Visualisation of kupffer cells in the rat liver with poly- and monoclonal antibodies against microglial-specific protein Iba-1

Inga A. Nikitina , Valeria A. Razenkova , Olga V. Kirik , Dmitrii E. Korzhevskii

Medical academic journal ›› 2023, Vol. 23 ›› Issue (1) : 85 -94.

PDF
Medical academic journal ›› 2023, Vol. 23 ›› Issue (1) : 85 -94. DOI: 10.17816/MAJ133649
Original research
research-article

Visualisation of kupffer cells in the rat liver with poly- and monoclonal antibodies against microglial-specific protein Iba-1

Author information +
History +
PDF

Abstract

BACKGROUND: A necessary attribute of any study, which is related to the cell biology of various structural components of the digestive tract, is the usage of modern immunohistochemical methods. One of the most difficult objects are resident liver macrophages, or Kupffer cells. This determines the high significance to develop a reliable approach for Kupffer cells visualization.

AIM: The aim of the study was to develop a protocol for the immunohistochemical research of Kupffer cells in rat liver using two types of primary antibodies against Iba-1, and to analyze the advantages and disadvantages of this approach, taking into account the use of zinc-ethanol-formaldehyde as a fixative.

MATERIALS AND METHODS: The study was carried out on liver samples of adult Wistar rats (n = 5). Goat polyclonal and rabbit monoclonal antibodies against calcium-binding protein Iba-1 were used for the ligh microscopy immunohistochemistry assay of resident liver macrophages.

RESULTS: Using two types of antibodies it was shown by quantitative analysis that rabbit monoclonal antibodies most completely reveal Iba-1-immunopositive structures compared to goat polyclonal antibodies. Fixation with zinc-ethanol-formaldehyde made it possible to reveal Iba-1-immunopositive cells in all studied rat liver samples.

CONCLUSIONS: Iba-1 immunohistochemistry using rabbit monoclonal antibodies was considered as the most optimal immunohistochemical approach. Fixation with zinc-ethanol-formaldehyde preserves the antigenic epitopes and allows the effective use of different antibodies.

Keywords

liver / macrophages / Kupffer cells / Iba-1

Cite this article

Download citation ▾
Inga A. Nikitina, Valeria A. Razenkova, Olga V. Kirik, Dmitrii E. Korzhevskii. Visualisation of kupffer cells in the rat liver with poly- and monoclonal antibodies against microglial-specific protein Iba-1. Medical academic journal, 2023, 23(1): 85-94 DOI:10.17816/MAJ133649

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baeck C, Wei X, Bartneck M, et al. Pharmacological inh.ibition of the chemokine C-C motif chemokine ligand 2 (monocyte chemoattractant protein 1) accelerates liver fibrosis regression by suppressing Ly-6C+ macrophage infiltration in mice. Hepatology. 2014;59(3):1060–1072. DOI: 10.1002/hep.26783

[2]

Baeck C., Wei X., Bartneck M. et al. Pharmacological inhibition of the chemokine C-C motif chemokine ligand 2 (monocyte chemoattractant protein 1) accelerates liver fibrosis regression by suppressing Ly-6C+ macrophage infiltration in mice // Hepatology. 2014. Vol. 59, No. 3. P. 1060–1072. DOI: 10.1002/hep.26783

[3]

Tsuji Y, Kuramochi M, Golbar HM, et al. Acetaminophen-induced rat hepatotoxicity based on M1/M2-macrophage polarization, in possible relation to damage-associated molecular patterns and autophagy. Int J Mol Sci. 2020;21(23):8998. DOI: 10.3390/ijms21238998

[4]

Tsuji Y., Kuramochi M., Golbar H.M. et al. Acetaminophen-induced rat hepatotoxicity based on M1/M2-macrophage polarization, in possible relation to damage-associated molecular patterns and autophagy // Int. J. Mol. Sci. 2020. Vol. 21, No. 23. P. 8998. DOI: 10.3390/ijms21238998

[5]

Purhonen J, Rajendran J, Mörgelin M, et al. Ketogenic diet attenuates hepatopathy in mouse model of respiratory chain complex III deficiency caused by a Bcs1l mutation. Sci Rep. 2017;7:1–16. DOI: 10.1038/s41598-017-01109-4

[6]

Purhonen J., Rajendran J., Mörgelin M. et al. Ketogenic diet attenuates hepatopathy in mouse model of respiratory chain complex III deficiency caused by a Bcs1l mutation // Sci. Rep. 2017. Vol. 7. P. 1–16. DOI: 10.1038/s41598-017-01109-4

[7]

Mossanen JC, Krenkel O, Ergen C, et al. Chemokine (C-C motif) receptor 2–positive monocytes aggravate the early phase of acetaminophen-induced acute liver injury. Hepatology. 2016;64(5):1667–1682. DOI: 10.1002/hep.28682

[8]

Mossanen J.C., Krenkel O., Ergen C. et al. Chemokine (C-C motif) receptor 2–positive monocytes aggravate the early phase of acetaminophen-induced acute liver injury // Hepatology. 2016. Vol. 64, No. 5. P. 1667–1682. DOI: 10.1002/hep.28682

[9]

Zhao Q, Sheng MF, Wang YY, et al. LncRNA Gm26917 regulates inflammatory response in macrophages by enhancing Annexin A1 ubiquitination in LPS-induced acute liver injury. Front Pharmacol. 2022;13:975250. DOI: 10.3389/fphar.2022.975250

[10]

Zhao Q., Sheng M.F., Wang Y.Y. et al. LncRNA Gm26917 regulates inflammatory response in macrophages by enhancing Annexin A1 ubiquitination in LPS-induced acute liver injury // Front. Pharmacol. 2022. Vol. 13. P. 975250. DOI: 10.3389/fphar.2022.975250

[11]

Nuovo G. False-positive results in diagnostic immunohistochemistry are related to horseradish peroxidase conjugates in commercially available assays. Ann Diagn Pathol. 2016;25:54–59. DOI: 10.1016/j.anndiagpath.2016.09.010

[12]

Nuovo G. False-positive results in diagnostic immunohistochemistry are related to horseradish peroxidase conjugates in commercially available assays // Ann. Diagn. Pathol. 2016. Vol. 25. P. 54–59. DOI: 10.1016/j.anndiagpath.2016.09.010

[13]

Hammond MEH, Hayes DF, Dowsett M, et al. American Society of Clinical Oncology/College of American Pathologists Guideline Recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Arch Pathol Lab Med. 2010;134(7):e48–e72. DOI: 10.5858/134.7.e48

[14]

Hammond M.E.H., Hayes D.F., Dowsett M. et al. American Society of Clinical Oncology/College of American Pathologists Guideline Recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version) // Arch. Pathol. Lab. Med. 2010. Vol. 134, No. 7. P. e48–e72. DOI: 10.5858/134.7.e48

[15]

Bordeaux J, Welsh A, Agarwal S, et al. Antibody validation. BioTechniques. 2010;48(3):197–209. DOI: 10.2144/000113382

[16]

Bordeaux J., Welsh A., Agarwal S. et al. Antibody validation // BioTechniques. 2010. Vol. 48, No. 3. P. 197–209. DOI: 10.2144/000113382

[17]

Korzhevskii DE, Otellin VA, Grigor'ev IP, et al. Immunocytochemical detection of neuronal NO synthase in rat brain cells. Neurosci Behav Physiol. 2008;38(8):835–838. DOI: 10.1007/s11055-008-9063-9

[18]

Коржевский Д.Э., Отеллин В.А., Григорьев И.П. и др. Иммуноцитохимическое выявления нейрональной NO-синтазы в клетках головного мозга крысы // Морфология. 2007. Т. 132, № 4. С. 77–80.

[19]

Jiang Y. Tang Y, Hoover C, et al. Kupffer cell receptor CLEC4F is important for the destruction of desialylated platelets in mice. Cell Death Differ. 2021;28(11):3009–3021. DOI: 10.1038/s41418-021-00797-w

[20]

Jiang Y., Tang Y., Hoover C. et al. Kupffer cell receptor CLEC4F is important for the destruction of desialylated platelets in mice // Cell Death Differ. 2021. Vol. 28, No. 11. P. 3009–3021. DOI: 10.1038/s41418-021-00797-w

[21]

Chen B, Li R, Kubota A, et al. Identification of macrophages in normal and injured mouse tissues using reporter lines and antibodies. Sci Rep. 2022;12(1):4542. DOI: 10.1038/s41598-022-08278-x

[22]

Chen B., Li R., Kubota A. et al. Identification of macrophages in normal and injured mouse tissues using reporter lines and antibodies // Sci. Rep. 2022. Vol. 12, No. 1. P. 4542. DOI: 10.1038/s41598-022-08278-x

[23]

Ait Ahmed Y, Fu Y, Rodrigues RM, et al. Kupffer cell restoration after partial hepatectomy is mainly driven by local cell proliferation in IL-6-dependent autocrine and paracrine manners. Cell Mol Immunol. 2021;18(9):2165–2176. DOI: 10.1038/s41423-021-00731-7

[24]

Ait Ahmed Y., Fu Y., Rodrigues R.M. et al. Kupffer cell restoration after partial hepatectomy is mainly driven by local cell proliferation in IL-6-dependent autocrine and paracrine manners // Cell. Mol. Immunol. 2021. Vol. 18, No. 9. P. 2165–2176. DOI: 10.1038/s41423-021-00731-7

[25]

Miyagawa S, Miwa S, Soeda J, et al. Morphometric analysis of liver macrophages in patients with colorectal liver metastasis. Clin Exp Metastasis. 2002;19(2):119–125. DOI: 10.1023/a:1014571013978

[26]

Miyagawa S., Miwa S., Soeda J. et al. Morphometric analysis of liver macrophages in patients with colorectal liver metastasis // Clin. Exp. Metastasis. 2002. Vol. 19, No. 2. P. 119–125. DOI: 10.1023/a:1014571013978

[27]

Nishikawa K, Iwaya K, Kinoshita M, et al. Resveratrol increases CD68+ Kupffer cells colocalized with adipose differentiation-related protein and ameliorates high-fat-diet-induced fatty liver in mice. Mol Nutr Food Res. 2015;59(6):1155–1170. DOI: 10.1002/mnfr.201400564

[28]

Nishikawa K., Iwaya K., Kinoshita M. et al. Resveratrol increases CD68+ Kupffer cells colocalized with adipose differentiation-related protein and ameliorates high-fat-diet-induced fatty liver in mice // Mol. Nutr. Food Res. 2015. Vol. 59, No. 6. P. 1155–1170. DOI: 10.1002/mnfr.201400564

[29]

Ananiev J, Penkova M, Tchernev G, et al. Macrophages and dendritic cells in the development of liver injury leading to liver failure. J Biol Regul Homeost Agents. 2014;28(4):789–794.

[30]

Ananiev J., Penkova M., Tchernev G. et al. Macrophages and dendritic cells in the development of liver injury leading to liver failure // J. Biol. Regul. Homeost. Agents. 2014. Vol. 28, No. 4. P. 789–794.

[31]

Guillot A, Buch C, Jourdan T. Kupffer Cell and monocyte-derived macrophage identification by immunofluorescence on formalin-fixed, paraffin-embedded (FFPE) mouse liver sections. Methods Mol Biol. 2020;2164:45–53. DOI: 10.1007/978-1-0716-0704-6_6

[32]

Guillot A., Buch C., Jourdan T. Kupffer Cell and monocyte-derived macrophage identification by immunofluorescence on formalin-fixed, paraffin-embedded (FFPE) mouse liver sections // Methods Mol. Biol. 2020. Vol. 2164. P. 45–53. DOI: 10.1007/978-1-0716-0704-6_6

[33]

Korzhevskii DE, Kirik OV, Sukhorukova EG, Syrszova MA. Microglia of the human substantia nigra. Med Acad J. 2014;14(4):68–72. (In Russ.)

[34]

Коржевский Д.Э., Кирик О.В., Сухорукова Е.Г., Сырцова М.А. Микроглия черного вещества головного мозга человека // Медицинский академический журнал. 2014. Т. 14, № 4. С. 68–72.

[35]

Hopperton KE, Mohammad D, Trépanier MO, et al. Markers of microglia in post-mortem brain samples from patients with Alzheimer’s disease: a systematic review. Mol Psychiatry. 2018;23(2):177–198. DOI: 10.1038/mp.2017.246

[36]

Hopperton K.E., Mohammad D., Trépanier M.O. et al. Markers of microglia in post-mortem brain samples from patients with Alzheimer’s disease: a systematic review // Mol. Psychiatry. 2018. Vol. 23, No. 2. P. 177–198. DOI: 10.1038/mp.2017.246

[37]

Korzhevskii DE, Kirik OV, Alekseyeva OS, et al. Intranuclear accumulation of Iba-1 protein in microgliocytes in the human brain. Neurosci Behav Physiol. 2017. Vol. 47, No. 4. P. 435–437. (In Russ.)

[38]

Коржевский Д.Э., Кирик О.В., Алексеева О.С., и др. Внутриядерное накопление белка IBA-1 в микроглиоцитах головного мозга человека // Морфология. 2016. Т. 149, № 2. С. 73–76.

[39]

Saper CB. A guide to the perplexed on the specificity of antibodies. J Histochem Cytochem. 2009;57(1):1–5. DOI: 10.1369/jhc.2008.952770

[40]

Saper C.B. A guide to the perplexed on the specificity of antibodies // J. Histochem. Cytochem. 2009. Vol. 57, No. 1. P. 1–5. DOI: 10.1369/jhc.2008.952770

[41]

Sasaki Y, Ohsawa K, Kanazawa H, et al. Iba1 is an actin-cross-linking protein in macrophages/microglia. Biochem Biophys Res Commun. 2001;286(2):292–297. DOI: 10.1006/bbrc.2001.5388

[42]

Sasaki Y., Ohsawa K., Kanazawa H. et al. Iba1 is an actin-cross-linking protein in macrophages/microglia // Biochem. Biophys. Res. Commun. 2001. Vol. 286, No. 2. P. 292–297. DOI: 10.1006/bbrc.2001.5388

[43]

Nguyen TTH, Lee JS, Shim H. Construction of rabbit immune antibody libraries. Methods Mol Biol. 2018;1701:133–146. DOI: 10.1007/978-1-4939-7447-4_7

[44]

Nguyen T.T.H., Lee J.S., Shim H. Construction of rabbit immune antibody libraries // Methods Mol. Biol. 2018. Vol. 1701. P. 133–146. DOI: 10.1007/978-1-4939-7447-4_7

[45]

Rashidian J, Lloyd J. Single B Cell cloning and production of rabbit monoclonal antibodies. Methods Mol Biol. 2020;2070:423–441. DOI: 10.1007/978-1-4939-9853-1_23

[46]

Rashidian J., Lloyd J. Single B Cell cloning and production of rabbit monoclonal antibodies // Methods Mol. Biol. 2020. Vol. 2070. P. 423–441. DOI: 10.1007/978-1-4939-9853-1_23

[47]

Grigorev IP, Korzhevskii DE. Current technologies for fixation of biological material for immunohistochemical analysis (review). Mod Technol Med. 2018;10(2):156. DOI: 10.17691/stm2018.10.2.19

[48]

Григорьев И.П., Коржевский Д.Э. Современные технологии фиксации биологического материала, применяемые при проведении иммуногистохимических исследований (обзор) // Современные технологии в медицине. 2018. Т. 10, № 2. С. 156. DOI: 10.17691/stm2018.10.2.19

[49]

Patent RU 2719163C1/ 17.04.2020. Korzhevskij DE, Kirik OV, Alekseeva OS. Method of antigen retrieval during immunocytochemical reactions. (In Russ.)

[50]

Патент RU2719163C1/ 17.04.2020. Коржевский Д.Э., Кирик О.В., Алексеева О.С. Способ демаскирования антигенов при проведении иммуноцитохимических реакций.

[51]

Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–682. DOI: 10.1038/nmeth.2019

[52]

Schindelin J., Arganda-Carreras I., Frise E. et al. Fiji: an open-source platform for biological-image analysis // Nat. Methods. 2012. Vol. 9, No. 7. P. 676–682. DOI: 10.1038/nmeth.2019

[53]

Pervin M, Hasan I, Kobir MA, et al. Immunophenotypic analysis of the distribution of hepatic macrophages, lymphocytes and hepatic stellate cells in the adult rat liver. Anat Histol Embryol. 2021;50(4):736–745. DOI: 10.1111/ahe.12718

[54]

Pervin M., Hasan I., Kobir M.A. et al. Immunophenotypic analysis of the distribution of hepatic macrophages, lymphocytes and hepatic stellate cells in the adult rat liver // Anat. Histol. Embryol. 2021. Vol. 50, No. 4. P. 736–745. DOI: 10.1111/ahe.12718

[55]

Lefkowitch JH, Haythe JH, Regent N. Kupffer Cell aggregation and perivenular distribution in steatohepatitis. Mod Pathol. 2002;15(7):699–704. DOI: 10.1097/01.MP.0000019579.30842.96

[56]

Lefkowitch J.H., Haythe J.H., Regent N. Kupffer Cell aggregation and perivenular distribution in steatohepatitis // Mod. Pathol. 2002. Vol. 15, No. 7. P. 699–704. DOI: 10.1097/01.MP.0000019579.30842.96

[57]

Lee WB, Erm SK, Kim KY, Becker RP. Emperipolesis of erythroblasts within Kupffer cells during hepatic hemopoiesis in human fetus. Anat Rec. 1999;256(2):158–164. DOI: 10.1002/(SICI)1097-0185(19991001)256:2<158::AID-AR6>3.0.CO;2-0

[58]

Lee W.B., Erm S.K., Kim K.Y., Becker R.P. Emperipolesis of erythroblasts within Kupffer cells during hepatic hemopoiesis in human fetus // Anat. Rec. 1999. Vol. 256, No. 2. P. 158–164. DOI: 10.1002/(SICI)1097-0185(19991001)256:2<158::AID-AR6>3.0.CO;2-0

[59]

Urushihara N, Iwagaki H, Yagi T, et al. Elevation of serum interleukin-18 levels and activation of Kupffer cells in biliary atresia. J Pediatr Surg. 2000;35(3):446–449. DOI: 10.1016/s0022-3468(00)90211-2

[60]

Urushihara N., Iwagaki H., Yagi T. et al. Elevation of serum interleukin-18 levels and activation of Kupffer cells in biliary atresia // J. Pediatr. Surg. 2000. Vol. 35, No. 3. P. 446–449. DOI: 10.1016/s0022-3468(00)90211-2

[61]

Brown KE, Brunt EM, Heinecke JW. Immunohistochemical detection of myeloperoxidase and its oxidation products in Kupffer cells of human liver. Am J Pathol. 2001;159(6):2081–2088. DOI: 10.1016/S0002-9440(10)63059-3

[62]

Brown K.E., Brunt E.M., Heinecke J.W. Immunohistochemical detection of myeloperoxidase and its oxidation products in Kupffer cells of human liver // Am. J. Pathol. 2001. Vol. 159, No. 6. P. 2081–2088. DOI: 10.1016/S0002-9440(10)63059-3

[63]

Domínguez-Soto A, Aragoneses-Fenoll L, Gómez-Aguado F, et al. The pathogen receptor liver and lymph node sinusoidal endotelial cell C-type lectin is expressed in human Kupffer cells and regulated by PU.1. Hepatology. 2009;49(1):287–296. DOI: 10.1002/hep.22678

[64]

Domínguez-Soto A., Aragoneses-Fenoll L., Gómez-Aguado F. et al. The pathogen receptor liver and lymph node sinusoidal endotelial cell C-type lectin is expressed in human Kupffer cells and regulated by PU.1 // Hepatology. 2009. Vol. 49, No. 1. P. 287–296. DOI: 10.1002/hep.22678

[65]

Abdel Hafez SMN, Rifaai RA, Bayoumi AMA. Impact of renal ischemia/reperfusion injury on the rat Kupffer cell as a remote cell: A biochemical, histological, immunohistochemical, and electron microscopic study. Acta Histochem. 2019;121(5):575–583. DOI: 10.1016/j.acthis.2019.04.008

[66]

Abdel Hafez S.M.N., Rifaai R.A., Bayoumi A.M.A. Impact of renal ischemia/reperfusion injury on the rat Kupffer cell as a remote cell: A biochemical, histological, immunohistochemical, and electron microscopic study // Acta Histochem. 2019. Vol. 121, No. 5. P. 575–583. DOI: 10.1016/j.acthis.2019.04.008

[67]

Haralanova-Ilieva B, Ramadori G, Armbrust T. Expression of osteoactivin in rat and human liver and isolated rat liver cells. J Hepatol. 2005;42(4):565–572. DOI: 10.1016/j.jhep.2004.12.021

[68]

Haralanova-Ilieva B., Ramadori G., Armbrust T. Expression of osteoactivin in rat and human liver and isolated rat liver cells // J. Hepatol. 2005. Vol. 42, No. 4. P. 565–572. DOI: 10.1016/j.jhep.2004.12.021

[69]

Monnier J, Piquet-Pellorce C, Feige JJ, et al. Prokineticin 2/Bv8 is expressed in Kupffer cells in liver and is down regulated in human hepatocellular carcinoma. World J Gastroenterol. 2008;14(8):1182–1191. DOI: 10.3748/wjg.14.1182

[70]

Monnier J., Piquet-Pellorce C., Feige J.J. et al. Prokineticin 2/Bv8 is expressed in Kupffer cells in liver and is down regulated in human hepatocellular carcinoma // World J. Gastroenterol. 2008. Vol. 14, No. 8. P. 1182–1191. DOI: 10.3748/wjg.14.1182

[71]

Dong W, Lu A, Zhao J, et al. An efficient and simple co-culture method for isolating primary human hepatic cells: Potential application for tumor microenvironment research. Oncol. Rep. 2016;36(4):2126–2134. DOI: 10.3892/or.2016.4979

[72]

Dong W., Lu A., Zhao J. et al. An efficient and simple co-culture method for isolating primary human hepatic cells: Potential application for tumor microenvironment research // Oncol. Rep. 2016. Vol. 36, No. 4. P. 2126–2134. DOI: 10.3892/or.2016.4979

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

62

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/