Antimicrobial activity of the complement system

Ekaterina V. Egorova , Ilia A. Krenev , Nikita N. Oborin , Mikhail N. Berlov

Medical academic journal ›› 2023, Vol. 23 ›› Issue (2) : 31 -45.

PDF
Medical academic journal ›› 2023, Vol. 23 ›› Issue (2) : 31 -45. DOI: 10.17816/MAJ322841
Analytical reviews
review-article

Antimicrobial activity of the complement system

Author information +
History +
PDF

Abstract

The complement system plays a key role in homeostasis and defense against pathogens. The antimicrobial activity of serum against Gram-negative bacteria is usually attributed to the action of the membrane attack complex. However, there is increasing evidence that some other components of the complement system and the products of its activation are also capable of direct killing of both Gram-negative and Gram-positive bacteria. In the course of complement activation, anaphylatoxins C3a, C4a, C5a are produced, which, in addition to their main function, can exhibit a bactericidal effect and disrupt the bacterial membrane. Recent studies have shown that in fish, complement factors D, I, as well as a Ba fragment of factor B, are able to neutralize pathogens. The triggering and amplification of complement usually occurs on the surface of pathogen cells, so the local production of antimicrobial components can potentially make a significant contribution to their elimination. The aim of this review is to outline the role of individual complement members in the elimination of pathogens through direct antibiotic action. The problem of antimicrobial protection in the context of therapeutic complement inhibition is considered.

Keywords

innate immunity / complement system / antimicrobial activity / membrane attack complex / antimicrobial peptides / serine proteases

Cite this article

Download citation ▾
Ekaterina V. Egorova, Ilia A. Krenev, Nikita N. Oborin, Mikhail N. Berlov. Antimicrobial activity of the complement system. Medical academic journal, 2023, 23(2): 31-45 DOI:10.17816/MAJ322841

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement system part I: Molecular mechanisms of activation and regulation. Front Immunol. 2015;6;262. DOI: 10.3389/fimmu.2015.00262

[2]

Merle N.S., Church S.E., Fremeaux-Bacchi V., Roumenina L.T. Complement system Part I: Molecular mechanisms of activation and regulation // Front. Immunol. 2015. Vol. 6. P. 262. DOI: 10.3389/fimmu.2015.00262

[3]

Merle NS, Noe R, Halbwachs-Mecarelli L, et al. Complement system part II: Role in immunity. Front Immunol. 2015;6;257. DOI: 10.3389/fimmu.2015.00257

[4]

Merle N.S., Noe R., Halbwachs-Mecarelli L. et al. Complement system Part II: Role in immunity // Front. Immunol. 2015. Vol. 6. P. 257. DOI: 10.3389/fimmu.2015.00257

[5]

Xie CB, Jane-Wit D, Pober JS. Complement membrane attack complex: new roles, mechanisms of action, and therapeutic targets. Am J Pathol. 2020;190(6):1138–1150. DOI: 10.1016/j.ajpath.2020.02.006

[6]

Xie C.B., Jane-Wit D., Pober J.S. Complement membrane attack complex: new roles, mechanisms of action, and therapeutic targets // Am. J. Pathol. 2020. Vol. 190, No. 6. P. 1138–1150. DOI: 10.1016/j.ajpath.2020.02.006

[7]

Venkatraman Girija U, Gingras AR, Marshall JE, et al. Structural basis of the C1q/C1s interaction and its central role in assembly of the C1 complex of complement activation. Proc Natl Acad Sci USA. 2013;110(34):13916–13920. DOI: 10.1073/pnas.1311113110

[8]

Venkatraman Girija U., Gingras A.R., Marshall J.E. et al. Structural basis of the C1q/C1s interaction and its central role in assembly of the C1 complex of complement activation // Proc. Natl. Acad. Sci. USA. 2013. Vol. 110, No. 34. P. 13916–13920. DOI: 10.1073/pnas.1311113110

[9]

Goldberg BS, Ackerman ME. Antibody-mediated complement activation in pathology and protection. Immunol Cell Biol. 2020;98(4):305–317. DOI: 10.1111/imcb.12324

[10]

Goldberg B.S., Ackerman M.E. Antibody-mediated complement activation in pathology and protection // Immunol. Cell Biol. 2020. Vol. 98, No. 4. P. 305–317. DOI: 10.1111/imcb.12324

[11]

Matsushita M, Endo Y, Fujita T. Structural and functional overview of the lectin complement pathway: its molecular basis and physiological implication. Arch Immunol Ther Exp (Warsz). 2013;61(4):273–283. DOI: 10.1007/s00005-013-0229-y

[12]

Matsushita M., Endo Y., Fujita T. Structural and functional overview of the lectin complement pathway: its molecular basis and physiological implication // Arch. Immunol. Ther. Exp. (Warsz). 2013. Vol. 61, No. 4. P. 273–283. DOI: 10.1007/s00005-013-0229-y

[13]

Harrison RA. The properdin pathway: an “alternative activation pathway” or a “critical amplification loop” for C3 and C5 activation? Semin Immunopathol. 2018;40(1):15–35. DOI: 10.1007/s00281-017-0661-x

[14]

Harrison R.A. The properdin pathway: an “alternative activation pathway” or a “critical amplification loop” for C3 and C5 activation? // Semin. Immunopathol. 2018. Vol. 40, No. 1. P. 15–35. DOI: 10.1007/s00281-017-0661-x

[15]

Windfuhr JP, Alsenz J, Loos M. The critical concentration of C1-esterase inhibitor (C1-INH) in human serum preventing auto-activation of the first component of complement (C1). Mol Immunol. 2005;42(6):657–663. DOI: 10.1016/j.molimm.2004.09.025

[16]

Windfuhr J.P., Alsenz J., Loos M. The critical concentration of C1-esterase inhibitor (C1-INH) in human serum preventing auto-activation of the first component of complement (C1) // Mol. Immunol. 2005. Vol. 42, No. 6. P. 657–663. DOI: 10.1016/j.molimm.2004.09.025

[17]

Paréj K, Dobó J, Závodszky P, Gál P. The control of the complement lectin pathway activation revisited: both C1-inhibitor and antithrombin are likely physiological inhibitors, while α2-macroglobulin is not. Mol Immunol. 2013;54(3–4):415–422. DOI: 10.1016/j.molimm.2013.01.009

[18]

Paréj K., Dobó J., Závodszky P., Gál P. The control of the complement lectin pathway activation revisited: both C1-inhibitor and antithrombin are likely physiological inhibitors, while α2-macroglobulin is not // Mol. Immunol. 2013. Vol. 54, No. 3–4. P. 415–422. DOI: 10.1016/j.molimm.2013.01.009

[19]

Noris M, Remuzzi G. Overview of complement activation and regulation. Semin Nephrol. 2013;33(6):479–492. DOI: 10.1016/j.semnephrol.2013.08.001

[20]

Noris M., Remuzzi G. Overview of complement activation and regulation // Semin. Nephrol. 2013. Vol. 33, No. 6. P. 479–492. DOI: 10.1016/j.semnephrol.2013.08.001

[21]

Bayly-Jones C, Bubeck D, Dunstone MA. The mystery behind membrane insertion: a review of the complement membrane attack complex. Philos Trans R Soc Lond B Biol Sci. 2017;372(1726):20160221. DOI: 10.1098/rstb.2016.0221

[22]

Bayly-Jones C., Bubeck D., Dunstone M.A. The mystery behind membrane insertion: a review of the complement membrane attack complex // Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017. Vol. 372, No. 1726. P. 20160221. DOI: 10.1098/rstb.2016.0221

[23]

Kokryakov VN. Essays on innate immunity. Saint Petersburg: Nauka; 2006. (In Russ.)

[24]

Кокряков В.Н. Очерки о врожденном иммунитете. Санкт-Петербург: Наука, 2006.

[25]

Luo Y, Song Y. Mechanism of antimicrobial peptides: antimicrobial, anti-inflammatory and antibiofilm activities. Int J Mol Sci. 2021;22(21):11401. DOI: 10.3390/ijms222111401

[26]

Luo Y., Song Y. Mechanism of antimicrobial peptides: antimicrobial, anti-inflammatory and antibiofilm activities // Int. J. Mol. Sci. 2021. Vol. 22, No. 21. P. 11401. DOI: 10.3390/ijms222111401

[27]

Stapels DA, Geisbrecht BV, Rooijakkers SH. Neutrophil serine proteases in antibacterial defense. Curr Opin Microbiol. 2015;23:42–48. DOI: 10.1016/j.mib.2014.11.002

[28]

Stapels D.A., Geisbrecht B.V., Rooijakkers S.H. Neutrophil serine proteases in antibacterial defense // Curr. Opin. Microbiol. 2015. Vol. 23. P. 42–48. DOI: 10.1016/j.mib.2014.11.002

[29]

Korkmaz B, Horwitz MS, Jenne DE, Gauthier F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev. 2010;62(4):726–759. DOI: 10.1124/pr.110.002733

[30]

Korkmaz B., Horwitz M.S., Jenne D.E., Gauthier F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases // Pharmacol. Rev. 2010. Vol. 62, No. 4. P. 726–759. DOI: 10.1124/pr.110.002733

[31]

Ram S, Lewis LA, Rice PA. Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin Microbiol Rev. 2010;23(4):740–780. DOI: 10.1128/CMR.00048-09

[32]

Ram S., Lewis L.A., Rice P.A. Infections of people with complement deficiencies and patients who have undergone splenectomy // Clin. Microbiol. Rev. 2010. Vol. 23, No. 4. P. 740–780. DOI: 10.1128/CMR.00048-09

[33]

Nagata M, Hara T, Aoki T, et al. Inherited deficiency of ninth component of complement: an increased risk of meningococcal meningitis. J Pediatr. 1989;114(2):260–264. DOI: 10.1016/s0022-3476(89)80793-0

[34]

Nagata M., Hara T., Aoki T. et al. Inherited deficiency of ninth component of complement: an increased risk of meningococcal meningitis // J. Pediatr. 1989. Vol. 114, No. 2. P. 260–264. DOI: 10.1016/s0022-3476(89)80793-0

[35]

Joiner KA, Warren KA, Hammer C, Frank MM. Bactericidal but not nonbactericidal C5b-9 is associated with distinctive outer membrane proteins in Neisseria gonorrhoeae. J Immunol. 1985;134(3):1920–1925. DOI: 10.4049/jimmunol.134.3.1920

[36]

Joiner K.A., Warren K.A., Hammer C., Frank M.M. Bactericidal but not nonbactericidal C5b-9 is associated with distinctive outer membrane proteins in Neisseria gonorrhoeae // J. Immunol. 1985. Vol. 134, No. 3. P. 1920–1925. DOI: 10.4049/jimmunol.134.3.1920

[37]

Harriman GR, Esser AF, Podack ER, et al. The role of C9 in complement-mediated killing of Neisseria. J Immunol. 1981;127(6):2386–2390. DOI: 10.4049/jimmunol.127.6.2386

[38]

Harriman G.R., Esser A.F., Podack E.R. et al. The role of C9 in complement-mediated killing of Neisseria // J. Immunol. 1981. Vol. 127, No. 6. P. 2386–2390. DOI: 10.4049/jimmunol.127.6.2386

[39]

Niculescu F, Rus H. Mechanisms of signal transduction activated by sublytic assembly of terminal complement complexes on nucleated cells. Immunol Res. 2001;24(2):191–199. DOI: 10.1385/ir:24:2:191

[40]

Niculescu F., Rus H. Mechanisms of signal transduction activated by sublytic assembly of terminal complement complexes on nucleated cells // Immunol. Res. 2001. Vol. 24, No. 2. P. 191–199. DOI: 10.1385/ir:24:2:191

[41]

Heesterbeek DA, Bardoel BW, Parsons ES, et al. Bacterial killing by complement requires membrane attack complex formation via surface-bound C5 convertases. EMBO J. 2019;38(4):e99852. DOI: 10.15252/embj.201899852

[42]

Heesterbeek D.A., Bardoel B.W., Parsons E.S. et al. Bacterial killing by complement requires membrane attack complex formation via surface-bound C5 convertases // EMBO J. 2019. Vol. 38, No. 4. P. e99852. DOI: 10.15252/embj.201899852

[43]

Hadders MA, Bubeck D, Roversi P, et al. Assembly and regulation of the membrane attack complex based on structures of C5b6 and sC5b9. Cell Rep. 2012;1(3):200–207. DOI: 10.1016/j.celrep.2012.02.003

[44]

Hadders M.A., Bubeck D., Roversi P. et al. Assembly and regulation of the membrane attack complex based on structures of C5b6 and sC5b9 // Cell Rep. 2012. Vol. 1, No. 3. P. 200–207. DOI: 10.1016/j.celrep.2012.02.003

[45]

Parsons ES, Stanley GJ, Pyne ALB, et al. Single-molecule kinetics of pore assembly by the membrane attack complex. Nat Commun. 2019;10(1):2066. DOI: 10.1038/s41467-019-10058-7

[46]

Parsons E.S., Stanley G.J., Pyne A.L.B. et al. Single-molecule kinetics of pore assembly by the membrane attack complex // Nat. Commun. 2019. Vol. 10, No. 1. P. 2066. DOI: 10.1038/s41467-019-10058-7

[47]

Bhakdi S, Tranum-Jensen J. C5b-9 assembly: average binding of one C9 molecule to C5b-8 without poly-C9 formation generates a stable transmembrane pore. J Immunol. 1986;136(8):2999–3005. DOI: 10.4049/jimmunol.136.8.2999

[48]

Bhakdi S., Tranum-Jensen J. C5b-9 assembly: average binding of one C9 molecule to C5b-8 without poly-C9 formation generates a stable transmembrane pore // J. Immunol. 1986. Vol. 136, No. 8. P. 2999–3005. DOI: 10.4049/jimmunol.136.8.2999

[49]

Sharp TH, Koster AJ, Gros P. Heterogeneous MAC initiator and pore structures in a lipid bilayer by phase-plate cryo-electron tomography. Cell Rep. 2016;15(1):1–8. DOI: 10.1016/j.celrep.2016.03.002

[50]

Sharp T.H., Koster A.J., Gros P. Heterogeneous MAC initiator and pore structures in a lipid bilayer by phase-plate cryo-electron tomography // Cell Rep. 2016. Vol. 15, No. 1. P. 1–8. DOI: 10.1016/j.celrep.2016.03.002

[51]

Menny A, Serna M, Boyd CM, et al. CryoEM reveals how the complement membrane attack complex ruptures lipid bilayers. Nat Commun. 2018;9(1):5316. DOI: 10.1038/s41467-018-07653-5

[52]

Menny A., Serna M., Boyd C.M. et al. CryoEM reveals how the complement membrane attack complex ruptures lipid bilayers // Nat. Commun. 2018. Vol. 9, No. 1. P. 5316. DOI: 10.1038/s41467-018-07653-5

[53]

Franc V, Yang Y, Heck AJ. Proteoform profile mapping of the human serum complement component C9 revealing unexpected new features of N-, O-, and C-Glycosylation. Anal Chem. 2017;89(6):3483–3491. DOI: 10.1021/acs.analchem.6b04527

[54]

Franc V., Yang Y., Heck A.J. Proteoform profile mapping of the human serum complement component C9 revealing unexpected new features of N-, O-, and C-Glycosylation // Anal. Chem. 2017. Vol. 89, No. 6. P. 3483–3491. DOI: 10.1021/acs.analchem.6b04527

[55]

Doorduijn DJ, Rooijakkers SHM, Heesterbeek DAC. How the membrane attack complex damages the bacterial cell envelope and kills gram-negative bacteria. Bioessays. 2019;41(10):e1900074. DOI: 10.1002/bies.201900074

[56]

Doorduijn D.J., Rooijakkers S.H.M., Heesterbeek D.A.C. How the membrane attack complex damages the bacterial cell envelope and kills gram-negative bacteria // Bioessays. 2019. Vol. 41, No. 10. P. e1900074. DOI: 10.1002/bies.201900074

[57]

Hoover DL, Berger M, Nacy CA, et al. Killing of Leishmania tropica amastigotes by factors in normal human serum. J Immunol. 1984;132(2):893–897. DOI: 10.4049/jimmunol.132.2.893

[58]

Hoover D.L., Berger M., Nacy C.A. et al. Killing of Leishmania tropica amastigotes by factors in normal human serum // J. Immunol. 1984. Vol. 132, No. 2. P. 893–897. DOI: 10.4049/jimmunol.132.2.893

[59]

Berends ET, Dekkers JF, Nijland R, et al. Distinct localization of the complement C5b-9 complex on Gram-positive bacteria. Cell Microbiol. 2013;15(12):1955–1968. DOI: 10.1111/cmi.12170

[60]

Berends E.T., Dekkers J.F., Nijland R. et al. Distinct localization of the complement C5b-9 complex on Gram-positive bacteria // Cell Microbiol. 2013. Vol. 15, No. 12. P. 1955–1968. DOI: 10.1111/cmi.12170

[61]

Nakamura M, Okada H, Sasaki H, et al. Quantification of the CD55 and CD59, membrane inhibitors of complement on HIV-1 particles as a function of complement-mediated virolysis. Microbiol Immunol. 1996;40(8):561–567. DOI: 10.1111/j.1348-0421.1996.tb01109.x

[62]

Nakamura M., Okada H., Sasaki H. et al. Quantification of the CD55 and CD59, membrane inhibitors of complement on HIV-1 particles as a function of complement-mediated virolysis // Microbiol. Immunol. 1996. Vol. 40, No. 8. P. 561–567. DOI: 10.1111/j.1348-0421.1996.tb01109.x

[63]

Kim SH, Carney DF, Hammer CH, Shin ML. Nucleated cell killing by complement: effects of C5b-9 channel size and extracellular Ca2+ on the lytic process. J Immunol. 1987;138(5):1530–1536. DOI: 10.4049/jimmunol.138.5.1530

[64]

Kim S.H., Carney D.F., Hammer C.H., Shin M.L. Nucleated cell killing by complement: effects of C5b-9 channel size and extracellular Ca2+ on the lytic process // J. Immunol. 1987. Vol. 138, No. 5. P. 1530–1536. DOI: 10.4049/jimmunol.138.5.1530

[65]

Nauta AJ, Daha MR, Tijsma O, et al. The membrane attack complex of complement induces caspase activation and apoptosis. Eur J Immunol. 2002;32(3):783–792. DOI: 10.1002/1521-4141(200203)32:3<783::AID-IMMU783>3.0.CO;2-Q

[66]

Nauta A.J., Daha M.R., Tijsma O. et al. The membrane attack complex of complement induces caspase activation and apoptosis // Eur. J. Immunol. 2002. Vol. 32, No. 3. P. 783–792. DOI: 10.1002/1521-4141(200203)32:3<783::AID-IMMU783>3.0.CO;2-Q

[67]

Kim SH, Carney DF, Papadimitriou JC, Shin ML. Effect of osmotic protection on nucleated cell killing by C5b-9: cell death is not affected by the prevention of cell swelling. Mol Immunol. 1989;26(3):323–331. DOI: 10.1016/0161-5890(89)90087-4

[68]

Kim S.H., Carney D.F., Papadimitriou J.C., Shin M.L. Effect of osmotic protection on nucleated cell killing by C5b-9: cell death is not affected by the prevention of cell swelling // Mol. Immunol. 1989. Vol. 26, No. 3. P. 323–331. DOI: 10.1016/0161-5890(89)90087-4

[69]

Pilzer D, Fishelson Z. Mortalin/GRP75 promotes release of membrane vesicles from immune attacked cells and protection from complement-mediated lysis. Int Immunol. 2005;17(9):1239–1248. DOI: 10.1093/intimm/dxh300

[70]

Pilzer D., Fishelson Z. Mortalin/GRP75 promotes release of membrane vesicles from immune attacked cells and protection from complement-mediated lysis // Int. Immunol. 2005. Vol. 17, No. 9. P. 1239–1248. DOI: 10.1093/intimm/dxh300

[71]

Brown EJ. Interaction of gram-positive microorganisms with complement. Curr Top Microbiol Immunol. 1985;121:159–187. DOI: 10.1007/978-3-642-45604-6_8

[72]

Brown E.J. Interaction of gram-positive microorganisms with complement // Curr. Top. Microbiol. Immunol. 1985. Vol. 121. P. 159–187. DOI: 10.1007/978-3-642-45604-6_8

[73]

Berends ET, Kuipers A, Ravesloot MM, et al. Bacteria under stress by complement and coagulation. FEMS Microbiol Rev. 2014;38(6):1146–1171. DOI: 10.1111/1574-6976.12080

[74]

Berends E.T., Kuipers A., Ravesloot M.M. et al. Bacteria under stress by complement and coagulation // FEMS Microbiol. Rev. 2014. Vol. 38, No. 6. P. 1146–1171. DOI: 10.1111/1574-6976.12080

[75]

Morgan BP, Boyd C, Bubeck D. Molecular cell biology of complement membrane attack. Semin Cell Dev Biol. 2017;72:124–132. DOI: 10.1016/j.semcdb.2017.06.009

[76]

Morgan B.P., Boyd C., Bubeck D. Molecular cell biology of complement membrane attack // Semin. Cell Dev. Biol. 2017. Vol. 72. P. 124–132. DOI: 10.1016/j.semcdb.2017.06.009

[77]

O’Hara AM, Moran AP, Würzner R, Orren A. Complement-mediated lipopolysaccharide release and outer membrane damage in Escherichia coli J5: requirement for C9. Immunology. 2001;102(3):365–372. DOI: 10.1046/j.1365-2567.2001.01198.x

[78]

O’Hara A.M., Moran A.P., Würzner R., Orren A. Complement-mediated lipopolysaccharide release and outer membrane damage in Escherichia coli J5: requirement for C9 // Immunology. 2001. Vol. 102, No. 3. P. 365–372. DOI: 10.1046/j.1365-2567.2001.01198.x

[79]

Wang Y, Bjes ES, Esser AF. Molecular aspects of complement-mediated bacterial killing. Periplasmic conversion of C9 from a protoxin to a toxin. J Biol Chem. 2000;275(7):4687–4692. DOI: 10.1074/jbc.275.7.4687

[80]

Wang Y., Bjes E.S., Esser A.F. Molecular aspects of complement-mediated bacterial killing. Periplasmic conversion of C9 from a protoxin to a toxin // J. Biol. Chem. 2000. Vol. 275, No. 7. P. 4687–4692. DOI: 10.1074/jbc.275.7.4687

[81]

Dankert JR, Esser AF. Complement-mediated killing of Escherichia coli: dissipation of membrane potential by a C9-derived peptide. Biochemistry. 1986;25(5):1094–1100. DOI: 10.1021/bi00353a023

[82]

Dankert J.R., Esser A.F. Complement-mediated killing of Escherichia coli: dissipation of membrane potential by a C9-derived peptide // Biochemistry. 1986. Vol. 25, No. 5. P. 1094–1100. DOI: 10.1021/bi00353a023

[83]

Dankert JR, Esser AF. Bacterial killing by complement. C9-mediated killing in the absence of C5b-8. Biochem J. 1987;244(2):393–399. DOI: 10.1042/bj2440393

[84]

Dankert J.R., Esser A.F. Bacterial killing by complement. C9-mediated killing in the absence of C5b-8 // Biochem. J. 1987. Vol. 244, No. 2. P. 393–399. DOI: 10.1042/bj2440393

[85]

Doorduijn DJ, Heesterbeek DAC, Ruyken M, et al. Polymerization of C9 enhances bacterial cell envelope damage and killing by membrane attack complex pores. PLoS Pathog. 2021;17(11):e1010051. DOI: 10.1371/journal.ppat.1010051

[86]

Doorduijn D.J., Heesterbeek D.A.C., Ruyken M. et al. Polymerization of C9 enhances bacterial cell envelope damage and killing by membrane attack complex pores // PLoS Pathog. 2021. Vol. 17, No. 11. P. e1010051. DOI: 10.1371/journal.ppat.1010051

[87]

Heesterbeek DAC, Martin NI, Velthuizen A, et al. Complement-dependent outer membrane perturbation sensitizes Gram-negative bacteria to Gram-positive specific antibiotics. Sci Rep. 2019;9(1):3074. DOI: 10.1038/s41598-019-38577-9

[88]

Heesterbeek D.A.C., Martin N.I., Velthuizen A. et al. Complement-dependent outer membrane perturbation sensitizes Gram-negative bacteria to Gram-positive specific antibiotics // Sci. Rep. 2019. Vol. 9, No. 1. P. 3074. DOI: 10.1038/s41598-019-38577-9

[89]

Murray GL, Attridge SR, Morona R. Inducible serum resistance in Salmonella typhimurium is dependent on wzz(fepE)-regulated very long O antigen chains. Microbes Infect. 2005;7(13):1296–1304. DOI: 10.1016/j.micinf.2005.04.015

[90]

Murray G.L., Attridge S.R., Morona R. Inducible serum resistance in Salmonella typhimurium is dependent on wzz(fepE)-regulated very long O antigen chains // Microbes Infect. 2005. Vol. 7, No. 13. P. 1296–1304. DOI: 10.1016/j.micinf.2005.04.015

[91]

Grossman N, Schmetz MA, Foulds J, et al. Lipopolysaccharide size and distribution determine serum resistance in Salmonella montevideo. J Bacteriol. 1987;169(2):856–863. DOI: 10.1128/jb.169.2.856-863.1987

[92]

Grossman N., Schmetz M.A., Foulds J. et al. Lipopolysaccharide size and distribution determine serum resistance in Salmonella Montevideo // J. Bacteriol. 1987. Vol. 169, No. 2. P. 856–863. DOI: 10.1128/jb.169.2.856-863.1987

[93]

Schneider MC, Exley RM, Ram S, et al. Interactions between Neisseria meningitidis and the complement system. Trends Microbiol. 2007;15(5):233–240. DOI: 10.1016/j.tim.2007.03.005

[94]

Schneider M.C., Exley R.M., Ram S. et al. Interactions between Neisseria meningitidis and the complement system // Trends Microbiol. 2007. Vol. 15, No. 5. P. 233–240. DOI: 10.1016/j.tim.2007.03.005

[95]

Pramoonjago P, Kaneko M, Kinoshita T, et al. Role of TraT protein, an anticomplementary protein produced in Escherichia coli by R100 factor, in serum resistance. J Immunol. 1992;148(3):827–836. DOI: 10.4049/jimmunol.148.3.827

[96]

Pramoonjago P., Kaneko M., Kinoshita T. et al. Role of TraT protein, an anticomplementary protein produced in Escherichia coli by R100 factor, in serum resistance // J. Immunol. 1992. Vol. 148, No. 3. P. 827–836. DOI: 10.4049/jimmunol.148.3.827

[97]

Hallström T, Siegel C, Mörgelin M, et al. CspA from Borrelia burgdorferi inhibits the terminal complement pathway. mBio. 2013;4(4):e00481–13. DOI: 10.1128/mBio.00481-13

[98]

Hallström T., Siegel C., Mörgelin M. et al. CspA from Borrelia burgdorferi inhibits the terminal complement pathway // mBio. 2013. Vol. 4, No. 4. P. e00481–13. DOI: 10.1128/mBio.00481-13

[99]

Sjölinder H, Eriksson J, Maudsdotter L, et al. Meningococcal outer membrane protein NhhA is essential for colonization and disease by preventing phagocytosis and complement attack. Infect Immun. 2008;76(11):5412–5420. DOI: 10.1128/IAI.00478-08

[100]

Sjölinder H., Eriksson J., Maudsdotter L. et al. Meningococcal outer membrane protein NhhA is essential for colonization and disease by preventing phagocytosis and complement attack // Infect. Immun. 2008. Vol. 76, No. 11. P. 5412–5420. DOI: 10.1128/IAI.00478-08

[101]

Blom AM, Hallström T, Riesbeck K. Complement evasion strategies of pathogens-acquisition of inhibitors and beyond. Mol Immunol. 2009;46(14):2808–2817. DOI: 10.1016/j.molimm.2009.04.025

[102]

Blom A.M., Hallström T., Riesbeck K. Complement evasion strategies of pathogens-acquisition of inhibitors and beyond // Mol. Immunol. 2009. Vol. 46, No. 14. P. 2808–2817. DOI: 10.1016/j.molimm.2009.04.025

[103]

Singh B, Su YC, Riesbeck K. Vitronectin in bacterial pathogenesis: a host protein used in complement escape and cellular invasion. Mol Microbiol. 2010;78(3):545–560. DOI: 10.1111/j.1365-2958.2010.07373.x

[104]

Singh B., Su Y.C., Riesbeck K. Vitronectin in bacterial pathogenesis: a host protein used in complement escape and cellular invasion // Mol. Microbiol. 2010. Vol. 78, No. 3. P. 545–560. DOI: 10.1111/j.1365-2958.2010.07373.x

[105]

Wat JM, Foley JH, Krisinger MJ, et al. Polyphosphate suppresses complement via the terminal pathway. Blood. 2014;123(5):768–776. DOI: 10.1182/blood-2013-07-515726

[106]

Wat J.M., Foley J.H., Krisinger M.J. et al. Polyphosphate suppresses complement via the terminal pathway // Blood. 2014. Vol. 123, No. 5. P. 768–776. DOI: 10.1182/blood-2013-07-515726

[107]

Zhang Q, Li Y, Tang CM. The role of the exopolyphosphatase PPX in avoidance by Neisseria meningitidis of complement-mediated killing. J Biol Chem. 2010;285(44):34259–34268. DOI: 10.1074/jbc.M110.154393

[108]

Zhang Q., Li Y., Tang C.M. The role of the exopolyphosphatase PPX in avoidance by Neisseria meningitidis of complement-mediated killing // J. Biol. Chem. 2010. Vol. 285, No. 44. P. 34259–34268. DOI: 10.1074/jbc.M110.154393

[109]

Umnyakova ES, Pashinskaya LD, Krenev IA, et al. Diseases associated with complement system dysregulation and the prospects of their treatment. Medical Academic Journal. 2018;18(3):7–16. (In Russ.) DOI: 10.17816/MAJ1837-16

[110]

Умнякова Е.С., Пашинская Л.Д., Кренев И.А. и др. Заболевания, связанные с дисрегуляцией системы комплемента, и перспективы их лечения // Медицинский академический журнал. 2018. Т. 18, № 3. С. 7–16. DOI: 10.17816/MAJ1837-16

[111]

Alper CA. A history of complement genetics. Exp Clin Immunogenet. 1998;15(4):203–212. DOI: 10.1159/000019074

[112]

Alper C.A. A history of complement genetics // Exp. Clin. Immunogenet. 1998. Vol. 15, No. 4. P. 203–212. DOI: 10.1159/000019074

[113]

Wessels MR, Butko P, Ma M, et al. Studies of group B streptococcal infection in mice deficient in complement component C3 or C4 demonstrate an essential role for complement in both innate and acquired immunity. Proc Natl Acad Sci USA. 1995;92(25):11490–11494. DOI: 10.1073/pnas.92.25.11490

[114]

Wessels M.R., Butko P., Ma M. et al. Studies of group B streptococcal infection in mice deficient in complement component C3 or C4 demonstrate an essential role for complement in both innate and acquired immunity // Proc. Natl. Acad. Sci. USA. 1995. Vol. 92, No. 25. P. 11490–11494. DOI: 10.1073/pnas.92.25.11490

[115]

Xu Y, Yu Y, Zhang X, et al. Molecular characterization and expression analysis of complement component 3 in dojo loach (Misgurnus anguillicaudatus). Fish Shellfish Immunol. 2018;72:484–493. DOI: 10.1016/j.fsi.2017.11.022

[116]

Xu Y., Yu Y., Zhang X., et al. Molecular characterization and expression analysis of complement component 3 in dojo loach (Misgurnus anguillicaudatus) // Fish Shellfish Immunol. 2018. Vol. 72. P. 484–493. DOI: 10.1016/j.fsi.2017.11.022

[117]

Kerr AR, Paterson GK, Riboldi-Tunnicliffe A, Mitchell TJ. Innate immune defense against pneumococcal pneumonia requires pulmonary complement component C3. Infect Immun. 2005;73(7):4245–4252. DOI: 10.1128/IAI.73.7.4245-4252.2005

[118]

Kerr A.R., Paterson G.K., Riboldi-Tunnicliffe A., Mitchell T.J. Innate immune defense against pneumococcal pneumonia requires pulmonary complement component C3 // Infect. Immun. 2005. Vol. 73, No. 7. P. 4245–4252. DOI: 10.1128/IAI.73.7.4245-4252.2005

[119]

Shokal U, Eleftherianos I. Evolution and function role of complement in cnidarian-dinoflagellate symbiosis and immune challenge in the sea anemone aiptasia pallida of thioester-containing proteins and the complement system in the innate immune response. Front Immunol. 2017;8:759. DOI: 10.3389/fimmu.2017.00759

[120]

Shokal U., Eleftherianos I. Evolution and function of thioester-containing proteins and the complement system in the innate immune response // Front. Immunol. 2017. Vol. 8. P. 759. DOI: 10.3389/fimmu.2017.00759

[121]

Najafpour B, Cardoso JCR, Canário AVM, Power DM. Specific evolution and gene family expansion of complement 3 and regulatory factor H in fish. Front Immunol. 2020;11:568631. DOI: 10.3389/fimmu.2020.568631

[122]

Najafpour B., Cardoso J.C.R., Canário A.V.M., Power D.M. Specific evolution and gene family expansion of complement 3 and regulatory factor H in fish // Front. Immunol. 2020. Vol. 11. P. 568631. DOI: 10.3389/fimmu.2020.568631

[123]

Poole AZ, Kitchen SA, Weis VM. The role of complement in cnidarian-dinoflagellate symbiosis and immune challenge in the sea anemone aiptasia pallida. Front Microbiol. 2016;7:519. DOI: 10.3389/fmicb.2016.00519

[124]

Poole A.Z., Kitchen S.A., Weis V.M. The role of complement in cnidarian-dinoflagellate symbiosis and immune challenge in the sea anemone aiptasia pallida // Front. Microbiol. 2016. Vol. 7. P. 519. DOI: 10.3389/fmicb.2016.00519

[125]

Wang Z, Liang X, Li G, et al. Molecular characterization of complement component 3 (c3) in the pearl oyster pinctada fucata improves our understanding of the primitive complement system in bivalve. Front Immunol. 2021;12:652805. DOI: 10.3389/fimmu.2021.652805

[126]

Wang Z., Liang X., Li G. et al. Molecular characterization of complement component 3 (C3) in the Pearl Oyster Pinctada fucata improves our understanding of the primitive complement system in bivalve // Front. Immunol. 2021. Vol. 12. P. 652805. DOI: 10.3389/fimmu.2021.652805

[127]

Peronato A, Drago L, Rothbächer U, et al. Complement system and phagocytosis in a colonial protochordate. Dev Comp Immunol. 2020;103:103530. DOI: 10.1016/j.dci.2019.103530

[128]

Peronato A., Drago L., Rothbächer U. et al. Complement system and phagocytosis in a colonial protochordate // Dev. Comp. Immunol. 2020. Vol. 103. P. 103530. DOI: 10.1016/j.dci.2019.103530

[129]

Elvington M, Liszewski MK, Atkinson JP. Evolution of the complement system: from defense of the single cell to guardian of the intravascular space. Immunol Rev. 2016;274(1):9–15. DOI: 10.1111/imr.12474

[130]

Elvington M., Liszewski M.K., Atkinson J.P. Evolution of the complement system: from defense of the single cell to guardian of the intravascular space // Immunol. Rev. 2016. Vol. 274, No. 1. P. 9–15. DOI: 10.1111/imr.12474

[131]

Nordahl EA, Rydengård V, Nyberg P, et al. Activation of the complement system generates antibacterial peptides. Proc Natl Acad Sci USA. 2004;101(48):16879–16884. DOI: 10.1073/pnas.0406678101

[132]

Nordahl E.A., Rydengård V., Nyberg P. et al. Activation of the complement system generates antibacterial peptides // Proc. Natl. Acad. Sci. USA. 2004. Vol. 101, No. 48. P. 16879–16884. DOI: 10.1073/pnas.0406678101

[133]

Wu M, Jia BB, Li MF. Complement C3 and activated fragment C3a are involved in complement activation and anti-bacterial immunity. Front Immunol. 2022;13:813173. DOI: 10.3389/fimmu.2022.813173

[134]

Wu M., Jia B.B., Li M.F. Complement C3 and activated fragment C3a are involved in complement activation and anti-bacterial immunity // Front. Immunol. 2022. Vol. 13. P. 813173. DOI: 10.3389/fimmu.2022.813173

[135]

Hugli TE. Human anaphylatoxin (C3a) from the third component of complement. Primary structure. J Biol Chem. 1975;250(21):829–8301. DOI: 10.1016/s0021-9258(19)40758-8

[136]

Hugli T.E. Human anaphylatoxin (C3a) from the third component of complement. Primary structure // J. Biol. Chem. 1975. Vol. 250, No. 21. P. 8293–8301. DOI: 10.1016/s0021-9258(19)40758-8

[137]

Klos A, Tenner AJ, Johswich KO, et al. The role of the anaphylatoxins in health and disease. Mol Immunol. 2009;46(14):2753–2766. DOI: 10.1016/j.molimm.2009.04.027

[138]

Klos A., Tenner A.J., Johswich K.O. et al. The role of the anaphylatoxins in health and disease // Mol. Immunol. 2009. Vol. 46, No. 14. P. 2753–2766. DOI: 10.1016/j.molimm.2009.04.027

[139]

Peng Q, Li K, Sacks SH, Zhou W. The role of anaphylatoxins C3a and C5a in regulating innate and adaptive immune responses. Inflamm Allergy Drug Targets. 2009;8(3):236–246. DOI: 10.2174/187152809788681038

[140]

Peng Q., Li K., Sacks S.H., Zhou W. The role of anaphylatoxins C3a and C5a in regulating innate and adaptive immune responses // Inflamm. Allergy Drug Targets. 2009. Vol. 8, No. 3. P. 236–246. DOI: 10.2174/187152809788681038

[141]

Zipfel PF, Reuter M. Complement activation products C3a and C4a as endogenous antimicrobial peptides. Int J Pept Res Ther. 2009;15:87–95. DOI: 10.1007/s10989-009-9180-5

[142]

Zipfel P.F., Reuter M. Complement activation products C3a and C4a as endogenous antimicrobial peptides // Int. J. Pept. Res. Ther. 2009. Vol. 15. P. 87–95. DOI: 10.1007/s10989-009-9180-5

[143]

Zhang XJ, Zhong YQ, Ma ZY, et al. Insights into the antibacterial properties of complement peptides C3a, C4a, and C5a across vertebrates. J Immunol. 2022;209(12):2330–2340. DOI: 10.4049/jimmunol.2101019

[144]

Zhang X.J., Zhong Y.Q., Ma Z.Y. et al. Insights into the antibacterial properties of complement peptides C3a, C4a, and C5a across vertebrates // J. Immunol. 2022. Vol. 209, No. 12. P. 2330–2340. DOI: 10.4049/jimmunol.2101019

[145]

Pasupuleti M, Walse B, Nordahl EA, et al. Preservation of antimicrobial properties of complement peptide C3a, from invertebrates to humans. J Biol Chem. 2007;282(4):2520–2528. DOI: 10.1074/jbc.M607848200

[146]

Pasupuleti M., Walse B., Nordahl E.A. et al. Preservation of antimicrobial properties of complement peptide C3a, from invertebrates to humans // J. Biol. Chem. 2007. Vol. 282, No. 4. P. 2520–2528. DOI: 10.1074/jbc.M607848200

[147]

Sonesson A, Ringstad L, Nordahl EA, et al. Antifungal activity of C3a and C3a-derivedpeptides against Candida. Biochim Biophys Acta. 2007;1768(2):346–353. DOI: 10.1016/j.bbamem.2006.10.017

[148]

Sonesson A., Ringstad L., Nordahl E.A. et al. Antifungal activity of C3a and C3a-derived peptides against Candida // Biochim. Biophys. Acta. 2007. Vol. 1768, No. 2. P. 346–353. DOI: 10.1016/j.bbamem.2006.10.017

[149]

Pasupuleti M, Walse B, Svensson B, et al. Rational design of antimicrobial C3a analogues with enhanced effects against Staphylococci using an integrated structure and function-based approach. Biochemistry. 2008;47(35):9057–9070. DOI: 10.1021/bi800991e

[150]

Pasupuleti M., Walse B., Svensson B. et al. Rational design of antimicrobial C3a analogues with enhanced effects against Staphylococci using an integrated structure and function-based approach // Biochemistry. 2008. Vol. 47, No. 35. P. 9057–9070. DOI: 10.1021/bi800991e

[151]

Ringstad L, Andersson Nordahl E, Schmidtchen A, Malmsten M. Composition effect on peptide interaction with lipids and bacteria: variants of C3a peptide CNY21. Biophys J. 2007;92(1):87–98. DOI: 10.1529/biophysj.106.088161

[152]

Ringstad L., Andersson Nordahl E., Schmidtchen A., Malmsten M. Composition effect on peptide interaction with lipids and bacteria: variants of C3a peptide CNY21 // Biophys. J. 2007. Vol. 92, No. 1. P. 87–98. DOI: 10.1529/biophysj.106.088161

[153]

Gao S, Cui Z, Zhao MH. The complement C3a and C3a receptor pathway in kidney diseases. Front Immunol. 2020;11:1875. DOI: 10.3389/fimmu.2020.01875

[154]

Gao S., Cui Z., Zhao M.H. The complement C3a and C3a receptor pathway in kidney diseases // Front. Immunol. 2020. Vol. 11. P. 1875. DOI: 10.3389/fimmu.2020.01875

[155]

Ganu VS, Müller-Eberhard HJ, Hugli TE. Factor C3f is a spasmogenic fragment released from C3b by factors I and H: the heptadeca-peptide C3f was synthesized and characterized. Mol Immunol. 1989;26(10):939–948. DOI: 10.1016/0161-5890(89)90112-0

[156]

Ganu V.S., Müller-Eberhard H.J., Hugli T.E. Factor C3f is a spasmogenic fragment released from C3b by factors I and H: the heptadeca-peptide C3f was synthesized and characterized // Mol. Immunol. 1989. Vol. 26, No. 10. P. 939–948. DOI: 10.1016/0161-5890(89)90112-0

[157]

Pozolotin VA, Umnyakova ES, Kopeykin PM, et al. Evaluation of antimicrobial activity of the C3f peptide, a derivative of human C3 protein. Russian Journal of Bioorganic Chemistry. 2021;47(3):741–748. DOI: 10.1134/S1068162021030158

[158]

Позолотин В.А., Умнякова Е.С., Копейкин П.М. и др. Оценка антимикробной активности пептида C3f — производного белка C3 человека // Биоорганическая химия. 2021. Т. 47, № 3. С. 373–381. DOI: 10.31857/S0132342321030155

[159]

Wang H, Liu M. Complement C4, infections, and autoimmune diseases. Front Immunol. 2021;12:694928. DOI: 10.3389/fimmu.2021.694928

[160]

Wang H., Liu M. Complement C4, Infections, and autoimmune diseases // Front. Immunol. 2021. Vol. 12. P. 694928. DOI: 10.3389/fimmu.2021.694928

[161]

Coss SL, Zhou D, Chua GT, et al. The complement system and human autoimmune diseases. J Autoimmun. 2022;102979. DOI: 10.1016/j.jaut.2022.102979

[162]

Coss S.L., Zhou D., Chua G.T. et al. The complement system and human autoimmune diseases // J. Autoimmun. 2022. P. 102979. DOI: 10.1016/j.jaut.2022.102979

[163]

Zhou D, King EH, Rothwell S, et al. Low copy numbers of complement C4 and C4A deficiency are risk factors for myositis, its subgroups and autoantibodies. Ann Rheum Dis. 2023;82(2):235–245. DOI: 10.1136/ard-2022-222935

[164]

Zhou D., King E.H., Rothwell S. et al. Low copy numbers of complement C4 and C4A deficiency are risk factors for myositis, its subgroups and autoantibodies // Ann. Rheum. Dis. 2023. Vol. 82, No. 2. P. 235–245. DOI: 10.1136/ard-2022-222935

[165]

Yang Y, Chung EK, Zhou B, et al. The intricate role of complement component C4 in human systemic lupus erythematosus. Curr Dir Autoimmun. 2004;7:98–132. DOI: 10.1159/000075689

[166]

Yang Y., Chung E.K., Zhou B. et al. The intricate role of complement component C4 in human systemic lupus erythematosus // Curr. Dir. Autoimmun. 2004. Vol. 7. P. 98–132. DOI: 10.1159/000075689

[167]

Nonaka M, Kimura A. Genomic view of the evolution of the complement system. Immunogenetics. 2006;58(9):701–713. DOI: 10.1007/s00251-006-0142-1

[168]

Nonaka M., Kimura A. Genomic view of the evolution of the complement system // Immunogenetics. 2006. Vol. 58, No. 9. P. 701–713. DOI: 10.1007/s00251-006-0142-1

[169]

Gorski JP, Hugli TE, Müller-Eberhard HJ. C4a: the third anaphylatoxin of the human complement system. Proc Natl Acad Sci USA. 1979;76(10):5299–5302. DOI: 10.1073/pnas.76.10.5299

[170]

Gorski J.P., Hugli T.E., Müller-Eberhard H.J. C4a: the third anaphylatoxin of the human complement system // Proc. Natl. Acad. Sci. USA. 1979. Vol. 76, No. 10. P. 5299–5302. DOI: 10.1073/pnas.76.10.5299

[171]

Barnum SR. C4a: An anaphylatoxin in name only. J Innate Immun. 2015;7(4):333–339. DOI: 10.1159/000371423

[172]

Barnum S.R. C4a: an anaphylatoxin in name only // J. Innate Immun. 2015. Vol. 7, No. 4. P. 333–339. DOI: 10.1159/000371423

[173]

Laursen NS, Magnani F, Gottfredsen RH, et al. Structure, function and control of complement C5 and its proteolytic fragments. Curr Mol Med. 2012;12(8):1083–1097. DOI: 10.2174/156652412802480925

[174]

Laursen N.S., Magnani F., Gottfredsen R.H. et al. Structure, function and control of complement C5 and its proteolytic fragments // Curr. Mol. Med. 2012. Vol. 12, No. 8. P. 1083–1097. DOI: 10.2174/156652412802480925

[175]

Schatz-Jakobsen JA, Yatime L, Larsen C, et al. Structural and functional characterization of human and murine C5a anaphylatoxins. Acta Crystallogr D Biol Crystallogr. 2014;70(Pt6):1704–1717. DOI: 10.1107/S139900471400844X

[176]

Schatz-Jakobsen J.A., Yatime L., Larsen C. et al. Structural and functional characterization of human and murine C5a anaphylatoxins // Acta Crystallogr. D Biol. Crystallogr. 2014. Vol. 70, No. Pt 6. P. 1704–1717. DOI: 10.1107/S139900471400844X

[177]

Hughes AL. Phylogeny of the C3/C4/C5 complement-component gene family indicates that C5 diverged first. Mol Biol Evol. 1994;11(3):417–425. DOI: 10.1093/oxfordjournals.molbev.a040123

[178]

Hughes A.L. Phylogeny of the C3/C4/C5 complement-component gene family indicates that C5 diverged first // Mol. Biol. Evol. 1994. Vol. 11, No. 3. P. 417–425. DOI: 10.1093/oxfordjournals.molbev.a040123

[179]

Xu Y, Narayana SV, Volanakis JE. Structural biology of the alternative pathway convertase. Immunol Rev. 2001;180:123–135. DOI: 10.1034/j.1600-065x.2001.1800111.x

[180]

Xu Y., Narayana S.V., Volanakis J.E. Structural biology of the alternative pathway convertase // Immunol. Rev. 2001. Vol. 180. P. 123–135. DOI: 10.1034/j.1600-065x.2001.1800111.x

[181]

Li X, Sun L. A teleost complement factor Ba possesses antimicrobial activity and inhibits bacterial infection in fish. Dev Comp Immunol. 2017;71:49–58. DOI: 10.1016/j.dci.2017.01.021

[182]

Li X., Sun L. A teleost complement factor Ba possesses antimicrobial activity and inhibits bacterial infection in fish // Dev. Comp. Immunol. 2017. Vol. 71. P. 49–58. DOI: 10.1016/j.dci.2017.01.021

[183]

Volanakis JE, Narayana SV. Complement factor D, a novel serine protease. Protein Sci. 1996;5(4):553–564. DOI: 10.1002/pro.5560050401

[184]

Volanakis J.E., Narayana S.V. Complement factor D, a novel serine protease // Protein Sci. 1996. Vol. 5, No. 4. P. 553–564. DOI: 10.1002/pro.5560050401

[185]

Fishelson Z, Pangburn MK, Müller-Eberhard HJ. C3 convertase of the alternative complement pathway. Demonstration of an active, stable C3b, Bb (Ni) complex. J Biol Chem. 1983;258(12):7411–7415. DOI: 10.1016/s0021-9258(18)32194-x

[186]

Fishelson Z., Pangburn M.K., Müller-Eberhard H.J. C3 convertase of the alternative complement pathway. Demonstration of an active, stable C3b, Bb (Ni) complex // J. Biol. Chem. 1983. Vol. 258, No. 12. P. 7411–7415. DOI: 10.1016/s0021-9258(18)32194-x

[187]

Ding M, Fan J, Wang W, et al. Molecular characterization, expression and antimicrobial activity of complement factor D in Megalobrama amblycephala. Fish Shellfish Immunol. 2019;89:43–51. DOI: 10.1016/j.fsi.2019.03.031

[188]

Ding M., Fan J., Wang W. et al. Molecular characterization, expression and antimicrobial activity of complement factor D in Megalobrama amblycephala // Fish Shellfish Immunol. 2019. Vol. 89. P. 43–51. DOI: 10.1016/j.fsi.2019.03.031

[189]

Lachmann PJ. The story of complement factor I. Immunobiology. 2019;224(4):511–517. DOI: 10.1016/j.imbio.2019.05.003

[190]

Lachmann P.J. The story of complement factor I // Immunobiology. 2019. Vol. 224, No. 4. P. 511–517. DOI: 10.1016/j.imbio.2019.05.003

[191]

Lachmann PJ, Müller-Eberhard HJ. The demonstration in human serum of “conglutinogen-activating factor” and its effect on the third component of complement. J Immunol. 1968;100(4):691–698. DOI: 10.4049/jimmunol.100.4.691

[192]

Lachmann P.J., Müller-Eberhard H.J. The demonstration in human serum of “conglutinogen-activating factor” and its effect on the third component of complement // J. Immunol. 1968. Vol. 100, No. 4. P. 691–698. DOI: 10.4049/jimmunol.100.4.691

[193]

Nakao M, Hisamatsu S, Nakahara M, et al. Molecular cloning of the complement regulatory factor I isotypes from the common carp (Cyprinus carpio). Immunogenetics. 2003;54(11):801–806. DOI: 10.1007/s00251-002-0518-9

[194]

Nakao M., Hisamatsu S., Nakahara M. et al. Molecular cloning of the complement regulatory factor I isotypes from the common carp (Cyprinus carpio) // Immunogenetics. 2003. Vol. 54, No. 11. P. 801–806. DOI: 10.1007/s00251-002-0518-9

[195]

Xiang J, Li X, Chen Y, et al. Complement factor I from flatfish half-smooth tongue (Cynoglossus semilaevis) exhibited anti-microbial activities. Dev Comp Immunol. 2015;53(1):199–209. DOI: 10.1016/j.dci.2015.06.010

[196]

Xiang J., Li X., Chen Y. et al. Complement factor I from flatfish half-smooth tongue (Cynoglossus semilaevis) exhibited anti-microbial activities // Dev. Comp. Immunol. 2015. Vol. 53, No. 1. P. 199–209. DOI: 10.1016/j.dci.2015.06.010

[197]

Jia BB, Jin CD, Li MF. The trypsin-like serine protease domain of paralichthys olivaceus complement factor I regulates complement activation and inhibits bacterial growth. Fish Shellfish Immunol. 2020;97:18–26. DOI: 10.1016/j.fsi.2019.12.019

[198]

Jia B.B., Jin C.D., Li M.F. The trypsin-like serine protease domain of Paralichthys olivaceus complement factor I regulates complement activation and inhibits bacterial growth // Fish Shellfish Immunol. 2020. Vol. 97. P. 18–26. DOI: 10.1016/j.fsi.2019.12.019

[199]

Rother RP, Rollins SA, Mojcik CF, et al. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol. 2007;25(11):1256–1264. DOI: 10.1038/nbt1344

[200]

Rother R.P., Rollins S.A., Mojcik C.F. et al. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria // Nat. Biotechnol. 2007. Vol. 25, No. 11. P. 1256–1264. DOI: 10.1038/nbt1344

[201]

Konar M, Granoff DM. Eculizumab treatment and impaired opsonophagocytic killing of meningococci by whole blood from immunized adults. Blood. 2017;130(7):891–899. DOI: 10.1182/blood-2017-05-781450

[202]

Konar M., Granoff D.M. Eculizumab treatment and impaired opsonophagocytic killing of meningococci by whole blood from immunized adults // Blood. 2017. Vol. 130, No. 7. P. 891–899. DOI: 10.1182/blood-2017-05-781450

[203]

McNamara LA, Topaz N, Wang X, et al. High risk for invasive meningococcal disease among patients receiving eculizumab (soliris) despite receipt of meningococcal vaccine. MMWR Morb Mortal Wkly Rep. 2017;66(27):734–737. DOI: 10.15585/mmwr.mm6627e1

[204]

McNamara L.A., Topaz N., Wang X. et al. High Risk for invasive meningococcal disease among patients receiving eculizumab (soliris) despite receipt of meningococcal vaccine // MMWR Morb. Mortal. Wkly. Rep. 2017. Vol. 66, No. 27. P. 734–737. DOI: 10.15585/mmwr.mm6627e1

[205]

Barnum SR. Therapeutic inhibition of complement: well worth the risk. Trends Pharmacol Sci. 2017;38(6):503–505. DOI: 10.1016/j.tips.2017.03.009

[206]

Barnum SR. Therapeutic inhibition of complement: well worth the risk // Trends Pharmacol. Sci. 2017. Vol. 38, No. 6. P. 503–505. DOI: 10.1016/j.tips.2017.03.009

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

190

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/