SAS Enterprise Guide 6.1 for physicians: getting started

Nikolay S. Bunenkov , Gulnara F. Bunenkova , Sergey A. Beliy , Vladimir V. Komok , Oleg A. Grinenko , Alexander S. Nemkov

Medical academic journal ›› 2019, Vol. 19 ›› Issue (3) : 27 -36.

PDF
Medical academic journal ›› 2019, Vol. 19 ›› Issue (3) : 27 -36. DOI: 10.17816/MAJ19327-36
Lecture
research-article

SAS Enterprise Guide 6.1 for physicians: getting started

Author information +
History +
PDF

Abstract

Objective. To develop algorithm of data analysis of prospective non-randomized clinical trial AMIRI–CABG (ClinicalTrials.gov Identifier: NCT03050489) using SAS Enterprise Guide 6.1.

Materials and methods. Data collection was performed according prospective non-randomized clinical trial AMIRI–CABG in Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia between 2016–2019 years with 336 patients. There is database with clinical, laboratory and instrumental data. Statistical analysis was performed with SAS Enterprise Guide 6.1.

Results. There was developed algorithm of data analysis of prospective non-randomized clinical trial AMIRI–CABG. This algorithm could be useful for physicians and researchers for data analysis.

Conclusion. Presented algorithm of data analysis could make easier and improve efficient data analysis. SAS Enterprise Guide 6.1 allows fast and accurate process big data.

Keywords

SAS Enterprise Guide 6.1 / statistical analysis / statistics / clinical trials / scientific research

Cite this article

Download citation ▾
Nikolay S. Bunenkov, Gulnara F. Bunenkova, Sergey A. Beliy, Vladimir V. Komok, Oleg A. Grinenko, Alexander S. Nemkov. SAS Enterprise Guide 6.1 for physicians: getting started. Medical academic journal, 2019, 19(3): 27-36 DOI:10.17816/MAJ19327-36

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Koretz RL. Assessing the evidence in evidence-based medicine. Nutr Clin Pract. 2019;34(1):60-72. https://doi.org/10.1002/ncp.10227.

[2]

May M. Twenty-five ways clinical trials have changed in the last 25 years. Nat Med. 2019;25(1):2-5. https://doi.org/10.1038/s41591-018-0314-1.

[3]

Гржибовский А. М. Типы данных, проверка распределения и описательная статистика // Экология человека. – 2008. – № 1. – С. 52–58. [Grjibovski АМ. Data types, control of distribution and descriptive statistics. Ecology, human. 2008;(1):52-58. (In Russ.)]

[4]

Dolezel D, McLeod A. Big data analytics in healthcare: investigating the diffusion of innovation. Perspect Health Inf Manag. 2019;16(Summer):1a.

RIGHTS & PERMISSIONS

Bunenkov N.S., Bunenkova G.F., Beliy S.A., Komok V.V., Grinenko O.A., Nemkov A.S.

AI Summary AI Mindmap
PDF

59

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/