Morphology of kisspeptin-producing nuclei in the rat hypothalamus

Anatoly D. Lisovsky , Nikita A. Popkovsky , Pavel S. Bobkov , Andrey V. Droblenkov

Medical academic journal ›› 2022, Vol. 22 ›› Issue (4) : 69 -76.

PDF
Medical academic journal ›› 2022, Vol. 22 ›› Issue (4) : 69 -76. DOI: 10.17816/MAJ109714
Original research
research-article

Morphology of kisspeptin-producing nuclei in the rat hypothalamus

Author information +
History +
PDF

Abstract

ВACKGROUND: The article is devoted to the stereo-morphological analysis of the nuclei of the hypothalamus, synthesizing proteins of the kisspeptin family, regulating sexual differentiation — various parts of the extended kisspeptin-producing nuclei of the hypothalamus and the features of their asymmetry in mature rats. The morphology of various parts of extended kisspeptin-producing nuclei of the hypothalamus remains poorly understood, which significantly complicates the choice of their reference zone, from which planning and implementation of morphological studies should begin, related to the evaluation of the effectiveness of therapeutic correction of various forms of hypogonadism.

AIM: Determination of the main source of regulatory peptides of the kisspeptin family based on the analysis of the number, area of neuron bodies and volumetric characteristics of the kisspeptin-producing nuclei of the hypothalamus.

MATERIALS AND METHODS: We studied 50 frontal paraffin sections of KPNs of 8 intact sexually mature male rats obtained as a result of a standard technique for their preparation and staining by the Nissl method. As a result, we carried out volumetric reconstruction of the largest nucleus of the arcuate complex — the medial arcuate nucleus and the large periventricular nucleus, after which the number and area of neurosecretory cell bodies were determined in 5 frontal planes of these nuclei. To determine the proportion of kisspeptin-producing neurons in the total number of neurons in the kisspeptin-producing nuclei of the hypothalamus, we also performed the subsequent quantitative and morphometric characterization of their kisspeptin-producing neurons (after immunohistochemical staining, the identification of kisspeptin-kisspeptin granules. Statistical data processing was performed using the GraphPad PRISM 6.0 program, determining and lower quartiles. Differences were considered significant at p < 0.01.

RESULTS: Subdivisions of the nuclei, which are the main source of these regulatory proteins, have been identified. The caudal part of the medial arcuate nucleus (at the level of bregma –3.6 mm) and the anterior part of the periventricular nucleus (at the level of bregma –0.2 mm) are subdivisions of the corresponding kisspeptin-producing nuclei of the hypothalamus of the kisspeptin-producing nuclei of the hypothalamus, containing the largest number of neurosecretory cells and the bodies of their largest largest area. The number and area of neurons in the left-sided and right-sided parts of the hypothalamic kisspeptin-producing nuclei of the hypothalamus did not differ significantly. In this regard, the listed left-sided and right-sided subdivisions of the kisspeptin-producing kisspeptin-producing nuclei of the hypothalamus of the were proposed as standards for their subsequent morphological studies, which are important for assessing the effectiveness of therapeutic correction of various forms of hypogonadism.

CONCLUSIONS: The left-sided and right-sided caudal parts of the medial arcuate hypothalamic nucleus and the anterior parts of the periventricular hypothalamic nucleus are proposed as a reference for their subsequent morphological studies related to the evaluation of the effectiveness of therapeutic correction of various forms of hypogonadism. as the main sources of regulatory proteins of the kisspeptin family.

Keywords

kisspeptin-producing hypothalamic nuclei / medial arcuate nucleus / periventricular nucleus / volumetric reconstruction / neurosecretory cells / morphometry

Cite this article

Download citation ▾
Anatoly D. Lisovsky, Nikita A. Popkovsky, Pavel S. Bobkov, Andrey V. Droblenkov. Morphology of kisspeptin-producing nuclei in the rat hypothalamus. Medical academic journal, 2022, 22(4): 69-76 DOI:10.17816/MAJ109714

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ojeda SR, Roth C, Mungenast A, et al. Neuroendocrine mechanisms controlling female puberty: new approaches, new concepts. Int J Androl. 2006;29(1):256–263;discussion 286–290. DOI: 10.1111/j.1365-2605.2005.00619.x

[2]

Ojeda S.R., Roth C., Mungenast A. et al. Neuroendocrine mechanisms controlling female puberty: new approaches, new concepts // Int. J. Androl. 2006. Vol. 29, No. 1. P. 256–263; discussion 286–290. DOI: 10.1111/j.1365-2605.2005.00619.x

[3]

Ojeda SR, Dubay C, Lomniczi A, et al. Gene networks and the neuroendocrine regulation of puberty. Mol Cell Endocrinol. 2010;324(1–2):3–11. DOI: 10.1016/j.mce.2009.12.003

[4]

Ojeda S.R., Dubay C., Lomniczi A. et al. Gene networks and the neuroendocrine regulation of puberty // Mol. Cell. Endocrinol. 2010. Vol. 324, No. 1–2. P. 3–11. DOI: 10.1016/j.mce.2009.12.003

[5]

Messager S, Chatzidaki EE, Ma D, et al. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G proteincoupled receptor 54. Proc Natl Acad Sci USA. 2005;102(5):1761–1766. DOI: 10.1073/pnas.0409330102

[6]

Messager S., Chatzidaki E.E., Ma D. et al. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G proteincoupled receptor 54 // Proc. Natl. Acad. Sci. USA. 2005. Vol. 102, No. 5. P. 1761–1766. DOI: 10.1073/pnas.0409330102

[7]

Ronnekleiv OK, Kelly MJ. Kisspeptin excitation of GnRH neurons. Adv Exp Med Biol. 2013;784:113–131. DOI: 10.1007/978-1-4614-6199-9_6

[8]

Ronnekleiv O.K., Kelly M.J. Kisspeptin excitation of GnRH neurons // Adv. Exp. Med. Biol. 2013. Vol. 784, No. 113–131. DOI: 10.1007/978-1-4614-6199-9_6

[9]

Novaira HJ, Ng Y, Wolfe A, Radovick S. Kisspeptin increases GnRH mRNA expression and secretion in GnRH secreting neuronal cell lines. Mol Cell Endocrinol. 2009;311(1–2):126–134. DOI: 10.1016/j.mce.2009.06.011

[10]

Novaira H.J., Ng Y., Wolfe A., Radovick S. Kisspeptin increases GnRH mRNA expression and secretion in GnRH secreting neuronal cell lines // Mol. Cel. Endocrinol. 2009. Vol. 311, No. 1–2. P. 126–134. DOI: 10.1016/j.mce.2009.06.011

[11]

Carrasco RA, Singh J, Adams GP. Distribution and morphology of gonadotropin-releasing hormone neurons in the hypothalamus. Gen Comp Endocrinol. 2018;263:43–50. DOI: 10.1016/j.ygcen.2018.04.011

[12]

Carrasco R.A., Singh J., Adams G.P. Distribution and morphology of gonadotropin-releasing hormone neurons in the hypothalamus // Gen. Comp. Endocrinol. 2018. Vol. 263. P. 43–50. DOI: 10.1016/j.ygcen.2018.04.011

[13]

Kallo I, Vida B, Deli L, et al. Co-localisation of kisspeptin with galanin or neurokinin B in afferents to mouse GnRH neurones. J Neuroendocrinol. 2012;24(3):464–476. DOI: 10.1111/j.1365-2826.2011.02262.x

[14]

Kallo I., Vida B., Deli L. et al. Co-localisation of kisspeptin with galanin or neurokinin B in afferents to mouse GnRH neurones // J. Neuroendocrinol. 2012. Vol. 24, No. 3. P. 464–476. DOI: 10.1111/j.1365-2826.2011.02262.x

[15]

Ojeda SR, Lomniczi A, Sandau US. Glial-gonadotrophin hormone (GnRH) neurone interactions in the median eminence and the control of GnRH secretion. J Neuroendocrinol. 2008;20(6):732–742. DOI: 10.1111/j.1365-2826.2008.01712.x

[16]

Ojeda S.R., Lomniczi A., Sandau U.S. Glial-gonadotrophin hormone (GnRH) neurone interactions in the median eminence and the control of GnRH secretion // J. Neuroendocrinol. 2008. Vol. 20, No. 6. P. 732–742. DOI: 10.1111/j.1365-2826.2008.01712.x

[17]

Lehman MN, Merkley CM, Coolen LM, Goodman RL. Anatomy of the kisspeptin neural network in mammals. Brain Res. 2010;1364:90–102. DOI: 10.1016/j.brainres.2010.09.020

[18]

Lehman M.N., Merkley C.M., Coolen L.M., Goodman R.L. Anatomy of the kisspeptin neural network in mammals // Brain Res. 2010. Vol. 1364. P. 90–102. DOI: 10.1016/j.brainres.2010.09.020

[19]

Ramaswamy S, Guerriero KA, Gibbs RB, Plant TM. Structural Interactions between Kisspeptin and GnRH neurons in the mediobasal hypothalamus of the male rhesus monkey (macaca mulatta) as revealed by double immunofluorescence and confocal microscopy. Endocrinology. 2008;149(9):4387–4395. DOI: 10.1210/en.2008-0438

[20]

Ramaswamy S., Guerriero K.A., Gibbs R.B., Plant T.M. Structural interactions between kisspeptin and GnRH neurons in the mediobasal hypothalamus of the male rhesus monkey (macaca mulatta) as revealed by double immunofluorescence and confocal microscopy // Endocrinology. 2008. Vol. 149, No. 9. P. 4387–4395. DOI: 10.1210/en.2008-0438

[21]

Nikitina IL, Bairamov AA, Khoduleva YuN, Shabanov PD. Kisspeptins in physiology and pathology of sex development — new diagnostic and therapeutic approaches. Obzory po klinicheskoi farmakologii i lekarstvennoi terapii. 2014;12(4):3–12. (In Russ.). DOI: 10.17816/RCF1243-12

[22]

Никитина И.Л., Байрамов А.А., Ходулева Ю.Н., Шабанов П.Д. Кисспептины в физиологии и патологии полового развития — новые диагностические и терапевтические возможности // Обзоры по клинической фармакологии и лекарственной терапии. 2014. Т. 12, № 4. С. 3–12. DOI: 10.17816/RCF1243-12

[23]

Paxinos G, Watson C. The rat brain atlas in stereotaxic coordinates. 4th ed. Elsevier Acad. Press; 1998.

[24]

Paxinos G., Watson C. The rat brain atlas in stereotaxic coordinates. 4th ed. Elsevier Acad. Press, 1998.

[25]

Fiala JC. Reconsctruct: free editor for serial section microscopy. J. Microsc. 2005;218(Pt 1):52–61. DOI: 10.1111/j.1365-2818.2005.01466.x

[26]

Fiala J.C. Reconsctruct: free editor for serial section microscopy // J. Microsc. 2005. Vol. 218, No. Pt 1. P. 52–61. DOI: 10.1111/j.1365-2818.2005.01466.x

[27]

Droblenkov AV, Fedorov AV, Shabanov PD. Structural features of midbrain dopaminergic nuclei. Narcologia. 2018;17(3):41–45. (In Russ.) DOI: 10.25557/1682-8313.2018.03.41-45

[28]

Дробленков А.В., Федоров А.В., Шабанов П.Д. Структурные особенности дофаминергических ядер вентральной покрышки среднего мозга // Наркология. 2018. Т. 17, № 3. С. 41–45. DOI: 10.25557/1682-8313.2018.03.41-45

[29]

Droblenkov AV, Proshina LG, Yuhlina YuN, et al. Testosterone-dependent changes in neurons of hypothalamic arcuate nucleus and reversibility of these changes by modeled male hypogonadism. Patologicheskaya fiziologiya i eksperimental’naya terapiya. 2017;61(4):21–30. (In Russ.) DOI: 10.25557/IGPP.2017.4.8519

[30]

Дробленков А.В., Прошина Л.Г., Юхлина Ю.Н. и др. Тестостерон-зависимые изменения нейронов аркуатного ядра гипоталамуса и их обратимость при моделировании мужского гипогонадизма // Патологическая физиология и экспериментальная терапия. 2017. Т. 61, № 4. С. 21–30. DOI: 10.25557/IGPP.2017.4.8519

[31]

Droblenkov AV, Shabanov PD. Morfologiya ishemizirovannogo mozga. Saint Petersburg: Art-Xpress; 2018. 208 p. (In Russ.)

[32]

Дробленков А.В., Шабанов П.Д. Морфология ишемизированного мозга. Санкт-Петербург: Art-Xpress, 2018. 208 c.

[33]

Pankrashova EYu, Fedorov AV, Droblenkov AV. Cell reactions in the limbic cerebral cortex after ethanol poisoning, alcohol abstinence and chronic alcohol intoxication in humans. Journal of Anatomy and Histopathology. 2020;9(2):66–75. (In Russ.) DOI: 10.18499/2225-7357-2020-9-2-66-75

[34]

Панкрашова Е.Ю., Федоров А.В., Дробленков А.В. Реактивные изменения клеток лимбической коры мозга при отравлении этанолом, алкогольной абстиненции и хронической алкогольной интоксикации у человека // Журнал анатомии и гистопатологии. Т. 9, № 2. С. 66–75. DOI: 10.18499/2225-7357-2020-9-2-66-75

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

53

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/