weimann A., Stolzenburg J.U. et al. Smooth muscle cells from human urinary bladder express connexin 43 in vivo and in vitro // World J. Urol. 2002. Vol. 20, No. 4. P. 250–254. DOI: 10.1007/s00345-002-0289-9 |
| [157] |
Sakai N, Tabb T, Garfield RE. Studies of connexin 43 and cell-to-cell coupling in cultured human uterine smooth muscle. Am J Obstet Gynecol. 1992;167(5):1267–1277. DOI: 10.1016/s0002-9378(11)91699-8 |
| [158] |
Sakai N., Tabb T., Garfield R.E. Studies of connexin 43 and cell-to-cell coupling in cultured human uterine smooth muscle // Am. J. Obstet. Gynecol. 1992. Vol. 167, No. 5. P. 1267–1277. DOI: 10.1016/s0002-9378(11)91699-8 |
| [159] |
Chumasov EI, Petrova ES, Korzhevskii DE. Peculiarities of the innervation of epicardial adipose tissue in a rat with aging (immunohistochemical study). Adv Gerontol. 2022;12(3):312–318. DOI: 10.1134/S2079057022030055 |
| [160] |
Чумасов Е.И., Петрова Е.С., Коржевский Д.Э. Oсобенности иннервации эпикардиальной жировой ткани у крысы при старении (иммуногистохимическое исследование) // Успехи геронтологии. 2022. Т. 35, № 1. С. 85–92. DOI: 10.34922/AE.2022.35.1.009 |
| [161] |
Yeganeh A, Stelmack GL, Fandrich RR, et al. Connexin 43 phosphorylation and degradation are required for adipogenesis. Biochim Biophys Acta. 2012;1823(10):1731–1744. DOI: 10.1016/j.bbamcr.2012.06.009 |
| [162] |
Yeganeh A., Stelmack G.L., Fandrich R.R. et al. Connexin 43 phosphorylation and degradation are required for adipogenesis // Biochim. Biophys. Acta. 2012. Vol. 1823, No. 10. P. 1731–1744. DOI: 10.1016/j.bbamcr.2012.06.009 |
| [163] |
Kim SN, Kwon HJ, Im SW, et al. Connexin 43 is required for the maintenance of mitochondrial integrity in brown adipose tissue. Sci Rep. 2017;7(1):7159. DOI: 10.1038/s41598-017-07658-y |
| [164] |
Kim S.N., Kwon H.J., Im S.W. et al. Connexin 43 is required for the maintenance of mitochondrial integrity in brown adipose tissue // Sci. Rep. 2017. Vol. 7, No. 1. P. 7159. DOI: 10.1038/s41598-017-07658-y |
| [165] |
Turovsky EA, Varlamova EG, Turovskaya MV. Activation of Cx43 hemichannels induces the generation of Ca2+ oscillations in white adipocytes and stimulates lipolysis. Int J Mol Sci. 2021;22(15):8095. DOI: 10.3390/ijms22158095 |
| [166] |
Turovsky E.A., Varlamova E.G., Turovskaya M.V. Activation of Cx43 hemichannels induces the generation of Ca2+ oscillations in white adipocytes and stimulates lipolysis // Int. J. Mol. Sci. 2021. Vol. 22. P. 8095. DOI: 10.3390/ijms22158095 |
| [167] |
Burke S, Nagajyothi F, Thi MM, et al. Adipocytes in both brown and white adipose tissue of adult mice are functionally connected via gap junctions: implications for Chagas disease. Microbes Infect. 2014;16(11):893–901. DOI: 10.1016/j.micinf.2014.08.006 |
| [168] |
Burke S., Nagajyothi F., Thi M.M. et al. Adipocytes in both brown and white adipose tissue of adult mice are functionally connected via gap junctions: implications for Chagas disease // Microbes Infect. 2014. Vol. 16, No. 11. P. 893–901. DOI: 10.1016/j.micinf.2014.08.006 |
| [169] |
González-Casanova JE, Durán-Agüero S, Caro-Fuentes NJ, et al. New insights on the role of connexins and gap junctions channels in adipose tissue and obesity. Int J Mol Sci. 2021;22(22):12145. DOI: 10.3390/ijms222212145 |
| [170] |
González-Casanova J.E., Durán-Agüero S., Caro-Fuentes N.J. et al. New insights on the role of connexins and gap junctions channels in adipose tissue and obesity // Int. J. Mol. Sci. 2021. Vol. 22, No. 22. P. 12145. DOI: 10.3390/ijms222212145 |
| [171] |
Cascio M, Kumar NM, Safarik R, Gilula NB. Physical characterization of gap junction membrane connexons (hemi-channels) isolated from rat liver. J Biol Chem. 1995;270(31):18643–18648. DOI: 10.1074/jbc.270.31.18643 |
| [172] |
Cascio M., Kumar N.M., Safarik R., Gilula N.B. Physical characterization of gap junction membrane connexons (hemi-channels) isolated from rat liver // J. Biol. Chem. 1995. Vol. 270. P. 18643–18648. DOI: 10.1074/jbc.270.31.18643 |
| [173] |
Berthoud VM, Iwanij V, Garcia AM, Sáez JC. Connexins and glucagon receptors during development of rat hepatic acinus. Am J Physiol. 1992;263(5 Pt 1):G650–G658. DOI: 10.1152/ajpgi.1992.263.5.G650 |
| [174] |
Berthoud V.M., Iwanij V., Garcia A.M., Sáez J.C. Connexins and glucagon receptors during development of rat hepacinus // Am. J. Physiol. 1992. Vol. 263. P. G650–658. DOI: 10.1152/ajpgi.1992.263.5.G650 |
| [175] |
Bode HP, Wang L, Cassio D, et al. Expression and regulation of gap junctions in rat cholangiocytes. Hepatology. 2002;36(3):631–640. DOI: 10.1053/jhep.2002.35274 |
| [176] |
Bode H.P., Wang L., Cassio D. et al. Expression and regulation of gap junctions in rat cholangiocytes // Hepatology. 2002. Vol. 36. P. 631–640. DOI: 10.1053/jhep.2002.35274 |
| [177] |
Greenwel P, Rubin J, Schwartz M, et al. Liver fat-storing cell clones obtained from a CCl4-cirrhotic rat are heterogeneous with regard to proliferation, expression of extracellular matrix components, interleukin-6, and connexin 43. Lab Invest. 1993;69(2):210–216. |
| [178] |
Greenwel P., Rubin J., Schwartz M. et al. Liver fat-storing cell clones obtained from a CCl4-cirrhotic rat are heterogeneous with regard to proliferation, expression of extracellular matrix components, interleukin-6, and connexin 43 // Lab. Invest. 1993. Vol. 69. P. 210–216. |
| [179] |
Saez CG, Eugenin E, Hertzberg EL, Saez JC. Regulation of gap junctions in rat liver during acute and chronic CCl4-induced liver injury. In: From Ion Channels to Cell-to-Cell Conversations. Series of the Centro de Estudios Científicos de Santiago. Springer, Boston, MA; 1997. P. 367–380. DOI: 10.1007/978-1-4899-1795-9_21 |
| [180] |
Saez C.G., Eugenin E., Hertzberg E.L., Saez J.C. Regulation of gap junctions in rat liver during acute and chronic CCl4-induced liver injury // From Ion Channels to Cell-to-Cell Conversations. Series of the Centro de Estudios Científicos de Santiago. Springer, Boston, MA, 1997. P. 367–380. DOI: 10.1007/978-1-4899-1795-9_21 |
| [181] |
Willebrords J, Crespo Yanguas S, Maes M, et al. Structure, regulation and function of gap junctions in liver. Cell Commun Adhes. 2015;22(2–6):29–37. DOI: 10.3109/15419061.2016.1151875 |
| [182] |
Willebrords J., Crespo Yanguas S., Maes M. et al. Structure, regulation and function of gap junctions in liver // Cell Commun. Adhes. 2015. Vol. 22, No. 2–6. P. 29–37. DOI: 10.3109/15419061.2016.1151875 |
| [183] |
Marconi P, Tamura M, Moriuchi S, et al. Connexin 43-enhanced suicide gene therapy using herpesviral vectors. Mol Ther. 2000;1(1):71–81. DOI: 10.1006/mthe.1999.0008 |
| [184] |
Marconi P., Tamura M., Moriuchi S. et al. Connexin 43-enhanced suicide gene therapy using herpesviral vectors // Mol. Ther. 2000. Vol. 1, No. 1. P. 71–81. DOI: 10.1006/mthe.1999.0008 |
| [185] |
Pitts JD. Cancer gene therapy: a bystander effect using the gap junctional pathway. Mol Carcinog. 1994;11(3):127–130. DOI: 10.1002/mc.2940110302 |
| [186] |
Pitts J.D. Cancer gene therapy: a bystander effect using the gap junctional pathway // Mol. Carcinog. 1994. Vol. 11, No. 3. P. 127–130. DOI: 10.1002/mc.2940110302 |
| [187] |
Colombo BM, Benedetti S, Ottolenghi S, et al. The “bystander effect”: association of U-87 cell death with ganciclovir-mediated apoptosis of nearby cells and lack of effect in athymic mice. Hum Gene Ther. 1995;6(6):763–772. DOI: 10.1089/hum.1995.6.6-763 |
| [188] |
Colombo B.M., Benedetti S., Ottolenghi S. et al. The “bystander effect”: association of U-87 cell death with ganciclovir-mediated apoptosis of nearby cells and lack of effect in athymic mice // Hum. Gene Ther. 1995. Vol. 6, No. 6. P. 763–772. DOI: 10.1089/hum.1995.6.6-763 |
| [189] |
Shinoura N, Chen L, Wani MA, et al. Protein and messenger RNA expression of connexin43 in astrocytomas: implications in brain tumor gene therapy. J Neurosurg. 1996;84(5):839–846. DOI: 10.3171/jns.1996.84.5.0839 |
| [190] |
Shinoura N., Chen L., Wani M.A. et al. Protein and messenger RNA expression of connexin43 in astrocytomas: implications in brain tumor gene therapy // J. Neurosurg. 1996. Vol. 84, No. 5. P. 839–845. DOI: 10.3171/jns.1996.84.5.0839 |
| [191] |
Bonacquisti EE, Nguyen J. Connexin 43 (Cx43) in cancer: Implications for therapeutic approaches via gap junctions. Cancer Lett. 2019;442:439–444. DOI: 10.1016/j.canlet.2018.10.043 |
| [192] |
Bonacquisti E.E., Nguyen J. Connexin 43 (Cx43) in cancer: Implications for therapeutic approaches via gap junctions // Cancer Lett. 2019. Vol. 442. P. 439–444. DOI: 10.1016/j.canlet.2018.10.043 |
| [193] |
Matono S, Tanaka T, Sueyoshi S, et al. Bystander effect in suicide gene therapy is directly proportional to the degree of gap junctional intercellular communication in esophageal cancer. Int J Oncol. 2003;23(5):1309–1315. DOI: 10.3892/ijo.23.5.1309 |
| [194] |
Matono S., Tanaka T., Sueyoshi S. et al. Bystander effect in suicide gene therapy is directly proportional to the degree of gap junctional intercellular communication in esophageal cancer // Int. J. Oncol. 2003. Vol. 23, No. 5. P. 1309–1315. DOI: 10.3892/ijo.23.5.1309 |
| [195] |
Kandouz M, Batist G. Gap junctions and connexins as therapeutic targets in cancer. Expert Opin Ther Targets. 2010;14(7):681–692. DOI: 10.1517/14728222.2010.487866 |
| [196] |
Kandouz M., Batist G. Gap junctions and connexins as therapeutic targets in cancer // Expert Opin. Ther. Targets. 2010. Vol. 14, No. 7. P. 681–692. DOI: 10.1517/14728222.2010.487866 |
| [197] |
McCutcheon S, Spray DC. Glioblastoma-astrocyte connexin 43 gap junctions promote tumor invasion. Mol Cancer Res. 2022;20(2):319–331. DOI: 10.1158/1541-7786.MCR-21-0199 |
| [198] |
McCutcheon S., Spray D.C. Glioblastoma-astrocyte connexin 43 gap junctions promote tumor invasion // Mol. Cancer Res. 2022. Vol. 20, No. 2. P. 319–331. DOI: 10.1158/1541-7786.MCR-21-0199 |
Eco-Vector
/
| 〈 |
|
〉 |