Immunohistochemical study of human pineal vessels

Dina A. Sufieva , Elena A. Fedorova , Vladislav S. Yakovlev , Igor P. Grigorev

Medical academic journal ›› 2023, Vol. 23 ›› Issue (2) : 109 -118.

PDF
Medical academic journal ›› 2023, Vol. 23 ›› Issue (2) : 109 -118. DOI: 10.17816/MAJ352563
Original research
research-article

Immunohistochemical study of human pineal vessels

Author information +
History +
PDF

Abstract

BACKGROUND: The pineal gland is a neuroendocrine organ located in the epithalamic area of the brain. By using the melatonin, a pineal hormone, the pineal gland synchronizes the work of the internal physiological systems of the body with the circadian light-darkness cycle. Melatonin is synthesized in pinealocytes, the endocrine cells of the pineal gland, and secreted into the bloodstream. However, the structural features of the blood vessels in the pineal gland are still not well understood.

AIM: The purpose of this study was to elucidate the intraorgan localization and immunohistochemical pattern of the blood vessels of the pineal gland of human, which had not been previously studied.

MATERIALS AND METHODS: In the research, immunohistochemistry methods were applied using two selective markers of blood vessels, the antibodies to von Willebrand factor and type IV collagen. Von Willebrand factor is expressed selectively in endothelial cells that form blood vessels, including small capillaries, while type IV collagen is inherent to the basement membrane that separates the vascular endothelium from the underlying tissue.

RESULTS: The immunohistochemical reaction to both markers clearly visualize the blood vessels of the human pineal gland, which in both cases were observed mainly in the connective tissue septa (trabeculae), or, in the absence of a regular lobular structure, in the connective tissue layers. In lobules surrounded by connective tissue trabeculae and containing a large number of densely packed pinealocytes, von Willebrand factor- and type IV collagen-immunoreactive structures were very rare, and in many cases were not observed. The found phenomenon of distribution of blood vessels in the human pineal gland is described for the first time.

CONCLUSIONS: Since blood vessel markers with well-proven selectivity were used, the results obtained with their usage can be considered reliable; this gives grounds with a high degree of probability to assert that the majority of pinealocytes in the human pineal gland do not have direct contact with blood vessels and, accordingly, cannot secrete melatonin directly into the bloodstream. On the basis of the results obtained, a hypothesis is proposed that the hormone secretion from pinealocytes into blood vessels is mediated by astroglial cells.

Keywords

pineal gland / blood vessels / von Willebrand factor / type IV collagen / immunohistochemistry / human

Cite this article

Download citation ▾
Dina A. Sufieva, Elena A. Fedorova, Vladislav S. Yakovlev, Igor P. Grigorev. Immunohistochemical study of human pineal vessels. Medical academic journal, 2023, 23(2): 109-118 DOI:10.17816/MAJ352563

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anisimov VN. Pineal gland, biorhythms and aging of an organism. Progress in Physiological Sciences. 2008;39(4):40–65. (In Russ.)

[2]

Анисимов В.Н. Эпифиз, биоритмы и старение организма // Успехи физиологических наук. 2008. Т. 39, № 4. С. 40–65.

[3]

Galano A, Tan DX, Reiter RJ. Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res. 2011;51(1):1–16. DOI: 10.1111/j.1600-079X.2011.00916.x

[4]

Galano A., Tan D.X., Reiter R.J. Melatonin as a natural ally against oxidative stress: a physicochemical examination // J. Pineal Res. 2011. Vol. 51, No. 1. P. 1–16. DOI: 10.1111/j.1600-079X.2011.00916.x

[5]

Markus RP, Fernandes PA, Kinker GS, et al. Immune-pineal axis – acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes. Br J Pharmacol. 2018;175(16):3239–3250. DOI: 10.1111/bph.14083

[6]

Markus R.P., Fernandes P.A., Kinker G.S. et al. Immune-pineal axis – acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes // Br. J. Pharmacol. 2018. Vol. 175, No. 16. P. 3239–3250. DOI: 10.1111/bph.14083

[7]

Norman AW, Henry HL. The Pineal Gland. In: Hormones. 3rd ed. London, England: Academic Press; 2015. P. 351–361. DOI: 10.1016/B978-0-08-091906-5.00016-1

[8]

Norman A.W., Henry H.L. The Pineal Gland // Hormones. 3rd ed. London, England: Academic Press, 2015. P. 351–361. DOI: 10.1016/B978-0-08-091906-5.00016-1

[9]

Hodde KC. The vascularization of the rat pineal organ. Prog Brain Res. 1979;52:39–44. DOI: 10.1016/S0079-6123(08)62910-6

[10]

Hodde K.C. The vascularization of the rat pineal organ // Prog. Brain Res. 1979. Vol. 52. P. 39–44. DOI: 10.1016/S0079-6123(08)62910-6

[11]

Selin YuM. Blood vessels of the epiphysis in comparative-anatomical aspect. Arkh Anat Gistol Embriol. 1977;72(5):90–96. (In Russ.)

[12]

Селин Ю.М. Кровеносные сосуды эпифиза в сравнительно-анатомическом аспекте // Архив анатомии, гистологии и эмбриологии. 1977. T. 72, № 5. С. 90–96.

[13]

Duvernoy HM, Parratte B, Tatu L, et al. The human pineal gland: Relationships with surrounding structures and blood supply. Neurol Res. 2000;22(8):747–790. DOI: 10.1080/01616412.2000.11740753

[14]

Duvernoy H.M., Parratte B., Tatu L. et al. The human pineal gland: Relationships with surrounding structures and blood supply // Neurol. Res. 2000. Vol. 22, No. 8. P. 747–790. DOI: 10.1080/01616412.2000.11740753

[15]

Cho ZH, Choi SH, Chi JG, et al. Classification of the venous architecture of the pineal gland by 7T MRI. J Neuroradiol. 2011;38(4):238–241. DOI: 10.1016/j.neurad.2011.02.010

[16]

Cho Z.H., Choi S.H., Chi J.G. et al. Classification of the venous architecture of the pineal gland by 7T MRI // J. Neuroradiol. 2011. Vol. 38, No. 4. P. 238–241. DOI: 10.1016/j.neurad.2011.02.010

[17]

Kahilogullari G, Ugur HC, Comert A, et al. Arterial vascularization of the pineal gland. Childs Nerv Syst. 2013;29(10):1835–1841. DOI: 10.1007/s00381-012-2018-z

[18]

Kahilogullari G., Ugur H.C., Comert A. et al. Arterial vascularization of the pineal gland // Childs Nerv. Syst. 2013. Vol. 29, No. 10. P. 1835–1841. DOI: 10.1007/s00381-012-2018-z

[19]

Bukreeva I, Junemann O, Cedola A, et al. Investigation of the human pineal gland 3D organization by X-ray phase contrast tomography. J Struct Biol. 2020;212(3):107659. DOI: 10.1016/j.jsb.2020.107659

[20]

Bukreeva I., Junemann O., Cedola A. et al. Investigation of the human pineal gland 3D organization by X-ray phase contrast tomography // J. Struct. Biol. 2020. Vol. 212, No. 3. P. 107659. DOI: 10.1016/j.jsb.2020.107659

[21]

Korzhevskii DE, Kirik OV, Sukhorukova EG, et al. Von Willebrand factor of endotheliocytes of blood vessels and its use in the course of immunomorphologycal research. Medical Academic Journal. 2017;17(1):34–40. (In Russ.) DOI: 10.17816/MAJ17134-40

[22]

Коржевский Д.Э., Кирик О.В., Сухорукова Е.Г. и др. Фактор Виллебранда эндотелиоцитов кровеносных сосудов и его использование в иммуноморфологических исследованиях // Медицинский академический журнал. 2017. Т. 17, № 1. С. 34–40. DOI: 10.17816/MAJ17134-40

[23]

Pusztaszeri MP, Seelentag W, Bosman FT. Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J Histochem Cytochem. 2006;54(4):385–395. DOI: 10.1369/jhc.4A6514.2005

[24]

Pusztaszeri M.P., Seelentag W., Bosman F.T. Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues // J. Histochem. Cytochem. 2006. Vol. 54, No. 4. P. 385–395. DOI: 10.1369/jhc.4A6514.2005

[25]

Braak H, Feldengut S, Kassubek J, et al. Two histological methods for recognition and study of cortical microinfarcts in thick sections. Eur J Histochem. 2018;62(4):2989. DOI: 10.4081/ejh.2018.2989

[26]

Braak H., Feldengut S., Kassubek J. et al. Two histological methods for recognition and study of cortical microinfarcts in thick sections // Eur. J. Histochem. 2018. Vol. 62, No. 4. P. 2989. DOI: 10.4081/ejh.2018.2989

[27]

Xu L, Nirwane A, Yao Y. Basement membrane and blood-brain barrier. Stroke Vasc Neurol. 2018;4(2):78–82. DOI: 10.1136/svn-2018-000198

[28]

Xu L., Nirwane A., Yao Y. Basement membrane and blood-brain barrier // Stroke Vasc. Neurol. 2018. Vol. 4, No. 2. P. 78–82. DOI: 10.1136/svn-2018-000198

[29]

Grigorev IP, Korzhevskii DE. Current technologies for fixation of biological material for immunohistochemical analysis (review). Modern technologies in medicine. 2018;10(2):156–165. DOI: 10.17691/stm2018.10.2.19

[30]

Григорьев И.П., Коржевский Д.Э. Современные технологии фиксации биологического материала, применяемые при проведении иммуногистохимических исследований (обзор) // Современные технологии в медицине. 2018. Т. 10, № 2. С. 156–165. DOI: 10.17691/stm2018.10.2.19

[31]

Morfologicheskaya diagnostika. Podgotovka materiala dlya gistologicheskogo issledovaniya i elektronnoj mikroskopii. Rukovodstvo. Ed. by D.E. Korzhevskii. Saint Petersburg: SpecLit; 2013. (In Russ.)

[32]

Морфологическая диагностика. Подготовка материала для гистологического исследования и электронной микроскопии. Руководство / под ред. Д.Э. Коржевского. Санкт-Петербург: СпецЛит, 2013.

[33]

Ageychenko FE. Vozrastnye izmeneniya epifiza. In: Anatomo-fiziologicheskie osobennosti detskogo vozrasta. Moscow; Leningrad: Medizdat; 1935. P. 229–266. (In Russ.)

[34]

Агейченко Ф.Е. Возрастные изменения эпифиза // Анатомо-физиологические особенности детского возраста. Москва; Ленинград: Медиздат, 1935. С. 229–266.

[35]

Khelimskii AM. Epifiz (shishkovidnaya zheleza). Moscow: Meditsina; 1969. (In Russ.)

[36]

Хелимский А.М. Эпифиз (шишковидная железа). Москва: Медицина, 1969.

[37]

Khavinson VKh, Kvetnoi IM, Ingel’ IE, Mar’ianovich AT. Age-related involution of organs and tissues. Usp Fiziol Nauk. 2003;34(1):78–91. (In Russ.)

[38]

Хавинсон В.Х., Кветной И.М., Ингель И.Э., Марьянович А.Т. Возрастная инволюция органов и тканей // Успехи физиологических наук. 2003. Т. 34, № 1. С. 78–91.

[39]

Paltsev MA, Polyakova VO, Kvetnoi IM, et al. Morphofunctional and signaling molecules overlap of the pineal gland and thymus: role and significance in aging. Oncotarget. 2016;7(11):11972–11983. DOI: 10.18632/oncotarget.7863

[40]

Paltsev M.A., Polyakova V.O., Kvetnoi I.M. et al. Morphofunctional and signaling molecules overlap of the pineal gland and thymus: role and significance in aging // Oncotarget. 2016. Vol. 7, No. 11. P. 11972–11983. DOI: 10.18632/oncotarget.7863

[41]

Tapp E, Huxley M. The histological appearance of the human pineal gland from puberty to old age. J Pathol. 1972;108(2):137–144. DOI: 10.1002/path.1711080207

[42]

Tapp E., Huxley M. The histological appearance of the human pineal gland from puberty to old age // J. Pathol. 1972. Vol. 108, No. 2. P. 137–144. DOI: 10.1002/path.1711080207

[43]

Chumasov EI, Petrova ES, Korzhevskii DE. Structural and functional peculiarities of the endothelium of heart vessels of mature rats according to immunistochemical studies. Regional blood circulation and microcirculation. 2019;18(2):70–77. (In Russ.) DOI: 10.24884/1682-6655-2019-18-2-70-77

[44]

Чумасов Е.И., Петрова Е.С., Коржевский Д.Э. Структурные и функциональные особенности эндотелия сосудов сердца половозрелых крыс по данным иммуногистохимического исследования // Регионарное кровообращение и микроциркуляция. 2019. Т. 18, № 2(70). С. 70–77. DOI: 10.24884/1682-6655-2019-18-2-70-77

[45]

Zanetta L, Marcus SG, Vasile J, et al. Expression of Von Willebrand factor, an endothelial cell marker, is up-regulated by angiogenesis factors: a potential method for objective assessment of tumor angiogenesis. Int J Cancer. 2000;85(2):281–288. DOI: 10.1002/(SICI)1097-0215(20000115)85:2<281::AID-IJC21>3.0.CO;2-3

[46]

Zanetta L., Marcus S.G., Vasile J. et al. Expression of Von Willebrand factor, an endothelial cell marker, is up-regulated by angiogenesis factors: a potential method for objective assessment of tumor angiogenesis // Int. J. Cancer. 2000. Vol. 85, No. 2. P. 281–288. DOI: 10.1002/(SICI)1097-0215(20000115)85:2<281::AID-IJC21>3.0.CO;2-3

[47]

Magaki S, Tang Z, Tung S, et al. The effects of cerebral amyloid angiopathy on integrity of the blood-brain barrier. Neurobiol Aging. 2018;70:70–77. DOI: 10.1016/j.neurobiolaging.2018.06.004

[48]

Magaki S., Tang Z., Tung S. et al. The effects of cerebral amyloid angiopathy on integrity of the blood-brain barrier // Neurobiol. Aging. 2018. Vol. 70. P. 70–77. DOI: 10.1016/j.neurobiolaging.2018.06.004

[49]

Scharenberg K, Liss L. The histologic structure of the human pineal body. Prog Brain Res. 1965;10:193–217. DOI: 10.1016/s0079-6123(08)63452-4

[50]

Scharenberg K., Liss L. The histologic structure of the human pineal body // Prog. Brain Res. 1965. Vol. 10. P. 193–217. DOI: 10.1016/s0079-6123(08)63452-4

[51]

Calvo J, Boya J. Ultrastructural study of the embryonic development in the rat pineal gland. Anat Rec. 1981;199(4):543–553. DOI: 10.1002/ar.1091990410

[52]

Calvo J., Boya J. Ultrastructural study of the embryonic development in the rat pineal gland // Anat. Rec. 1981. Vol. 199, No. 4. P. 543–553. DOI: 10.1002/ar.1091990410

[53]

Tan DX, Xu B, Zhou X, et al. Pineal calcification, melatonin production, aging, associated health consequences and rejuvenation of the pineal gland. Molecules. 2018;23(2):301. DOI: 10.3390/molecules23020301

[54]

Tan D.X., Xu B., Zhou X. et al. Pineal calcification, melatonin production, aging, associated health consequences and rejuvenation of the pineal gland // Molecules. 2018. Vol. 23, No. 2. P. 301. DOI: 10.3390/molecules23020301

[55]

Chekhonin VP. Development of blood-brain barrier conception. Bulletin of Experimental Biology and Medicine. 2021;171(4):400–412. (In Russ.) DOI: 10.47056/0365-9615-2021-171-4-400-412

[56]

Чехонин В.П. Развитие концепции гематоэнцефалического барьера // Бюллетень экспериментальной биологии и медицины. 2021. Т. 171, № 4. С. 400–412. DOI: 10.47056/0365-9615-2021-171-4-400-412

[57]

Sufieva DA, Fedorova EA, Yakovlev VS, et al. GFAP- and vimentin-containing stuctures in human pineal gland. Tsitologiya. 2023;65(2):1–9. (In Russ.) DOI: 10.31857/S0041377123020104

[58]

Суфиева Д.А., Фёдорова Е.А., Яковлев В.С. и др. GFAP- и виментин-иммунопозитивные структуры эпифиза человека // Цитология. 2023. Т. 65, № 2. С. 1–9. DOI: 10.31857/S0041377123020104

[59]

Taugner R, Schiller A, Rix E. Gap junctions between pinealocytes. A freeze-fracture study of the pineal gland in rats. Cell Tissue Res. 1981;218(2):303–314. DOI: 10.1007/BF00210346

[60]

Taugner R., Schiller A., Rix E. Gap junctions between pinealocytes. A freeze-fracture study of the pineal gland in rats // Cell Tissue Res. 1981. Vol. 218, No. 2. P. 303–314. DOI: 10.1007/BF00210346

[61]

Wartenberg H. The mammalian pineal organ: electron microscopic studies on the fine structure of pinealocytes, glial cells and on the perivascular compartment. Z Zellforsch Mikrosk Anat. 1968;86(1):74–97. DOI: 10.1007/BF00340360

[62]

Wartenberg H. The mammalian pineal organ: electron microscopic studies on the fine structure of pinealocytes, glial cells and on the perivascular compartment // Z. Zellforsch. Mikrosk. Anat. 1968. Vol. 86, No. 1. P. 74–97. DOI: 10.1007/BF00340360

[63]

Johnson JE Jr. Fine structural alterations in the aging rat pineal gland. Exp Aging Res. 1980;6(2):189–211. DOI: 10.1080/03610738008258357

[64]

Johnson J.E. Jr. Fine structural alterations in the aging rat pineal gland // Exp. Aging Res. 1980. Vol. 6, No. 2. P. 189–211. DOI: 10.1080/03610738008258357

[65]

Redecker P. Synaptic-like microvesicles in mammalian pinealocytes. Int Rev Cytol. 1999;191:201–255. DOI: 10.1016/s0074-7696(08)60160-6

[66]

Redecker P. Synaptic-like microvesicles in mammalian pinealocytes // Int. Rev. Cytol. 1999. Vol. 191. P. 201–255. DOI: 10.1016/s0074-7696(08)60160-6

[67]

De Oliveira Marques L, de Carvalho AF, Mançanares ACF, et al. Morphological study of the pineal gland of (crab eater raccoon) Procyon cancrivorus (Cuvier, 1798). Biotemas. 2010;23(2):163–171. (In Brazil) DOI: 10.5007/2175-7925.2010v23n2p163

[68]

De Oliveira Marques L., de Carvalho A.F., Mançanares A.C.F. et al. Morphological study of the pineal gland of (crab eater raccoon) Procyon cancrivorus (Cuvier, 1798) // Biotemas. 2010. Vol. 23, No. 2. P. 163–171. (In Portuguese) DOI: 10.5007/2175-7925.2010v23n2p163

[69]

Favaron PO, Mançanares CA, De Carvalho AF, et al. Gross and microscopic anatomy of the pineal gland in Nasua nasua – coati (Linnaeus, 1766). Anat Histol Embryol. 2008;37(6):464–468. DOI: 10.1111/j.1439-0264.2008.00883.x

[70]

Favaron P.O., Mançanares C.A., de Carvalho A.F. et al. Gross and microscopic anatomy of the pineal gland in Nasua nasua – coati (Linnaeus, 1766) // Anat. Histol. Embryol. 2008. Vol. 37, No. 6. P. 464–468. DOI: 10.1111/j.1439-0264.2008.00883.x

[71]

Carvalho AF, Ambrosio CE, Miglino MA, et al. Macro-microscopical aspects of the buffalo (Bubalus bubalis Linnaeus, 1758) pineal gland. Biotemas. 2009;22(2):127–135. DOI: 10.5007/2175-7925.2009v22n2p127

[72]

Carvalho A.F., Ambrosio C.E., Miglino M.A. et al. Macro-microscopical aspects of the buffalo (Bubalus bubalis Linnaeus, 1758) pineal gland // Biotemas. 2009. Vol. 22, No. 2. P. 127–135. DOI: 10.5007/2175-7925.2009v22n2p127

[73]

Ebada S. Morphological and Immunohistochemical studies on the pineal gland of the donkey (Equus asinus). J Vet Anatomy. 2012;5(1):47–74. DOI: 10.21608/jva.2012.44883

[74]

Ebada S. Morphological and immunohistochemical studies on the pineal gland of the donkey (Equus asinus) // J. Vet. Anatomy. 2012. Vol. 5, No. 1. P. 47–74. DOI: 10.21608/jva.2012.44883

[75]

McNulty JA, Fox LM, Lisco SJ. Pinealocyte dense-cored vesicles and synaptic ribbons: a correlative ultrastructural-biochemical investigation in rats and mice. J Pineal Res. 1987;4(1):45–59. DOI: 10.1111/j.1600-079x.1987.tb00840.x

[76]

McNulty J.A., Fox L.M., Lisco S.J. Pinealocyte dense-cored vesicles and synaptic ribbons: a correlative ultrastructural-biochemical investigation in rats and mice // J. Pineal Res. 1987. Vol. 4, No. 1. P. 45–59. DOI: 10.1111/j.1600-079x.1987.tb00840.x

[77]

Wohlsein P, Deschl U, Baumgärtner W. Nonlesions, unusual cell types, and postmortem artifacts in the central nervous system of domestic animals. Vet Pathol. 2013;50(1):122–143. DOI: 10.1177/0300985812450719

[78]

Wohlsein P., Deschl U., Baumgärtner W. Nonlesions, unusual cell types, and postmortem artifacts in the central nervous system of domestic animals // Vet. Pathol. 2013. Vol. 50, No. 1. P. 122–143. DOI: 10.1177/0300985812450719

[79]

Karasek M, Reiter RJ. Morphofunctional aspects of the mammalian pineal gland. Microsc Res Tech. 1992;21(2):136–157. DOI: 10.1002/jemt.1070210206

[80]

Karasek M., Reiter R.J. Morphofunctional aspects of the mammalian pineal gland // Microsc. Res. Tech. 1992. Vol. 21, No. 2. P. 136–157. DOI: 10.1002/jemt.1070210206

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

76

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/