Impact of beta-D-glucan on survival and hematopoietic parameters of mice after exposure to X-rays

Elena V. Murzina , Genrikh A. Sofronov , Andrey S. Simbirtsev , Natalia V. Aksenova , Gennady G. Zagorodnikov , Olga M. Veselova , Natalya A. Zhirnova , Elena V. Dmitrieva , Nicolay A. Klimov , Evgeniy V. Vorobeychikov

Medical academic journal ›› 2023, Vol. 23 ›› Issue (1) : 53 -66.

PDF
Medical academic journal ›› 2023, Vol. 23 ›› Issue (1) : 53 -66. DOI: 10.17816/MAJ114742
Original research
research-article

Impact of beta-D-glucan on survival and hematopoietic parameters of mice after exposure to X-rays

Author information +
History +
PDF

Abstract

BACKGROUND: There is a high need for drugs to reduce the side effects of radiation exposure on people in extreme, military, marine, space medicine, at nuclear facilities, in hematology and oncology.

AIM: To evaluate the antiradiation efficacy of beta-D-glucan derived from Oyster mushroom (Pleurotus ostreatus) after total body irradiation of mice in terms of survival and hematopoiesis.

MATERIALS AND METHODS: The study was conducted on a mouse model of the acute radiation hematopoietic syndrome caused by exposure to X-rays. Radioprotective effect of intragastrically administered beta-D-glucan derived from Pleurotus ostreatus at a dose of 500 mg/kg was studied. The parameters of the 30-day survival of irradiated mice were analyzed using the Kaplan–Meyer method. Dose reduction factor of X-ray radiation was calculated to evaluate the radiomodifying effect. The hematopoiesis was assessed by the endogenous colony formation test and hematological parameters in irradiated mice. Statistical analysis was performed using the Statistica 8.0 software.

RESULTS: The antiradiation efficacy of orally administered beta-D-glucan has been shown. DRF was 1.16 when the drug was administered 0.5 hours before irradiation and 1.06 during therapeutic use (after 1 or 2 hours). There was a decrease in weight loss in lethally irradiated mice and its faster recovery. Single oral administration of beta-D-glucan at a dose of 500 mg/kg stimulated the growth of splenic endogenous colony-forming units in mice on day 9 after total body irradiation at doses of 7 and 7.8 Gy, contributed to a decrease in the severity of leukopenia and thrombocytopenia. The antiradiation effect of beta-D-glucan was associated with an increase in the viability of bone marrow stem cells and a faster restoration of hematopoiesis.

CONCLUSIONS: The results obtained indicate the possibility of using beta-D-glucan from P. ostreatus both before irradiation to increase the radioresistance and for early therapy of the hematopoietic syndrome of acute radiation sickness.

Keywords

beta-D-glucan / Pleurotus ostreatus / total body irradiation / X-rays / dose reduction factor / colony-forming units / hematopoiesis

Cite this article

Download citation ▾
Elena V. Murzina, Genrikh A. Sofronov, Andrey S. Simbirtsev, Natalia V. Aksenova, Gennady G. Zagorodnikov, Olga M. Veselova, Natalya A. Zhirnova, Elena V. Dmitrieva, Nicolay A. Klimov, Evgeniy V. Vorobeychikov. Impact of beta-D-glucan on survival and hematopoietic parameters of mice after exposure to X-rays. Medical academic journal, 2023, 23(1): 53-66 DOI:10.17816/MAJ114742

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Obrador E, Rosario S, Villaescusa JI, et al. Radioprotection and radiomitigation: from the bench to clinical practice. Biomedicines. 2020;8(11):461. DOI: 10.3390/biomedicines8110461

[2]

Obrador E., Rosario S., Villaescusa J.I. et al. Radioprotection and radiomitigation: from the bench to clinical practice // Biomedicines. 2020. Vol. 8, No. 11. P. 461. DOI: 10.3390/biomedicines8110461

[3]

Kryukov EV, Chekhovsky YS, Karamullin MA, et al. Military medical organizations capability in delivery specialized medical care in radiation emergencies. Bulletin of the Russian Military Medical Academy. 2021;23(1):153–162. (In Russ.) DOI: 10.17816/brmma63632

[4]

Крюков Е.В., Чеховских Ю.С., Карамуллин М.А. и др. Возможности военно-медицинских организаций по оказанию специализированной медицинской помощи при чрезвычайных ситуациях радиационной природы // Вестник Российской военно-медицинской академии. 2021. Т. 23, № 1. С. 153–162. DOI: 10.17816/brmma63632

[5]

Basharin VA, Karamullin MA, Zatsepin VV, Chekhovskih YuS. Actual issues of an improvement of the medical aid delivery system in case of acute radiopathology in the Armed Forces of the Russian Federation. Military Medical Journal. 2016;337(11):11–20. (In Russ.)

[6]

Башарин В.А., Карамуллин М.А., Зацепин В.В., Чеховских Ю.С. Актуальные вопросы совершенствования системы оказания медицинской помощи при острой радиационной патологии в Вооруженных Силах // Военно-медицинский журнал. 2016. Т. 337, № 11. С. 11–20.

[7]

McBride WH, Schaue D. Radiation-induced tissue damage and response. J Pathol. 2020;250(5):647–655. DOI: 10.1002/path.5389

[8]

McBride W.H., Schaue D. Radiation-induced tissue damage and response // J. Pathol. 2020. Vol. 250, No. 5. P. 647–655. DOI: 10.1002/path.5389

[9]

Ponomareva TV, Kalnitsky SA, Vishnjakova NM. Medical exposure and strategy of its prophylaxis. Radiation hygiene. 2008;1(1): 63–68. (In Russ.)

[10]

Пономарева Т.В., Кальницкий С.А., Вишнякова Н.М. Медицинское облучение и средства фармакологической коррекции отдаленных последствий // Радиационная гигиена. 2008. Т. 1, № 1. С. 63–68.

[11]

Ushakov IB. Space. Radiation. Human (radiation barrier in interplanetary flights). Moscow: Nauchnaya kniga; 2021. 352 p. (In Russ.)

[12]

Ушаков И.Б. Космос. Радиация. Человек (Радиационный барьер в межпланетных полетах). Москва: Научная книга, 2021. 352 с.

[13]

Liu Z, Lei X, Li X, et al. Toll-like receptors and radiation protection. Eur Rev Med Pharmacol Sci. 2018;22(1):31–39. DOI: 10.26355/eurrev_201801_14097

[14]

Liu Z., Lei X., Li X. et al. Toll-like receptors and radiation protection // Eur. Rev. Med. Pharmacol. Sci. 2018. Vol. 22, No. 1. P. 31–39. DOI: 10.26355/eurrev_201801_14097

[15]

Singh VK, Seed TM. Entolimod as a radiation countermeasure for acute radiation syndrome. Drug Discov Today. 2021;26(1):17–30. DOI: 10.1016/j.drudis.2020.10.003

[16]

Singh V.K., Seed T.M. Entolimod as a radiation countermeasure for acute radiation syndrome // Drug Discov. Today. 2021. Vol. 26, No. 1. P. 17–30. DOI: 10.1016/j.drudis.2020.10.003

[17]

Shivappa P, Bernhardt GV. Natural radioprotectors on current and future perspectives: a mini-review. J Pharm Bioallied Sci. 2022;14(2):57–71. DOI: 10.4103/jpbs.jpbs_502_21

[18]

Shivappa P., Bernhardt G.V. Natural radioprotectors on current and future perspectives: a mini-review // J. Pharm. Bioallied Sci. 2022. Vol. 14, No. 2. P. 57–71. DOI: 10.4103/jpbs.jpbs_502_21

[19]

Wang W, Xue C, Mao X. Radioprotective effects and mechanisms of animal, plant and microbial polysaccharides. Int J Biol Macromol. 2020;19(153):373–384. DOI: 10.1016/j.ijbiomac.2020.02.203

[20]

Wang W., Xue C., Mao X. Radioprotective effects and mechanisms of animal, plant and microbial polysaccharides // Int. J. Biol. Macromol. 2020. Vol. 19, No. 153. P. 373–384. DOI: 10.1016/j.ijbiomac.2020.02.203

[21]

Chugh RM, Mittal P, Mp N, et al. Fungal mushrooms: a natural compound with therapeutic applications. Front Pharmacol. 2022;13:925387. DOI: 10.3389/fphar.2022.925387

[22]

Chugh R.M., Mittal P., Mp N. et al. Fungal mushrooms: a natural compound with therapeutic applications // Front. Pharmacol. 2022. Vol. 13. P. 925387. DOI: 10.3389/fphar.2022.925387

[23]

Venturella G, Ferraro V, Cirlincione F, et al. Medicinal mushrooms: bioactive compounds, use, and clinical trials. Int J Mol Sci. 2021;22(2):634. DOI: 10.3390/ijms22020634

[24]

Venturella G., Ferraro V., Cirlincione F. et al. Medicinal mushrooms: bioactive compounds, use, and clinical trials // Int. J. Mol. Sci. 2021. Vol. 22, No. 2. P. 634. DOI: 10.3390/ijms22020634

[25]

Novak M, Vetvicka V. Glucans as biological response modifiers. Endocr Metab Immune Disord Drug Targets. 2009;9(1):67–75. DOI: 10.2174/187153009787582423

[26]

Novak M., Vetvicka V. Glucans as biological response modifiers // Endocr. Metab. Immune Disord. Drug Targets. 2009. Vol. 9, No. 1. P. 67–75. DOI: 10.2174/187153009787582423

[27]

Sofronov GA, Murzina EV, Aksenova NV, et al. Study perspectives of the effectiveness of beta-D-glucans as an antiradiation agent. Izvestia of the Russian Military medical academy. 2020;39(S3–3):193–198. (In Russ.)

[28]

Софронов Г.А., Мурзина Е.В., Аксенова Н.В. и др. Перспективы изучения бета-D-глюканов в качестве противолучевых средств // Известия Российской военно-медицинской академии. 2020. Т. 39, № S3–3. С. 193–198.

[29]

Sharma A, Sharma A, Tripathi A. Biological activities of Pleurotus spp. polysaccharides: A review. J Food Biochem. 2021;45(6):e13748. DOI: 10.1111/jfbc.13748

[30]

Sharma A., Sharma A., Tripathi A. Biological activities of Pleurotus spp. polysaccharides: A review // J. Food Biochem. 2021. Vol. 45, No. 6. P. e13748. DOI:10.1111/jfbc.13748

[31]

Hamad D, El-Sayed H, Ahmed W, et al. GC-MS analysis of potentially volatile compounds of Pleurotus ostreatus polar extract: in vitro antimicrobial, cytotoxic, immunomodulatory, and antioxidant activities. Front Microbiol. 2022;13:834525. DOI: 10.3389/fmicb.2022.834525

[32]

Hamad D., El-Sayed H., Ahmed W. et al. GC-MS analysis of potentially volatile compounds of Pleurotus ostreatus polar extract: in vitro antimicrobial, cytotoxic, immunomodulatory, and antioxidant activities // Front. Microbiol. 2022. Vol. 13. P. 834525. DOI: 10.3389/fmicb.2022.834525

[33]

Shnyreva AA, Shnyreva AV. Phylogenetic analysis of Pleurotus species. Russian Journal of Genetics. 2015;51(2):148–157. DOI: 10.7868/S0016675815020137

[34]

Шнырева А.А., Шнырева А.В. Филогенетический анализ видов рода Pleurotus // Генетика. 2015. Т. 51, № 2. С. 177–187. DOI: 10.7868/S0016675815020137

[35]

Bezrukova EV, Vorobejchikov EV, Konusova VG, et al. Effect of immune drugs to treat acute viral nasopharyngitis. Medical Immunology (Russia). 2021;23(5):1153–1166. (In Russ.) DOI: 10.15789/1563-0625-EOI-2300

[36]

Безрукова Е.В., Воробейчиков Е.В., Конусова В.Г. и др. Применение иммунопрепаратов для лечения острого вирусного назофарингита // Медицинская иммунология. 2021. Т. 23, № 5. С. 1153–1166. DOI: 10.15789/1563-0625-EOI-2300

[37]

Murzina EV, Sofronov GA, Simbirtsev AS, et al. Experimental evaluation of the effect of beta-D-glucan on the survival of irradiated mice. Medical Academic Journal. 2020;20(2):59–68. (In Russ.) DOI: 10.17816/MAJ34161

[38]

Мурзина Е.В., Софронов Г.А., Симбирцев А.С. и др. Экспериментальная оценка влияния бета-D-глюкана на выживаемость мышей при радиационном воздействии // Медицинский академический журнал. 2020. Т. 20, № 2. С. 59–68. DOI: 10.17816/MAJ34161

[39]

Directive 2010/63/EU of the European parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes (Text with EEA relevance). Official Journal of the European Union. 2010:33–79.

[40]

Директива 2010/63/EU Европейского парламента и совета европейского союза по охране животных, используемых в научных целях. Санкт-Петербург, 2012. 48 с.

[41]

Finney DJ. The median lethal dose and its estimation. Arch Toxicol. 1985;56(4):215–218. DOI: 10.1007/BF00295156

[42]

Finney D.J. The median lethal dose and its estimation // Arch. Toxicol. 1985. Vol. 56, No. 4. P. 215–218. DOI: 10.1007/BF00295156

[43]

Till JE, McCulloch EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. 1961. Radiat Res. 2011;175(2):145–149. DOI: 10.1667/rrxx28.1

[44]

Till J.E., McCulloch E.A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. 1961 // Radiat. Res. 2011. Vol. 175, No. 2. P. 145–149. DOI: 10.1667/rrxx28.1

[45]

Praktikum po voennoi toksikologii, radiobiologii i meditsinskoi zashchite: P. 1. Voennaya radiobiologiya. Ed. by N.V. Butomo, G.A. Sofronov. Saint Petersburg; 1992. 110 p. (In Russ.)

[46]

Практикум по военной токсикологии, радиобиологии и медицинской защите: ч. 1. Военная радиобиология / под ред. Н.В. Бутомо, Г.А. Софронова. Санкт-Петербург, 1992. 110 с.

[47]

Borovikov VP. Populyarnoe vvedenie v sovremennyy analiz dannykh v sisteme Statistica. Uchebnoe posobie. Moscow: Goryachaya liniya–Telekom; 2013. 288 р. (In Russ.)

[48]

Боровиков В.П. Популярное введение в современный анализ данных в системе Statistica: учебное пособие. Москва: Горячая линия–Телеком, 2013. 288 с.

[49]

Dicks L, Ellinger S. Effect of the intake of oyster mushrooms (Pleurotus ostreatus) on cardiometabolic parameters – a systematic review of clinical trials. Nutrients. 2020;12(4):1134. DOI: 10.3390/nu12041134

[50]

Dicks L., Ellinger S. Effect of the intake of oyster mushrooms (Pleurotus ostreatus) on cardiometabolic parameters – a systematic review of clinical trials // Nutrients. 2020. Vol. 12, No. 4. P. 1134. DOI: 10.3390/nu12041134

[51]

Gruzdev GP. Ostryi radiatsionnyi kostnomozgovoi sindrom. Moscow: Meditsina; 1988. 144 р. (In Russ.)

[52]

Груздев Г.П. Острый радиационный костномозговой синдром. Москва: Медицина, 1988. 144 с.

[53]

Singh VK, Seed TM. Pharmacological management of ionizing radiation injuries: current and prospective agents and targeted organ systems. Expert Opin Pharmacother. 2020;21(3):317–337. DOI: 10.1080/14656566.2019.1702968

[54]

Singh V.K., Seed T.M. Pharmacological management of ionizing radiation injuries: current and prospective agents and targeted organ systems // Expert Opin. Pharmacother. 2020. Vol. 21, No. 3. P. 317–337. DOI: 10.1080/14656566.2019.1702968

[55]

Dainiak N, Gent RN, Zhanat C, et al. First global consensus for evidence-based management of the hematopoietic syndrome resulting from exposure to ionizing radiation. Disaster Med Public Health Prep. 2011;5(3):202–212. DOI: 10.1001/dmp.2011.68

[56]

Dainiak N., Gent R.N., Zhanat C. et al. First global consensus for evidence-based management of the hematopoietic syndrome resulting from exposure to ionizing radiation // Disaster Med. Public Health Prep. 2011. Vol. 5, No. 3. P. 202–212. DOI: 10.1001/dmp.2011.68

[57]

Sima P, Vannucci L, Vetvicka V. Effects of glucan on bone marrow. Ann Transl Med. 2014;2(2):18. DOI: 10.3978/j.issn.2305-5839.2014.01.06

[58]

Sima P., Vannucci L., Vetvicka V. Effects of glucan on bone marrow // Ann. Transl. Med. 2014. Vol. 2, No. 2. P. 18. DOI: 10.3978/j.issn.2305-5839.2014.01.06

[59]

Hofer M, Pospíšil M. Modulation of animal and human hematopoiesis by β-glucans: a review. Molecules. 2011;16(9):7969–7979. DOI: 10.3390/molecules16097969

[60]

Hofer M., Pospíšil M. Modulation of animal and human hematopoiesis by β-glucans: a review // Molecules. 2011. Vol. 16, No. 9. P. 7969–7979. DOI: 10.3390/molecules16097969

[61]

Pillai TG, Devi PU. Mushroom beta-glucan: potential candidate for post irradiation protection. Mutat Res. 2013;751(2):109–115. DOI: 10.1016/j.mrgentox.2012.12.005

[62]

Pillai T.G., Devi P.U. Mushroom beta-glucan: potential candidate for post irradiation protection // Mutat. Res. 2013. Vol. 751, No. 2. P. 109–115. DOI: 10.1016/j.mrgentox.2012.12.005

[63]

Du J, Cheng Y, Dong S, et al. Zymosan-A protects the hematopoietic system from radiation-induced damage by targeting TLR2 signaling pathway. Cell Physiol Biochem. 2017;43(2):457–464. DOI: 10.1159/000480472

[64]

Du J., Cheng Y., Dong S. et al. Zymosan-A protects the hematopoietic system from radiation-induced damage by targeting TLR2 signaling pathway // Cell Physiol. Biochem. 2017. Vol. 43, No. 2. P. 457–464. DOI: 10.1159/000480472

[65]

Liu F, Wang Z, Liu J, Li W. Radioprotective effect of orally administered beta-D-glucan derived from Saccharomyces cerevisiae. Int J Biol Macromol. 2018;115:572–579. DOI: 10.1016/j.ijbiomac.2018.04.098

[66]

Liu F., Wang Z., Liu J., Li W. Radioprotective effect of orally administered beta-D-glucan derived from Saccharomyces cerevisiae // Int. J. Biol. Macromol. 2018. Vol. 115. P. 572–579. DOI: 10.1016/j.ijbiomac.2018.04.098

[67]

Vetvicka VC. [Beta]-Glucans as natural biological response modifiers. New York, USA: Nova Science Publishers; 2013.

[68]

Vetvicka V.C. [Beta]-Glucans as natural biological response modifiers. New York: Nova Science Publishers, 2013.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

62

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/