The features of neuronal loss in the hippocampus during acute generalized seizure (experimental study)

Grigory A. Demyashkin , Migran S. Grigoryan , Ivan V. Vetrov , Fedor V. Vetrov , Valentina P. Rauzheva , Ilya A. Zorin , Elena Y. Shapovalova

Medical academic journal ›› 2023, Vol. 23 ›› Issue (2) : 75 -85.

PDF
Medical academic journal ›› 2023, Vol. 23 ›› Issue (2) : 75 -85. DOI: 10.17816/MAJ340939
Original research
research-article

The features of neuronal loss in the hippocampus during acute generalized seizure (experimental study)

Author information +
History +
PDF

Abstract

BACKGROUND: Today, epilepsy is one of the most frequently diagnosed neurological diseases. Despite more than several centuries of research on epileptogenesis and the development of treatment protocols, the neurobiological basis of the disease remains poorly understood. It is reliably known that patients with epilepsy are found to have a reduced number of hippocampal neurons and gliosis: mesial temporal sclerosis (hippocampal sclerosis), but the causal relationship with seizures has not yet been established. It is of particular interest to evaluate the survival of hippocampal neurons against the background of acute epileptic seizures, which will allow to determine the mechanisms of degenerative changes in nervous tissue.

AIM: The aim of the study was to immunohistochemically assess the levels of NeuN and caspase-8 in the hippocampus during acute epileptic seizures.

MATERIALS AND METHODS: Male mice of the CBA population were used as models. The animals were divided into groups: 1st (n = 28) — simulated acute epileptic seizure by intraperitoneal injection of pentyltetrazole, 2nd (n = 20) — control. Histological and immunohistochemical studies were performed on hippocampal fragments, regions: CA1, CA3 and dentate gyrus.

RESULTS: Generalized epileptic seizures were noted in all animals of Group I. The weakest labeling of hippocampal pyramidal neurons with NeuN (light nuclei) was observed in CA3 region, which was observed 24 hours after pentyltetrazole injection. The same immunophenotypic pattern was observed in the CA3 region during reaction with caspase-8, which demonstrated an increase in the number of immunopositive hippocampal pyramidal neurons 24 hours after pentyltetrazole injection.

CONCLUSIONS: After a single injection of pentyltetrazole at a dose of 45 µg/kg, immunohistochemical evaluation of the distribution of NeuN- and caspase-8-positive pyramidal neurons of the hippocampus revealed: a decrease in the NeuN-positive neurons and an increase in caspase-8-positive neurons one day after the seizure with subsequent recovery of the studied markers by day 5.

Keywords

NeuN / caspase-8 / pentyltetrazole / apoptosis / immunohistochemistry

Cite this article

Download citation ▾
Grigory A. Demyashkin, Migran S. Grigoryan, Ivan V. Vetrov, Fedor V. Vetrov, Valentina P. Rauzheva, Ilya A. Zorin, Elena Y. Shapovalova. The features of neuronal loss in the hippocampus during acute generalized seizure (experimental study). Medical academic journal, 2023, 23(2): 75-85 DOI:10.17816/MAJ340939

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beghi E. The Epidemiology of Epilepsy. NED. 2020;54(2):185–191. DOI: 10.1159/000503831

[2]

Beghi E. The epidemiology of epilepsy // NED. 2020. Vol. 54, No. 2. P. 185–191. DOI: 10.1159/000503831

[3]

Behr C, Goltzene MA, Kosmalski G, et al. Epidemiology of epilepsy. Rev Neurol. 2016;172(1):27–36. DOI: 10.1016/j.neurol.2015.11.003

[4]

Behr C., Goltzene M.A., Kosmalski G. et al. Epidemiology of epilepsy // Rev. Neurol. 2016. Vol. 172, No. 1. P. 27–36. DOI: 10.1016/j.neurol.2015.11.003

[5]

Thom M. Review: Hippocampal sclerosis in epilepsy: a neuropathology review. Neuropathol Appl Neurobiol. 2014;40(5):520–543. DOI: 10.1111/nan.12150

[6]

Thom M. Review: Hippocampal sclerosis in epilepsy: a neuropathology review // Neuropathol. Appl. Neurobiol. 2014. Vol. 40, No. 5. P. 520–543. DOI: 10.1111/nan.12150

[7]

Blümcke I, Thom M, Aronica E, et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: A Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia. 2013;54(7):1315–1329. DOI: 10.1111/epi.12220

[8]

Blümcke I., Thom M., Aronica E. et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: A Task Force report from the ILAE Commission on Diagnostic Methods // Epilepsia. 2013. Vol. 54, No. 7. P. 1315–1329. DOI: 10.1111/epi.12220

[9]

Reddy D, Kuruba R. Experimental models of status epilepticus and neuronal injury for evaluation of therapeutic interventions. IJMS. 2013;14(9):18284–18318. DOI: 10.3390/ijms140918284

[10]

Reddy D., Kuruba R. Experimental models of status epilepticus and neuronal injury for evaluation of therapeutic interventions // IJMS. 2013. Vol. 14, No. 9. P. 18284–18318. DOI: 10.3390/ijms140918284

[11]

Grone BP, Baraban SC. Animal models in epilepsy research: legacies and new directions. Nat Neurosci. 2015;18(3):339–343. DOI: 10.1038/nn.3934

[12]

Grone B.P., Baraban S.C. Animal models in epilepsy research: legacies and new directions // Nat. Neurosci. 2015. Vol. 18, No. 3. P. 339–343. DOI: 10.1038/nn.3934

[13]

Kandratavicius L, Balista PA, Lopes-Aguiar C, et al. Animal models of epilepsy: Use and limitations. Neuropsychiatr Dis Treat. 2014;10:1693–1705. DOI: 10.2147/NDT.S50371

[14]

Kandratavicius L., Balista P.A., Lopes-Aguiar C. et al. Animal models of epilepsy: Use and limitations // Neuropsychiatr. Dis. Treat. 2014. Vol. 10. P. 1693–1705. DOI: 10.2147/NDT.S50371

[15]

Löscher W. Animal models of seizures and epilepsy: Past, present, and future role for the discovery of antiseizure drugs. Neurochem Res. 2017;42(7):1873–1888. DOI: 10.1007/s11064-017-2222-z

[16]

Löscher W. Animal models of seizures and epilepsy: Past, present, and future role for the discovery of antiseizure drugs // Neurochem. Res. 2017. Vol. 42, No. 7. P. 1873–1888. DOI: 10.1007/s11064-017-2222-z

[17]

Gusel’nikova VV, Korzhevskiy DE. NeuN as a neuronal nuclear antigen and neuron differentiation marker. Acta Naturae. 2015;7(2):42–47. DOI: 10.32607/20758251-2015-7-2-42-47

[18]

Гусельникова В.В., Коржевский Д.Э. NeuN — нейрональный ядерный антиген и маркер дифференцировки нервных клеток // Acta Naturae. 2015. Т. 7, № 2. C. 46–51. DOI: 10.32607/20758251-2015-7-2-42-47

[19]

Wolf HK, Buslei R, Schmidt-Kastner R, et al. NeuN: A useful neuronal marker for diagnostic histopathology. J Histochem Cytochem. 1996;44(10):1167–1171. DOI: 10.1177/44.10.8813082

[20]

Wolf H.K., Buslei R., Schmidt-Kastner R. et al. NeuN: A useful neuronal marker for diagnostic histopathology // J. Histochem. Cytochem. 1996. Vol. 44, No. 10. P. 1167–1171. DOI: 10.1177/44.10.8813082

[21]

Chang LR, Liu JP, Song YZ, et al. Expression of caspase-8 and caspase-9 in rat hippocampus during postnatal development. Microsc Res Tech. 2011;74(2):153–158. DOI: 10.1002/jemt.20886

[22]

Chang L.R., Liu J.P., Song Y.Z. et al. Expression of caspase-8 and caspase-9 in rat hippocampus during postnatal development // Microsc. Res. Tech. 2011. Vol. 74, No. 2. P. 153–158. DOI: 10.1002/jemt.20886

[23]

Liu JP, Chang LR, Gao XL, Wu Y. Different expression of caspase-3 in rat hippocampal subregions during postnatal development. Microsc Res Tech. 2008;71(9):633–638. DOI: 10.1002/jemt.20600

[24]

Liu J.P., Chang L.R., Gao X.L., Wu Y. Different expression of caspase-3 in rat hippocampal subregions during postnatal development // Microsc. Res. Tech. 2008. Vol. 71. P. 9633–9638. DOI: 10.1002/jemt.20600

[25]

Basaranlar G, Derin N, Kencebay Manas C, et al. The effects of sulfite on cPLA2, caspase-3, oxidative stress and locomotor activity in rats. Food Chem Toxicol. 2019;123:453–458. DOI: 10.1016/j.fct.2018.11.021

[26]

Basaranlar G., Derin N., Kencebay Manas C. et al. The effects of sulfite on cPLA2, caspase-3, oxidative stress and locomotor activity in rats // Food Chem. Toxicol. 2019. Vol. 123. P. 453–458. DOI: 10.1016/j.fct.2018.11.021

[27]

Narkilahti S, Pitkänen A. Caspase 6 expression in the rat hippocampus during epileptogenesis and epilepsy. Neuroscience. 2005;131(4):887–897. DOI: 10.1016/j.neuroscience.2004.12.013

[28]

Narkilahti S., Pitkänen A. Caspase 6 expression in the rat hippocampus during epileptogenesis and epilepsy // Neuroscience. 2005. Vol. 131, No. 4. P. 887–897. DOI: 10.1016/j.neuroscience.2004.12.013

[29]

Tzeng TT, Tsay HJ, Chang L, et al. Caspase 3 involves in neuroplasticity, microglial activation and neurogenesis in the mice hippocampus after intracerebral injection of kainic acid. J Biomed Sci. 2013;20(1):90. DOI: 10.1186/1423-0127-20-90

[30]

Tzeng T.T., Tsay H.J., Chang L. et al. Caspase 3 involves in neuroplasticity, microglial activation and neurogenesis in the mice hippocampus after intracerebral injection of kainic acid // J. Biomed. Sci. 2013. Vol. 20, No. 1. P. 90. DOI: 10.1186/1423-0127-20-90

[31]

Engel T, Henshall DC. Apoptosis, Bcl-2 family proteins and caspases: the ABCs of seizure-damage and epileptogenesis? Int J Physiol Pathophysiol Pharmacol. 2009;1(2):97–115.

[32]

Engel T., Henshall D.C. Apoptosis, Bcl-2 family proteins and caspases: the ABCs of seizure-damage and epileptogenesis? // Int. J. Physiol. Pathophysiol. Pharmacol. 2009. Vol. 1, No. 2. P. 97–115.

[33]

Nguyen TTM, Gillet G, Popgeorgiev N. Caspases in the developing central nervous system: Apoptosis and beyond. Front Cell Dev Biol. 2021;9:702404. DOI: 10.3389/fcell.2021.702404

[34]

Nguyen T.T.M., Gillet G., Popgeorgiev N. Caspases in the developing central nervous system: Apoptosis and beyond // Front. Cell. Dev. Biol. 2021. Vol. 9. P. 702404. DOI: 10.3389/fcell.2021.702404

[35]

Sharangpani A, Takanohashi A, Bell MJ. Caspase activation in fetal rat brain following experimental intrauterine inflammation. Brain Res. 2008;1200:138–145. DOI: 10.1016/j.brainres.2008.01.045

[36]

Sharangpani A., Takanohashi A., Bell M.J. Caspase activation in fetal rat brain following experimental intrauterine inflammation // Brain Res. 2008. Vol. 1200. P. 138–145. DOI: 10.1016/j.brainres.2008.01.045

[37]

Henshall DC, Bonislawski DP, Skradski SL, et al. Cleavage of bid may amplify caspase-8-induced neuronal death following focally evoked limbic seizures. Neurobiol Dis. 2001;8(4):568–580. DOI: 10.1006/nbdi.2001.0415

[38]

Henshall D.C., Bonislawski D.P., Skradski S.L. et al. Cleavage of bid may amplify caspase-8-induced neuronal death following focally evoked limbic seizures // Neurobiol. Dis. 2001. Vol. 8, No. 4. P. 568–580. DOI: 10.1006/nbdi.2001.0415

[39]

Yuskaitis CJ, Rossitto LA, Groff KJ, et al. Factors influencing the acute pentylenetetrazole-induced seizure paradigm and a literature review. Ann Clin Transl Neurol. 2021;8(7):1388–1397. DOI: 10.1002/acn3.51375

[40]

Yuskaitis C.J., Rossitto L.A., Groff K.J. et al. Factors influencing the acute pentylenetetrazole-induced seizure paradigm and a literature review // Ann. Clin. Transl. Neurol. 2021. Vol. 8, No. 7. P. 1388–1397. DOI: 10.1002/acn3.51375

[41]

Van Erum J, Van Dam D, De Deyn PP. PTZ-induced seizures in mice require a revised Racine scale. Epilepsy Behav. 2019;95:51–55. DOI: 10.1016/j.yebeh.2019.02.029

[42]

Van Erum J., Van Dam D., De Deyn P.P. PTZ-induced seizures in mice require a revised Racine scale // Epilepsy Behav. 2019. Vol. 95. P. 51–55. DOI: 10.1016/j.yebeh.2019.02.029

[43]

Korzhevskii DE, Gilerovich EG, Zin’kova NN, et al. Immunocytochemical detection of brain neurons using the selective marker NeuN. Neurosci Behav Physiol. 2006;36(8):857–859. DOI: 10.1007/s11055-006-0098-5

[44]

Коржевский Д.Э., Гилерович Е.Г, Зинькова Н.Н. и др. Иммуногистохимическое выявление нейронов головного мозга с помощью селективного маркера NeuN // Морфология. 2005. Т. 128, № 5. C. 76–78.

[45]

Shimada T, Yamagata K. Pentylenetetrazole-induced kindling mouse model. J Vis Exp. 2018;(136):56573. DOI: 10.3791/56573

[46]

Shimada T., Yamagata K. Pentylenetetrazole-induced kindling mouse model // J. Vis. Exp. 2018. No. 136. P. 56573. DOI: 10.3791/56573

[47]

Löscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure. 2011;20(5):359–368. DOI: 10.1016/j.seizure.2011.01.003

[48]

Löscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs // Seizure. 2011. Vol. 20, No. 5. P. 359–368. DOI: 10.1016/j.seizure.2011.01.003

[49]

Lopim GM, Vannucci Campos D, Gomes da Silva S, et al. Relationship between seizure frequency and number of neuronal and non-neuronal cells in the hippocampus throughout the life of rats with epilepsy. Brain Res. 2016;1634:179–186. DOI: 10.1016/j.brainres.2015.12.055

[50]

Lopim G.M., Vannucci Campos D., Gomes da Silva S. et al. Relationship between seizure frequency and number of neuronal and non-neuronal cells in the hippocampus throughout the life of rats with epilepsy // Brain Res. 2016. Vol. 1634. P. 179–186. DOI: 10.1016/j.brainres.2015.12.055

[51]

Zhang L, Guo Y, Hu H, et al. FDG-PET and NeuN-GFAP immunohistochemistry of hippocampus at different phases of the pilocarpine model of temporal lobe epilepsy. Int J Med Sci. 2015;12(3):288–294. DOI: 10.7150/ijms.10527

[52]

Zhang L., Guo Y., Hu H. et al. FDG-PET and NeuN-GFAP immunohistochemistry of hippocampus at different phases of the pilocarpine model of temporal lobe epilepsy // Int. J. Med. Sci. 2015. Vol. 12, No. 3. P. 288–294. DOI: 10.7150/ijms.10527

[53]

Yan BC, Xu P, Gao M, et al. Changes in the blood-brain barrier function are associated with hippocampal neuron death in a kainic acid mouse model of epilepsy. Front Neurol. 2018;9:775. DOI: 10.3389/fneur.2018.00775

[54]

Yan B.C., Xu P., Gao M. et al. Changes in the blood-brain barrier function are associated with hippocampal neuron death in a kainic acid mouse model of epilepsy // Front. Neurol. 2018. Vol. 9. P. 775. DOI: 10.3389/fneur.2018.00775

[55]

Viswanatha GL, Shylaja H, Kishore DV, et al. Acteoside isolated from Colebrookea oppositifolia Smith Attenuates Epilepsy in mice via modulation of gamma-aminobutyric acid pathways. Neurotox Res. 2020;38(4):1010–1023. DOI: 10.1007/s12640-020-00267-0

[56]

Viswanatha G.L., Shylaja H., Kishore D.V. et al. Acteoside isolated from Colebrookea oppositifolia Smith Attenuates Epilepsy in mice via modulation of gamma-aminobutyric acid pathways // Neurotox. Res. 2020. Vol. 38, No. 4. P. 1010–1023. DOI: 10.1007/s12640-020-00267-0

[57]

Hansen SL, Sperling BB, Sánchez C. Anticonvulsant and antiepileptogenic effects of GABAA receptor ligands in pentylenetetrazole-kindled mice. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28(1):105–113. DOI: 10.1016/j.pnpbp.2003.09.026

[58]

Hansen S.L., Sperling B.B., Sánchez C. Anticonvulsant and antiepileptogenic effects of GABAA receptor ligands in pentylenetetrazole-kindled mice // Prog. Neuropsychopharmacol. Biol. Psychiatry. 2004. Vol. 28, No. 1. P. 105–113. DOI: 10.1016/j.pnpbp.2003.09.026

[59]

Unal-Cevik I, Kilinç M, Gürsoy-Ozdemir Y, et al. Loss of NeuN immunoreactivity after cerebral ischemia does not indicate neuronal cell loss: a cautionary note. Brain Res. 2004;1015(1–2):169–174. DOI: 10.1016/j.brainres.2004.04.032

[60]

Unal-Cevik I., Kilinç M., Gürsoy-Ozdemir Y. et al. Loss of NeuN immunoreactivity after cerebral ischemia does not indicate neuronal cell loss: a cautionary note // Brain Res. 2004. Vol. 1015, No. 1–2. P. 169–174. DOI: 10.1016/j.brainres.2004.04.032

[61]

Lee TK, Lee JC, Kim DW, et al. Ischemia-reperfusion under hyperthermia increases heme oxygenase-1 in pyramidal neurons and astrocytes with accelerating neuronal loss in gerbil hippocampus. Int J Mol Sci. 2021;22(8):3963. DOI: 10.3390/ijms22083963

[62]

Lee T.K., Lee J.C., Kim D.W. et al. Ischemia-reperfusion under hyperthermia increases heme oxygenase-1 in pyramidal neurons and astrocytes with accelerating neuronal loss in gerbil hippocampus // Int. J. Mol. Sci. 2021. Vol. 22, No. 8. P. 3963. DOI: 10.3390/ijms22083963

[63]

Zimatkin SM, Bon’ EI. Dark neurons of the brain. Neurosci Behav Physiol. 2018;48(8):908–912. DOI: 10.1007/s11055-018-0648-7

[64]

Zimatkin S.M., Bon’ EI. Dark neurons of the brain // Neurosci. Behav. Physiol. 2018. Vol. 48, No. 8. P. 908–912. DOI: 10.1007/s11055-018-0648-7

[65]

Ahmadpour S, Behrad A, Vega IF. Dark Neurons: A protective mechanism or a mode of death. J Med Histol. 2019;3(2):125–131. DOI: 10.21608/jmh.2020.40221.1081

[66]

Ahmadpour S., Behrad A., Vega I.F. Dark Neurons: A protective mechanism or a mode of death // J. Med. Histol. 2019. Vol. 3, No. 2. P. 125–131. DOI: 10.21608/jmh.2020.40221.1081

[67]

Krajewska M, You Z, Rong J, et al. Neuronal deletion of caspase 8 protects against brain injury in mouse models of controlled cortical impact and kainic acid-induced excitotoxicity. PLOS One. 2011;6(9):e24341. DOI: 10.1371/journal.pone.0024341

[68]

Krajewska M., You Z., Rong J. et al. Neuronal deletion of caspase 8 protects against brain injury in mouse models of controlled cortical impact and kainic acid-induced excitotoxicity // PLOS One. 2011. Vol. 6, No. 9. P. e24341. DOI: 10.1371/journal.pone.0024341

[69]

Baculis BC, Weiss AC, Pang W, et al. Prolonged seizure activity causes caspase dependent cleavage and dysfunction of G-protein activated inwardly rectifying potassium channels. Sci Rep. 2017;7(1):12313. DOI: 10.1038/s41598-017-12508-y

[70]

Baculis B.C., Weiss A.C., Pang W. et al. Prolonged seizure activity causes caspase dependent cleavage and dysfunction of G-protein activated inwardly rectifying potassium channels // Sci. Rep. 2017. Vol. 7, No. 1. P. 12313. DOI: 10.1038/s41598-017-12508-y

[71]

Meller R, Clayton C, Torrey DJ, et al. Activation of the caspase 8 pathway mediates seizure-induced cell death in cultured hippocampal neurons. Epilepsy Res. 2006;70(1):3–14. DOI: 10.1016/j.eplepsyres.2006.02.002

[72]

Meller R., Clayton C., Torrey D.J. et al. Activation of the caspase 8 pathway mediates seizure-induced cell death in cultured hippocapal neurons // Epilepsy Res. 2006. Vol. 70, No. 1. P. 3–14. DOI: 10.1016/j.eplepsyres.2006.02.002

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

63

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/