Reducing of the respiratory effects of dizocilpine by recombinant interleukin-1β in experiment
Tatiana S. Tumanova , Vladimir A. Merkurjev , Galina A. Danilova , Viacheslav G. Aleksandrov
Medical academic journal ›› 2023, Vol. 23 ›› Issue (1) : 75 -83.
Reducing of the respiratory effects of dizocilpine by recombinant interleukin-1β in experiment
BACKGROUND: For a deeper understanding of the pathogenesis of COVID-19, it is necessary to study the mechanisms that implement the influence of pro-inflammatory cytokines on the processes of regulation of the external respiratory system. In experiments on anesthetized rats, the effect of the pro-inflammatory cytokine interleukin-1β on the respiratory effects of dizocilpine (MK-801), which has an inhibitory effect on neurotransmitter systems involved in the control of the respiratory system, was studied. It was considered that, first of all, dizocilpine is a highly effective non-competitive NMDA-type glutamate receptor blocker.
AIM: The objectives of the study were to identify the effect of the influence of dizocilpine on the parameters of the breathing pattern and to assess the degree of change in this effect when dizocilpine was administered against the background of an elevated systemic level of interleukin-1β.
MATERIALS AND METHODS: The study was performed on 24 anesthetized tracheostomy spontaneously breathing rats. To register the volume-time parameters of external respiration, a pneumotachographic technique was used. In the process of processing the obtained results, the value of the recorded parameter was determined immediately before the introduction of MK-801 and 1 min after its introduction
RESULTS: At a dosage of 0.1 mg/kg, dizocilpine was found to cause a reversible short-term decrease in respiratory rate, tidal volume, and minute respiratory volume. It has been shown that this effect of dizocilpine does not appear after intravenous administration of interleukin-1β (at a dosage of 2 μg/kg). The results obtained confirm the assumption about the effect of an elevated systemic level of interleukin-1β on the state of neurotransmitter systems involved in the control of respiration.
CONCLUSIONS: Based on the correlation of the obtained results with the literature data, an assumption was made about a change in the state of NMDA-type glutamate receptors under the influence of pro-inflammatory cytokines, which may be one of the mechanisms of cardiorespiratory dysfunctions observed in a systemic inflammatory reaction accompanied by hypercytokinemia.
respiration / interleukin-1β / dizocilpine (MK-801) / NMDA receptors / cytokine storm
| [1] |
Wong JP, Viswanathan S, Wang M, et al. Current and future developments in the treatment of virus-induced hypercytokinemia. Future Med Chem. 2017;9(2):169–178. DOI: 10.4155/fmc-2016-0181 |
| [2] |
Wong J.P., Viswanathan S., Wang M. et al. Current and future developments in the treatment of virus-induced hypercytokinemia // Future Med. Chem. 2017. Vol. 9, No. 2. P. 169–178. DOI: 10.4155/fmc-2016-0181 |
| [3] |
Aleksandrova NP. Pathogenesis of respiratory failure in coronavirus disease (COVID-19). Integrative Physiology. 2020;1(4):285–293. (In Russ.) DOI: 10.33910/2687-1270-2020-1-4-285-293 |
| [4] |
Александрова Н.П. Патогенез дыхательной недостаточности при коронавирусной болезни (COVID-19) // Интегративная физиология. 2020. Т. 1, № 4. C. 285–293. DOI: 10.33910/2687-1270-2020-1-4-285-293 |
| [5] |
Aleksandrov VG, Aleksandrova NP, Tumanova TS, et al. Participation of NO-ergic mechanisms in realization of respiratory effects of pro-inflammatory cytokine interleukine-1beta. Russian Journal of Physiology. 2015;101(12):1372–1384. (In Russ.) |
| [6] |
Александров В.Г., Александрова Н.П., Туманова Т.С. и др. Участие NO-ергических механизмов в реализации респираторных эффектов провоспалительного цитокина интерлейкина-1бета // Российский физиологический журнал им. И.М. Сеченова. 2015. Т. 101, № 12. С. 1372–1384. |
| [7] |
Aleksandrova NP, Klinnikova AA, Danilova GA. Cyclooxygenase and nitric oxide synthase pathways mediate the respiratory effects of TNF-α in rats. Respir Physiol Neurobiol. 2021;284:103567. DOI: 10.1016/j.resp.2020.103567 |
| [8] |
Aleksandrova N.P., Klinnikova A.A., Danilova G.A. Cyclooxygenase and nitric oxide synthase pathways mediate the respiratory effects of TNF-α in rats // Respir. Physiol. Neurobiol. 2021. Vol. 284. P. 103567. DOI: 10.1016/j.resp.2020.103567 |
| [9] |
Churchill L, Taishi P, Wang M. Brain distribution of cytokine m RNA induced by systemic administration of interleukin-1beta or tumor necrosis factor alpha. Brain Res. 2006;1120(1):64–69. DOI: 10.1016/j.brainres.2006.08.083 |
| [10] |
Churchill L., Taishi P., Wang M. Brain distribution of cytokine mRNA induced by systemic administration of interleukin-1beta or tumor necrosis factor alpha // Brain Res. 2006. Vol. 1120, No. 1. P. 64–69. DOI: 10.1016/j.brainres.2006.08.083 |
| [11] |
Vardhan A, Kachroo A, Sapru HN. Excitatory amino acid receptors in commissural nucleus of the NTS mediate carotid chemoreceptor responses. Am J Physiol. 1993;264(1Pt 2):R41–R50. DOI: 10.1152/ajpregu.1993.264.1.R41 |
| [12] |
Vardhan A., Kachroo A., Sapru H.N. Excitatory amino acid receptors in commissural nucleus of the NTS mediate carotid chemoreceptor responses // Am. J. Physiol. 1993. Vol. 264, No. 1 Pt 2. P. R41–R50. DOI: 10.1152/ajpregu.1993.264.1.R41 |
| [13] |
Braga VA, Antunes VR, Machado BH. Autonomic and respiratory responses to microinjection of L-glutamate into the commissural subnucleus of the NTS in the working heart-brainstem preparation of the rat. Brain Res. 2006;1093(1):150–160. DOI: 10.1016/j.brainres.2006.03.105 |
| [14] |
Braga V.A., Antunes V.R., Machado B.H. Autonomic and respiratory responses to microinjection of L-glutamate into the commissural subnucleus of the NTS in the working heart-brainstem preparation of the rat // Brain Res. 2006. Vol. 1093, No. 1. P. 150–160. DOI: 10.1016/j.brainres.2006.03.105 |
| [15] |
Chiang CH, Hwang JC. The different changes of phrenic nerve activity and frequency elicited by microinjection of L-glutamic acid into ventrolateral nucleus of the tractus solitarius in cats. Chin J Physiol. 1990;33(2):111–120. |
| [16] |
Chiang C.H., Hwang J.C. The different changes of phrenic nerve activity and frequency elicited by microinjection of L-glutamic acid into ventrolateral nucleus of the tractus solitarius in cats // Chin. J. Physiol. 1990. Vol. 33, No. 2. P. 111–120. |
| [17] |
Clarke PB, Reuben M. Inhibition by dizocilpine (MK-801) of striatal dopamine release induced by MPTP and MPP+: possible action at the dopamine transporter. Br J Pharmacol. 1995;114(2):315–322. DOI: 10.1111/j.1476-5381.1995.tb13229.x |
| [18] |
Clarke P.B., Reuben M. Inhibition by dizocilpine (MK-801) of striatal dopamine release induced by MPTP and MPP+: possible action at the dopamine transporter // Br. J. Pharmacol. 1995. Vol. 114, No. 2. P. 315–322. DOI: 10.1111/j.1476-5381.1995.tb13229.x |
| [19] |
Waters KA, Machaalani R. Role of NMDA receptors in development of respiratory control. Respir Physiol Neurobiol. 2005;149(1–3):123–130. DOI: 10.1016/j.resp.2005.03.009 |
| [20] |
Waters K.A., Machaalani R. Role of NMDA receptors in development of respiratory control // Respir. Physiol. Neurobiol. 2005. Vol. 149, No. 1–3. P. 123–130. DOI: 10.1016/j.resp.2005.03.009 |
| [21] |
Aleksandrov VG, Bui Thi Kh, Aleksandrova NP. The effect of cerebral glutamate enhanced level on the respiratory system of anesthetized rats. Russian Journal of Physiology. 2012;98(7):845–853. (In Russ.) |
| [22] |
Александров В.Г., Буй Тхи Х., Александрова Н.П. Влияние повышенного церебрального уровня глутамата на состояние респираторной системы анестезированной крысы // Российский физиологический журнал им. И.М. Сеченова. 2012. Т. 98, № 7. С. 845–853. |
| [23] |
Shao XM, Feldman JL. Central cholinergic regulation of respiration: nicotinic receptors. Acta Pharmacol Sin. 2009;30(6):761–770. DOI: 10.1038/aps.2009.88 |
| [24] |
Shao X.M., Feldman J.L. Central cholinergic regulation of respiration: nicotinic receptors // Acta Pharmacol. Sin. 2009. Vol. 30, No. 6. P. 761–770. DOI: 10.1038/aps.2009.88 |
| [25] |
Lalley PM. Opioidergic and dopaminergic modulation of respiration. Respir Physiol Neurobiol. 2008;164(1–2):160–167. DOI: 10.1016/j.resp.2008.02.004 |
| [26] |
Lalley P.M. Opioidergic and dopaminergic modulation of respiration // Respir. Physiol. Neurobiol. 2008. Vol. 164, No. 1–2. P. 160–167. DOI: 10.1016/j.resp.2008.02.004 |
| [27] |
Iovino L, Mutolo D, Cinelli E, et al. Breathing stimulation mediated by 5-HT1A and 5-HT3 receptors within the preBötzinger complex of the adult rabbit. Brain Res. 2019;1704:26–39. DOI: 10.1016/j.brainres.2018.09.020 |
| [28] |
Iovino L., Mutolo D., Cinelli E. et al. Breathing stimulation mediated by 5-HT1A and 5-HT3 receptors within the preBötzinger complex of the adult rabbit // Brain Res. 2019. Vol. 1704. P. 26–39. DOI: 10.1016/j.brainres.2018.09.020 |
| [29] |
Huettner JE, Bean BP. Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc Natl Acad Sci USA. 1988;85(4):1307–1311. DOI: 10.1073/pnas.85.4.1307 |
| [30] |
Huettner J.E., Bean B.P. Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels // Proc. Natl. Acad. Sci. USA. 1988. Vol. 85, No. 4. P. 1307–1311. DOI: 10.1073/pnas.85.4.1307 |
| [31] |
Amador M, Dani JA. MK-801 inhibition of nicotinic acetylcholine receptor channels. Synapse. 1991;7(3):207–215. DOI: 10.1002/syn.890070305 |
| [32] |
Amador M., Dani J.A. MK-801 inhibition of nicotinic acetylcholine receptor channels // Synapse. 1991. Vol. 7, No. 3. P. 207–215. DOI: 10.1002/syn.890070305 |
| [33] |
Iravani MM, Muscat R, Kruk ZL. MK-801 interaction with the 5-HT transporter: a real-time study in brain slices using fast cyclic voltammetry. Synapse. 1999;32(3):212–224. DOI: 10.1002/(SICI)1098-2396(19990601)32:3<212:AID-SYN7>3.0.CO;2-M |
| [34] |
Iravani M.M., Muscat R., Kruk Z.L. MK-801 interaction with the 5-HT transporter: a real-time study in brain slices using fast cyclic voltammetry // Synapse. 1999. Vol. 32, No. 3. P. 212–224. DOI: 10.1002/(SICI)1098-2396(19990601)32:3<212:AID-SYN7>3.0.CO;2-M |
| [35] |
Simbirtsev AS. Interleukin-1: from the experiment to the clinic. Medical Immunology (Russia). 2001;3(3):431–438. (In Russ.) |
| [36] |
Симбирцев А.С. Интерлейкин-1: от эксперимента в клинику // Медицинская иммунология. 2001. Т. 3, № 3. С. 431–438. |
| [37] |
Dascombe MJ, Rothwell NJ, Sagay BO, Stock MJ. Pyrogenic and thermogenic effects of interleukin l beta in the rat. Am J Physiol. 1989;256(1 Pt 1):E7–l1. DOI: 10.1152/ajpendo.1989.256.1.E7 |
| [38] |
Dascombe M.J., Rothwell N.J., Sagay B.O., Stock M.J. Pyrogenic and thermogenic effects of interleukin l beta in the rat // Am. J. Physiol. 1989. Vol. 256, No. 1 Pt 1. P. E7–l1. DOI: 10.1152/ajpendo.1989.256.1.E7 |
| [39] |
Morimoto A, Murakami N, Sakata Y, et al. Functional and structural differences in febrile mechanism between rabbits and rats. J Physiol. 1990;427:227–239. DOI: 10.1113/jphysiol.1990.sp018169 |
| [40] |
Morimoto A., Murakami N., Sakata Y. et al. Functional and structural differences in febrile mechanism between rabbits and rats // J. Physiol. 1990. Vol. 427, No. 227–239. DOI: 10.1113/jphysiol.1990.sp018169 |
| [41] |
McCarthy HD, Dryden S, Williams G. Interleukin-1 P-induced anorexia and pyrexia in rat: relationship to hypothalamic neuropeptide Y. Am J Physiol. 1995;269(5 Pt 1):E852–E857. DOI: 10.1152/ ajpendo.1995.269.5.E852 |
| [42] |
McCarthy H.D., Dryden S., Williams G. Interleukin-1 P-induced anorexia and pyrexia in rat: relationship to hypothalamic neuropeptide Y // Am. J. Physiol. 1995. Vol. 269, No. 5 Pt 1. P. E852–E857. DOI: 10.1152/ ajpendo.1995.269.5.E852 |
| [43] |
Pertsov SS, Koplik EV, Kalinichenko LS, Simbirtsev AS. Influence of interleukin-1β on lipid peroxidation in the emotiogenic brain structures of rats under acute stress. Bull Exp Biol Med. 2010;150(1):13–16. (In Russ.) DOI: 10.1007/s10517-010-1054-5 |
| [44] |
Перцов С.С., Коплик Е.В., Калиниченко Л.С., Симбирцев А.С. Влияние интерлейкина-1β на перекисное окисление липидов в эмоциогенных структурах головного мозга крыс при острой стрессорной нагрузке // Бюллетень экспериментальной биологии и медицины. 2010. Т. 150, № 1. С. 13–16. DOI: 10.1007/s10517-010-1054-5 |
| [45] |
Sazonova TA, Varyushina EA, Aleksandrov GV, et al. Perspektivy ispol’zovaniya rekombinantnogo interleikina-1β cheloveka dlya lecheniya ostrykh povrezhdenii slizistoi obolochki zheludochno-kishechnogo trakta u krys. Russian Journal of Allergy. 2012;6:70–71. (In Russ.) |
| [46] |
Сазонова Т.А., Варюшина Е.А., Александров Г.В. и др. Перспективы использования рекомбинантного интерлейкина-1β человека для лечения острых повреждений слизистой оболочки желудочно-кишечного тракта у крыс // Российский аллергологический журнал. 2012. Т. 6. С. 70–71. |
| [47] |
Varyushina EA, Antsiferova MA, Aleksandrov GV, et al. Regulatory role of interleukin-1 in local inflammation and tissue regeneration in a skin wound model. Russian Journal of Allergy. 2012;9(6):62–63. (In Russ.) DOI: 10.36691/RJA728 |
| [48] |
Варюшина Е.А., Анциферова М.А., Александров Г.В. и др. Регуляторная роль интерлейкина-1 при местном воспалении и регенерации тканей в модели кожной раны // Российский аллергологический журнал. 2012. Т. 9, № 6. С. 62–63. DOI: 10.36691/RJA728 |
| [49] |
Huettner JE, Bean BP. Neurobiology Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: Selective binding to open channels. Proc Natl Acad Sci USA. 1988;85(4):1307–1311. DOI: 10.1073/pnas.85.4.1307 |
| [50] |
Huettner J.E., Bean B.P. Neurobiology Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: Selective binding to open channels // Proc. Natl. Acad. Sci. USA. 1988. Vol. 85, No. 4. P. 1307–1311. DOI: 10.1073/pnas.85.4.1307 |
| [51] |
Haji A, Pierrefiche O, Takeda R, et al. Membrane potentials of respiratory neurones during dizocilpine-induced apneusis in adult cats. J Physiol. 1996;495(3):851–861. DOI: 10.1113/jphysiol.1996.sp021637 |
| [52] |
Haji A., Pierrefiche O., Takeda R. et al. Membrane potentials of respiratory neurones during dizocilpine-induced apneusis in adult cats // J. Physiol. 1996. Vol. 495, No. 3. P. 851–861. DOI: 10.1113/jphysiol.1996.sp021637 |
| [53] |
Foutz AS, Champagnat J, Denavit-Saubié M. Involvement of N-methyl-D-aspartate (NMDA) receptors in respiratory rhythmogenesis. Brain Res. 1989;500(1–2):199–208. DOI: 10.1016/0006-8993(89)90314-4 |
| [54] |
Foutz A.S., Champagnat J., Denavit-Saubié M. Involvement of N-methyl-D-aspartate (NMDA) receptors in respiratory rhythmogenesis // Brain Res. 1989. Vol. 500, No. 1–2. P. 199–208. DOI: 10.1016/0006-8993(89)90314-4 |
| [55] |
Bongianni F, Mutolo D, Carfì M, et al. Respiratory responses to ionotropic glutamate receptor antagonists in the ventral respiratory group of the rabbit. Pflugers Arch. 2002;444(5):602–609. DOI: 10.1007/s00424-002-0874-1 |
| [56] |
Bongianni F., Mutolo D., Carfì M. et al. Respiratory responses to ionotropic glutamate receptor antagonists in the ventral respiratory group of the rabbit // Pflugers Arch. 2002. Vol. 444, No. 5. P. 602–609. DOI: 10.1007/s00424-002-0874-1 |
| [57] |
Mutolo D, Bongianni F, Nardone F, Pantaleo T. Respiratory responses evoked by blockades of ionotropic glutamate receptors within the Bötzinger complex and the pre-Bötzinger complex of the rabbit. Eur J Neurosci. 2005;21(1):122–134. DOI: 10.1111/j.1460-9568.2004.03850.x |
| [58] |
Mutolo D., Bongianni F., Nardone F., Pantaleo T. Respiratory responses evoked by blockades of ionotropic glutamate receptors within the Bötzinger complex and the pre-Bötzinger complex of the rabbit // Eur. J. Neurosci. 2005. Vol. 21, No. 1. P. 122–134. DOI: 10.1111/j.1460-9568.2004.03850.x |
| [59] |
Solomon IC. Glutamate neurotransmission is not required for, but may modulate, hypoxic sensitivity of pre-Bötzinger complex in vivo. J Neurophysiol. 2005;93(3):1278–1284. DOI: 10.1152/jn.00932.2004 |
| [60] |
Solomon I.C. Glutamate neurotransmission is not required for, but may modulate, hypoxic sensitivity of pre-Bötzinger complex in vivo // J. Neurophysiol. 2005. Vol. 93, No. 3. P. 1278–1284. DOI: 10.1152/jn.00932.2004 |
| [61] |
Miyazaki M, Tanaka I, Ezure K. Excitatory and inhibitory synaptic inputs shape the discharge pattern of pump neurons of the nucleus tractus solitarii in the rat. Exp Brain Res. 1999;129(2):191–200. DOI: 10.1007/s002210050889 |
| [62] |
Miyazaki M., Tanaka I., Ezure K. Excitatory and inhibitory synaptic inputs shape the discharge pattern of pump neurons of the nucleus tractus solitarii in the rat // Exp. Brain Res. 1999. Vol. 129, No. 2. P. 191–200. DOI: 10.1007/s002210050889 |
| [63] |
Klinnikova AA, Danilova AG, Aleksandrova NP. The role of NO-synthase pathways in the effects of proinflammatory cytokines on the respiratory system during normoxia and hypoxia. Russian Journal of Physiology. 2021;107(11):1–10. (In Russ.) DOI: 10.31857/S0869813921110042 |
| [64] |
Клинникова А.А., Данилова Г.А., Александрова Н.П. Роль NO-синтазных путей в реализации влияния провоспалительных цитокинов на паттерн дыхания и вентиляционный ответ на гипоксию // Российский физиологический журнал им. И.М. Сеченова. 2021. Т. 107, № 11. С. 1–10. DOI: 10.31857/S0869813921110042 |
Eco-Vector
/
| 〈 |
|
〉 |