The study of the spectrum of pharmacological activity of the new original NT-3 mimetic dipeptide GTS-302

Dmitrii M. Nikiforov , Polina Y. Povarnina , Tatiana A. Gudasheva , Anna V. Nadorova , Larisa G. Kolik , Elena A. Valdman , Julia V. Vakhitova , Sergey B. Seredenin

Medical academic journal ›› 2023, Vol. 23 ›› Issue (2) : 87 -99.

PDF
Medical academic journal ›› 2023, Vol. 23 ›› Issue (2) : 87 -99. DOI: 10.17816/MAJ430197
Original research
research-article

The study of the spectrum of pharmacological activity of the new original NT-3 mimetic dipeptide GTS-302

Author information +
History +
PDF

Abstract

BACKGROUND: The association of the pathogenesis of neurodegenerative diseases, depression, anxiety, and cognitive disorders with the deficit of neurotrophin-3 determines the prospect of creating drugs with a similar mechanism of action. Since the use of full-size neurotrophin-3 is limited by unsatisfactory pharmacokinetic properties, it is relevant to create low-molecular-weight mimetics of neurotrophin-3 that are active when administered systemically. A dimeric dipeptide mimetic of the 4th loop of neurotrophin-3, hexamethylenediamide bis(N-γ-oxibutyryl-L-glutamyl-L-asparagine) GTS-302, which activates TrkC and TrkB receptors, has been developed at the V.V. Zakusov Research Institute of Pharmacology.

AIM: The aim of this study was to investigate the spectrum of pharmacological activity of GTS-302.

MATERIALS AND МETHODS: The pharmacological effects of GTS-302 were investigated following its intraperitoneal administration. The antidepressant-like activity of GTS-302 was studied in the forced swim test in mice after acute and 7-day administration. The anxiolytic and cognitive activity of the dipeptide were studied in the elevated plus maze test in mice and the novel object recognition test in rats after acute administration, respectively. The effect of GTS-302 on pain sensitivity was studied in the hot plate test in mice after acute administration.

RESULTS: It was found that GTS-302 exhibits antidepressant-like activity after acute administration at doses of 0.5, 1.0, 5.0 and 10 mg/kg. After 7-day administration, the antidepressant-like activity of GTS-302 was more pronounced in terms of effect size and statistical significance. The dipeptide GTS-302 at doses of 1.0, 5.0 and 10.0 mg/kg showed anxiolytic and cognitive activity and did not affect pain sensitivity.

CONCLUSIONS: The pharmacological spectrum of the low-molecular-weight mimetic of neurotrophin-3, dipeptide GTS-302, revealed upon systemic administration includes a number of neuropsychotropic effects characteristic of the full-sized neurotrophin. This allows us to consider GTS-302 as a potential neuropsychotropic drug.

Keywords

neurotrophin-3 / dipeptide mimetic / GTS-302 / antidepressant-like activity / anxiolytic activity / mnemotropic activity

Cite this article

Download citation ▾
Dmitrii M. Nikiforov, Polina Y. Povarnina, Tatiana A. Gudasheva, Anna V. Nadorova, Larisa G. Kolik, Elena A. Valdman, Julia V. Vakhitova, Sergey B. Seredenin. The study of the spectrum of pharmacological activity of the new original NT-3 mimetic dipeptide GTS-302. Medical academic journal, 2023, 23(2): 87-99 DOI:10.17816/MAJ430197

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huang EJ, Wilkinson GA, Fariñas I, et al. Expression of Trk receptors in the developing mouse trigeminal ganglion: in vivo evidence for NT-3 activation of TrkA and TrkB in addition to TrkC. Development. 1999;126(10):2191–2203. DOI: 10.1242/dev.126.10.2191

[2]

Huang E.J., Wilkinson G.A., Fariñas I. et al. Expression of Trk receptors in the developing mouse trigeminal ganglion: in vivo evidence for NT-3 activation of TrkA and TrkB in addition to TrkC // Development. 1999. Vol. 126, No. 10. P. 2191–2203. DOI: 10.1242/dev.126.10.2191

[3]

Seidah NG, Benjannet S, Pareek S, et al. Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Lett. 1996;379(3):247–250. DOI: 10.1016/0014-5793(95)01520-5

[4]

Seidah N.G., Benjannet S., Pareek S. et al. Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proproten convertases // FEBS Lett. 1996. Vol. 379, No. 3. P. 247–250. DOI: 10.1016/0014-5793(95)01520-5

[5]

Sandell JH, Baker LS Jr, Davidov T. The distribution of neurotrophin receptor TrkC-like immunoreactive fibers and varicosities in the rhesus monkey brain. Neuroscience. 1998;86(4):1181–1194. DOI: 10.1016/S0306-4522(98)00069-4

[6]

Sandell J.H., Baker L.S.Jr., Davidov T. The distribution of neurotrophin receptor TrkC-like immunoreactive fibers and varicosities in the rhesus monkey brain // Neuroscience. 1998. Vol. 86, No. 4. P. 1181–1194. DOI: 10.1016/S0306-4522(98)00069-4

[7]

Wysokiński A. Serum levels of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) in depressed patients with schizophrenia. Nord J Psychiatry. 2016;70(4):267–271. DOI: 10.3109/08039488.2015.1087592

[8]

Wysokiński A. Serum levels of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) in depressed patients with schizophrenia // Nord J. Psychiatry. 2016. Vol. 70, No. 4. P. 267–271. DOI: 10.3109/08039488.2015.1087592

[9]

Fernandes BS, Gama CS, Walz JC, et al. Increased neurotrophin-3 in drug-free subjects with bipolar disorder during manic and depressive episodes. J Psychiatr Res. 2010;44(9):561–565. DOI: 10.1016/j.jpsychires.2009.11.020

[10]

Fernandes B.S., Gama C.S., Walz J.C. et al. Increased neurotrophin-3 in drug-free subjects with bipolar disorder during manic and depressive episodes // J. Psychiatr. Res. 2010. Vol. 44, No. 9. P. 561–565. DOI: 10.1016/j.jpsychires.2009.11.020

[11]

Zhang J, Shi Q, Yang P, et al. Neuroprotection of neurotrophin-3 against focal cerebral ischemia/reperfusion injury is regulated by hypoxia-responsive element in rats. Neuroscience. 2012;222:1–9. DOI: 10.1016/j.neuroscience.2012.07.023

[12]

Zhang J., Shi Q., Yang P. et al. Neuroprotection of neurotrophin-3 against focal cerebral ischemia/reperfusion injury is regulated by hypoxia-responsive element in rats // Neuroscience. 2012. Vol. 222. P. 1–9. DOI: 10.1016/j.neuroscience.2012.07.023

[13]

Shirayama Y, Chen AC, Nakagawa S, et al. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci. 2002;22(8):3251–3261. DOI: 10.1523/JNEUROSCI.22-08-03251.2002

[14]

Shirayama Y., Chen A.C., Nakagawa S. et al. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression // J. Neurosci. 2002. Vol. 22, No. 8. P. 3251–3261. DOI: 10.1523/JNEUROSCI.22-08-03251.2002

[15]

D’Amico D, Gener T, de Lagrán MM, et al. Infralimbic neurotrophin-3 infusion rescues fear extinction impairment in a mouse model of pathological fear. Neuropsychopharmacology. 2017;42(2):462–472. DOI: 10.1038/npp.2016.154

[16]

D’Amico D., Gener T., de Lagrán M.M. et al. Infralimbic neurotrophin-3 infusion rescues fear extinction impairment in a mouse model of pathological fear // Neuropsychopharmacology. 2017. Vol. 42, No. 2. P. 462–472. DOI: 10.1038/npp.2016.154

[17]

Yan Z, Shi X, Wang H, et al. Neurotrophin-3 promotes the neuronal differentiation of BMSCs and improves cognitive function in a rat model of Alzheimer’s disease. Front Cell Neurosci. 2021;15:629356. DOI: 10.3389/fncel.2021.629356

[18]

Yan Z., Shi X., Wang H. et al. Neurotrophin-3 promotes the neuronal differentiation of BMSCs and improves cognitive function in a rat model of Alzheimer’s disease // Front. Cell Neurosci. 2021. Vol. 15. P. 629356. DOI: 10.3389/fncel.2021.629356

[19]

Poduslo JF, Curran GL. Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res Mol Brain Res. 1996;36(2):280–286. DOI: 10.1016/0169-328x(95)00250-v

[20]

Poduslo J.F., Curran G.L. Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF // Brain Res. Mol. Brain Res. 1996. Vol. 36, No. 2. P. 280–286. DOI: 10.1016/0169-328x(95)00250-v

[21]

Malcangio M, Garrett NE, Cruwys S, Tomlinson DR. Nerve growth factor- and neurotrophin-3-induced changes in nociceptive threshold and the release of substance P from the rat isolated spinal cord. J Neurosci. 1997;17(21):8459–8467. DOI: 10.1523/JNEUROSCI.17-21-08459.1997

[22]

Malcangio M., Garrett N.E., Cruwys S., Tomlinson D.R. Nerve growth factor- and neurotrophin-3-induced changes in nociceptive threshold and the release of substance P from the rat isolated spinal cord // J. Neurosci. 1997. Vol. 17, No. 21. P. 8459–8467. DOI: 10.1523/JNEUROSCI.17-21-08459.1997

[23]

White DM. Contribution of neurotrophin-3 to the neuropeptide Y-induced increase in neurite outgrowth of rat dorsal root ganglion cells. Neuroscience. 1998;86(1):257–263. DOI: 10.1016/S0306-4522(98)00034-7

[24]

White D.M. Contribution of neurotrophin-3 to the neuropeptide Y-induced increase in neurite outgrowth of rat dorsal root ganglion cells // Neuroscience. 1998. Vol. 86, No. 1. P. 257–263. DOI: 10.1016/S0306-4522(98)00034-7

[25]

Chen D, Brahimi F, Angell Y, et al. Bivalent peptidomimetic ligands of TrkC are biased agonists and selectively induce neuritogenesis or potentiate neurotrophin-3 trophic signals. ACS Chem Biol. 2009;4(9):769–781. DOI: 10.1021/cb9001415

[26]

Chen D., Brahimi F., Angell Y. et al. Bivalent peptidomimetic ligands of TrkC are biased agonists and selectively induce neuritogenesis or potentiate neurotrophin-3 trophic signals // ACS Chem. Biol. 2009. Vol. 4, No. 9. P. 769–781. DOI: 10.1021/cb9001415

[27]

Naletova I, Grasso GI, Satriano C, et al. Copper complexes of synthetic peptides mimicking neurotrophin-3 enhance neurite outgrowth and CREB phosphorylation. Metallomics. 2019;11(9):1567–1578. DOI: 10.1039/c9mt00045c

[28]

Naletova I., Grasso G.I., Satriano C. et al. Copper complexes of synthetic peptides mimicking neurotrophin-3 enhance neurite outgrowth and CREB phosphorylation // Metallomics. 2019. Vol. 11, No. 9. P. 1567–1578. DOI: 10.1039/c9mt00045c

[29]

Pattarawarapan M, Zaccaro MC, Saragovi UH, et al. New templates for syntheses of ring-fused, C(10) beta-turn peptidomimetics leading to the first reported small-molecule mimic of neurotrophin-3. J Med Chem. 2002;45(20):4387–4390. DOI: 10.1021/jm0255421

[30]

Pattarawarapan M., Zaccaro M.C., Saragovi U.H. et al. New templates for syntheses of ring-fused, C(10) beta-turn peptidomimetics leading to the first reported small-molecule mimic of neurotrophin-3 // J. Med. Chem. 2002. Vol. 45, No. 20. P. 4387–4390. DOI: 10.1021/jm0255421

[31]

Wan G, Gómez-Casati ME, Gigliello AR, et al. Neurotrophin-3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma. Elife. 2014;3:e03564. DOI: 10.7554/eLife.03564

[32]

Wan G., Gómez-Casati M.E., Gigliello A.R. et al. Neurotrophin-3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma // Elife. 2014. Vol. 3. P. e03564. DOI: 10.7554/eLife.03564

[33]

Gudasheva TA, Antipova TA, Seredenin SB. Novel low-molecular-weight mimetics of the nerve growth factor. Doklady Biochemistry and Biophysics. 2010;434(1):262–265. DOI: 10.1134/S160767291005011X

[34]

Гудашева Т.А., Антипова Т.А., Середенин С.Б. Новые низкомолекулярные миметики фактора роста нервов // Доклады Академии наук. 2010. Т. 434, № 4. С. 549–552.

[35]

Gudasheva TA, Povarnina PY, Antipova TA, et al. Dimeric dipeptide mimetics of the nerve growth factor Loop 4 and Loop 1 activate TRKA with different patterns of intracellular signal transduction. J Biomed Sci. 2015;22:106. DOI: 10.1186/s12929-015-0198-z

[36]

Gudasheva T.A., Povarnina P.Y., Antipova T.A. et al. Dimeric dipeptide mimetics of the nerve growth factor Loop 4 and Loop 1 activate TRKA with different patterns of intracellular signal transduction // J. Biomed. Sci. 2015. Vol. 22. P. 106. DOI: 10.1186/s12929-015-0198-z

[37]

Gudasheva TA, Povarnina PY, Tarasiuk AV, Seredenin SB. Low-molecular mimetics of nerve growth factor and brain-derived neurotrophic factor: Design and pharmacological properties. Med Res Rev. 2021;41(5):2746–2774. DOI: 10.1002/med.21721

[38]

Gudasheva T.A., Povarnina P.Y., Tarasiuk A.V., Seredenin S.B. Low-molecular mimetics of nerve growth factor and brain-derived neurotrophic factor: Design and pharmacological properties // Med. Res. Rev. 2021. Vol. 41, No. 5. P. 2746–2774. DOI: 10.1002/med.21721

[39]

Gudasheva TA, Sazonova NM, Tarasiuk AV, et al. The first dipeptide mimetic of neurotrofin-3: design and pharmacological properties. Doklady Biochemistry and Biophysics. 2022;505(1):160–165. DOI: 10.1134/s1607672922040032

[40]

Гудашева Т.А., Сазонова Н.М., Тарасюк А.В. и др. Первый дипептидный миметик нейротрофина-3: дизайн и фармакологические свойства // Доклады Российской академии наук. Науки о жизни. 2022. Т. 505, № 1. С. 303–309. DOI: 10.31857/S2686738922040059

[41]

Porsolt RD, Anton G, Blavet N, et al. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol. 1978;47(4):379–391. DOI: 10.1016/0014-2999(78)90118-8

[42]

Porsolt R.D., Anton G., Blavet N. et al. Behavioural despair in rats: a new model sensitive to antidepressant treatments // Eur. J. Pharmacol. 1978. Vol. 47, No. 4. P. 379–391. DOI: 10.1016/0014-2999(78)90118-8

[43]

Carr GV, Lucki I. Chapter 4.2 - The role of serotonin in depression. In: Handbook of Behavioral Neuroscience. 2010;21:493–505. DOI: 10.1016/S1569-7339(10)70098-9

[44]

Carr G.V., Lucki I. Chapter 4.2 - The role of serotonin in depression // Handbook of Behavioral Neuroscience. 2010. Vol. 21. P. 493–505. DOI: 10.1016/S1569-7339(10)70098-9

[45]

Pellow S, Chopin P, File SE, et al. Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods. 1985;14(3):149–167. DOI: 10.1016/0165-0270(85)90031-7

[46]

Pellow S., Chopin P., File S.E. et al. Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat // J. Neurosci. Methods. 1985. Vol. 14, No. 3. P. 149–167. DOI: 10.1016/0165-0270(85)90031-7

[47]

Lister RG. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology (Berl). 1987;92(2):180–185. DOI: 10.1007/BF00177912

[48]

Lister R.G. The use of a plus-maze to measure anxiety in the mouse // Psychopharmacology (Berl). 1987. Vol. 92, No. 2. P. 180–185. DOI: 10.1007/BF00177912

[49]

Handley SL, Mithani S. Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of ‘fear’-motivated behaviour. Naunyn Schmiedebergs Arch Pharmacol. 1984;327(1):1–5. DOI: 10.1007/bf00504983

[50]

Handley S.L., Mithani S. Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of ‘fear’-motivated behavior // Naunyn Schmiedebergs Arch. Pharmacol. 1984. Vol. 327, No. 1. P. 1–5. DOI: 10.1007/bf00504983

[51]

Montgomery KC. The relation between fear induced by novel stimulation and exploratory behavior. J Comp Physiol Psychol. 1955;48(4):254–260. DOI: 10.1037/h0043788

[52]

Montgomery K.C. The relation between fear induced by novel stimulation and exploratory behavior // J. Comp. Physiol. Psychol. 1955. Vol. 48, No. 4. P. 254–260. DOI: 10.1037/h0043788

[53]

Walf AA, Frye CA. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc. 2007;2(2):322–328. DOI: 10.1038/nprot.2007.44

[54]

Walf A.A., Frye C.A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents // Nat. Protoc. 2007. Vol. 2, No. 2. P. 322–328. DOI: 10.1038/nprot.2007.44

[55]

Ennaceur A, Delacour J. A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res. 1988;31(1):47–59. DOI: 10.1016/0166-4328(88)90157-X

[56]

Ennaceur A., Delacour J. A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data // Behav. Brain Res. 1988. Vol. 31, No. 1. P. 47–59. DOI: 10.1016/0166-4328(88)90157-X

[57]

Antunes M, Biala G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process. 2012;13(2):93–110. DOI: 10.1007/s10339-011-0430-z

[58]

Antunes M., Biala G. The novel object recognition memory: neurobiology, test procedure, and its modifications // Cogn. Process. 2012. Vol. 13, No. 2. P. 93–110. DOI: 10.1007/s10339-011-0430-z

[59]

Kastin AJ, Pan W. Peptides and hormesis. Crit Rev Toxicol. 2008;38(7):629–631. DOI: 10.1080/10408440802026372

[60]

Kastin A.J., Pan W. Peptides and hormesis // Crit. Rev. Toxicol. 2008. Vol. 38, No. 7. P. 629–631. DOI: 10.1080/10408440802026372

[61]

De Miranda AS, de Barros JLVM, Teixeira AL. Is neurotrophin-3 (NT-3): a potential therapeutic target for depression and anxiety? Expert Opin Ther Targets. 2020;24(12):1225–1238. DOI: 10.1080/14728222.2020.1846720

[62]

De Miranda A.S., de Barros J.L.V.M., Teixeira A.L. Is neurotrophin-3 (NT-3): a potential therapeutic target for depression and anxiety? // Expert Opin. Ther. Targets. 2020. Vol. 24, No. 12. P. 1225–1238. DOI: 10.1080/14728222.2020.1846720

[63]

Martin-Iverson MT, Todd KG, Altar CA. Brain-derived neurotrophic factor and neurotrophin-3 activate striatal dopamine and serotonin metabolism and related behaviors: interactions with amphetamine. J Neurosci. 1994;14(3 Pt 1):1262–1270. DOI: 10.1523/jneurosci.14-03-01262.1994

[64]

Martin-Iverson M.T., Todd K.G., Altar C.A. Brain-derived neurotrophic factor and neurotrophin-3 activate striatal dopamine and serotonin metabolism and related behaviors: interactions with amphetamine // J. Neurosci. 1994. Vol. 14, No. 3 Pt 1. P. 1262–1270. DOI: 10.1523/jneurosci.14-03-01262.1994

[65]

Shimazu K, Zhao M, Sakata K, et al. NT-3 facilitates hippocampal plasticity and learning and memory by regulating neurogenesis. Learn Mem. 2006;13(3):307–315. DOI: 10.1101/lm.76006

[66]

Shimazu K., Zhao M., Sakata K. et al. NT-3 facilitates hippocampal plasticity and learning and memory by regulating neurogenesis // Learn. Mem. 2006. Vol. 13, No. 3. P. 307–315. DOI: 10.1101/lm.76006

[67]

Hernández-Echeagaray E. Neurotrophin-3 modulates synaptic transmission. Vitam Horm. 2020;114:71–89. DOI: 10.1016/bs.vh.2020.04.008

[68]

Hernández-Echeagaray E. Neurotrophin-3 modulates synaptic transmission // Vitam. Horm. 2020. Vol. 114. P. 71–89. DOI: 10.1016/bs.vh.2020.04.008

[69]

Ogłodek EA, Just MJ, Szromek AR, et al. Melatonin and neurotrophins NT-3, BDNF, NGF in patients with varying levels of depression severity. Pharmacol Rep. 2016;68(5):945–951. DOI: 10.1016/j.pharep.2016.04.003

[70]

Ogłodek E.A., Just M.J., Szromek A.R. et al. Melatonin and neurotrophins NT-3, BDNF, NGF in patients with varying levels of depression severity // Pharmacol. Rep. 2016. Vol. 68, No. 5. P. 945–951. DOI: 10.1016/j.pharep.2016.04.003

[71]

Fox AS, Souaiaia T, Oler JA, et al. Dorsal amygdala neurotrophin-3 decreases anxious temperament in primates. Biol Psychiatry. 2019;86(12):881–889. DOI: 10.1016/j.biopsych. 2019.06.022

[72]

Fox A.S., Souaiaia T., Oler J.A. et al. Dorsal amygdala neurotrophin-3 decreases anxious temperament in primates // Biol. Psychiatry. 2019. Vol. 86, No. 12. P. 881–889. DOI: 10.1016/j.biopsych.2019.06.022

[73]

Armengol L, Gratacòs M, Pujana MA, et al. 5’ UTR-region SNP in the NTRK3 gene is associated with panic disorder. Mol Psychiatry. 2002;7(9):928–930. DOI: 10.1038/sj.mp.4001134

[74]

Armengol L., Gratacòs M., Pujana M.A. et al. 5’ UTR-region SNP in the NTRK3 gene is associated with panic disorder // Mol. Psychiatry. 2002. Vol. 7, No. 9. P. 928–930. DOI: 10.1038/sj.mp.4001134

[75]

Muiños-Gimeno M, Guidi M, Kagerbauer B, et al. Allele variants in functional MicroRNA target sites of the neurotrophin-3 receptor gene (NTRK3) as susceptibility factors for anxiety disorders. Hum Mutat. 2009;30(7):1062–1071. DOI: 10.1002/humu.21005

[76]

Muiños-Gimeno M., Guidi M., Kagerbauer B. et al. Allele variants in functional MicroRNA target sites of the neurotrophin-3 receptor gene (NTRK3) as susceptibility factors for anxiety disorders // Hum. Mutat. 2009. Vol. 30, No. 7. P. 1062–1071. DOI: 10.1002/humu.21005

[77]

Liu DB, Yang JS, Lu QB, et al. Effect of NT-3 on infection-induced memory impairment of neonatal rats. Eur Rev Med Pharmacol Sci. 2019;23(5):2182–2187. DOI: 10.26355/eurrev_201903_17264

[78]

Liu D.B., Yang J.S., Lu Q.B. et al. Effect of NT-3 on infection-induced memory impairment of neonatal rats // Eur. Rev. Med. Pharmacol. Sci. 2019. Vol. 23, No. 5. P. 2182–2187. DOI: 10.26355/eurrev_201903_17264

[79]

Ramos-Languren LE, Escobar ML. Plasticity and metaplasticity of adult rat hippocampal mossy fibers induced by neurotrophin-3. Eur J Neurosci. 2013;37(8):1248–1259. DOI: 10.1111/ejn.12141

[80]

Ramos-Languren L.E., Escobar M.L. Plasticity and metaplasticity of adult rat hippocampal mossy fibers induced by neurotrophin-3 // Eur. J. Neurosci. 2013. Vol. 37, No. 8. P. 1248–1259. DOI: 10.1111/ejn.12141

[81]

Siuciak JA, Altar CA, Wiegand SJ, et al. Antinociceptive effect of brain-derived neurotrophic factor and neurotrophin-3. Brain Res. 1994;633(1–2):326–330. DOI: 10.1016/0006-8993(94)91556-3

[82]

Siuciak J.A., Altar C.A., Wiegand S.J. et al. Antinociceptive effect of brain-derived neurotrophic factor and neurotrophin-3 // Brain Res. 1994. Vol. 633, No. 1–2. P. 326–330. DOI: 10.1016/0006-8993(94)91556-3

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

60

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/