Experimental model of acute blood loss using rats for screening evalution of non-specific activity of infusion solutions
Igor A. Shperling , Aleksey V. Krupin , Nadezhda K. Arokina , Oleg A. Rogov
Medical academic journal ›› 2022, Vol. 22 ›› Issue (4) : 35 -44.
Experimental model of acute blood loss using rats for screening evalution of non-specific activity of infusion solutions
BACKGROUND: In accordance with the current regulations, preclinical evaluation of the effectiveness of plasma substitutes for acute blood loss is carried out mainly on large laboratory animals (dogs, pigs) using a wide range of methods for assessing the structural and functional state of organs and systems of a biological object. It requires large expenditure of material resources and time, which is impractical at the stage of screening the effectiveness of newly developed infusion agents. In this regard, an urgent task is to develop a standardized model of acute blood loss on small laboratory animals for screening evaluation of the specific activity of infusion solutions with a subsequent research involving large laboratory animals. It is advisable to use laboratory rats as a biological object as they are the most suitable of the group of small laboratory animals for similarity of physiological laboratory indicators with humans.
AIM: To develop a model of acute blood loss using small laboratory animals for screening evaluation of specific infusion solution activity.
MATERIALS AND METHODS: Experiments were carried out on rats of the Vistar line with a weight of 330 ± 41 g. The animals were divided into 3 groups: 1 experimental (20 individuals with acute blood loss simulation without treatment), 2 experimental (20 individuals with acute blood loss simulation and its replacement with Rheopolyglucin), intact (10 individuals without modeling of blood loss). The study design included: general anesthesia (intramuscular injection Zoletil 100 and Xylazin 2% in a ratio of 1 : 5 at the rate of 0.01 ml/kg of weight), catheterization of the femoral artery followed by controlled hardware exfusion of blood at a rate of 0.5 ml/min until the establishment of persistent (for 2 minutes) arterial hypotension; hardware synchronous monitoring of mean arterial pressure (MAP) (by direct tonometry through the contralateral femoral artery); calculation of the percentage of blood loss from the estimated circulating blood volume (CBV) equal to 5% of the animal’s weight; heart rate (HR) (by electrocardiogram) during the first three hours after blood exfusion. In its capacity as a test drug Rheopolyglucin, which was administered through an arterial femoral catheter immediately after blood exfusion in volume and speed, equal to volume and speed of exfusion, was used. Additionally, for a comprehensive assessment of the mechanisms of maintaining hemodynamic parameters individual dynamic calculated indicators for each individual are proposed: the reduced shock volume of blood and the infusion efficiency indicator.
RESULTS: All rats in the experimental group died, 25% of which 17–20 minutes after blood exfusion, 75% — in range from 45 to 90 minutes. Rheopoliglyukin infusion reduced the death of animals by up to 35% and delayed the average death time to 45–55 minutes. A single exfusion of blood in rats resulted in loss of 7–9 ml of blood (46–51% of circulating blood volume), which was accompanied by a decrease in mean arterial pressure and heart rate. Compensation for the decrease in circulating blood volume, including due to infusion, was manifested by an increase in these indicators. A sign of inefficiency of compensation was a slight increase of mean arterial pressure with dynamically increasing heart rate. It is proved that an increase in the values of calculated indicators (the given stroke volume of blood and the infusion efficiency indicator) are benchmarks for effective compensation of hemodynamic disorders, including as a result of infusion of hemodynamic drugs.
CONCLUSIONS: The acute blood loss model with the calculation of the reduced shock volume of blood and the infusion efficiency index is advisable to use to assess the specific activity of infusion solutions in acute blood loss.
acute blood loss / reduced shock volume of blood / infusion efficiency index / specific infusion solution activity
| [1] |
Klimovich IN, Maskin SS, Abramov PV. Pathogenesis of intestinal insufficiency syndrome in upper gastrointestinal tract bleedings. Novosti hirurgii. 2017;25(1):71–77. (In Russ.) DOI: 10.18484/2305-0047.2017.1.71 |
| [2] |
Климович И.Н., Маскин С.С., Абрамов П.В. Патогенез синдрома кишечной недостаточности при кровотечениях из верхних отделов желудочно-кишечного тракта // Новости хирургии. 2017. Т. 25, № 1. С. 71–77. DOI: 10.18484/2305-0047.2017.1.71 |
| [3] |
Hall K, Drobatz K. Volume resuscitation in the acutely hemorrhaging patient: historic use to current applications. Front Vet Sci. 2021;8:638104. DOI: 10.3389/fvets.2021.638104 |
| [4] |
Hall K., Drobatz K. Volume resuscitation in the acutely hemorrhaging patient: historic use to current applications // Front. Vet. Sci. 2021. Vol. 8. P. 638104. DOI: 10.3389/fvets.2021.638104 |
| [5] |
Patofiziologiya. Ed. by V.V. Novickii, O.I. Urazova. Moscow: GEOTAR-Media; 2020. (In Russ.) |
| [6] |
Патофизиология / под ред. В.В. Новицкого, О.И. Уразовой. Москва: ГЭОТАР-Медиа, 2020. |
| [7] |
Vasiliev AG, Haitsev NV, Balashov AL, et al. Pathogenesis of acute hemorrhage syndrome. Pediatrician. 2019;10(3):93–100. (In Russ.) DOI: 10.17816/PED10393-100 |
| [8] |
Васильев А.Г., Хайцев Н.В., Балашов А.Л. и др. О патогенезе синдрома острой кровопотери // Педиатр. 2019. Т. 10, № 3. С. 93–100. DOI: 10.17816/PED10393-100 |
| [9] |
Rukovodstvo po provedeniyu doklinicheskikh issledovanii lekarstvennykh sredstv. Ed. by A.N. Mironov. Moscow: Grif i K; 2012. (In Russ.) |
| [10] |
Руководство по проведению доклинических исследований лекарственных средств / под ред. А.Н. Миронова. Москва: Гриф и К, 2012. |
| [11] |
GOST R 56701-2015 Lekarstvennye sredstva dlya meditsinskogo primeneniya. Rukovodstvo po planirovaniyu doklinicheskikh issledovanii bezopasnosti s tsel’yu posleduyushchego provedeniya klinicheskikh issledovanii i registratsii lekarstvennykh sredstv. Moscow: Standartinform; 2019. 23 р. (In Russ.) |
| [12] |
ГОСТ Р 56701-2015 Лекарственные средства для медицинского применения. Руководство по планированию доклинических исследований безопасности с целью последующего проведения клинических исследований и регистрации лекарственных средств. Москва: Стандартинформ, 2019. 23 с. |
| [13] |
Belyakov VI, Inyushkina EM, Gromova DS, Inyushkin AN. Laboratornye krysy: soderzhanie, razvedenie i bioeticheskie aspekty ispol’zovaniya v eksperimentah po fiziologii povedeniya: uchebnoe posobie. Samara: Izd-vo Samarskogo universiteta; 2021. 96 p. (In Russ.) |
| [14] |
Беляков В.И., Инюшкина Е.М., Громова Д.С., Инюшкин А.Н. Лабораторные крысы: содержание, разведение и биоэтические аспекты использования в экспериментах по физиологии поведения: учебное пособие. Самара: Изд-во Самарского университета, 2021. 96 с. |
| [15] |
Ryzhkov IA, Zarzhetsky YuV, Molchanov IV. The efficacy of modified fluid gelatin and autologous blood for blood replacement in acute blood loss. Russian Journal of Anaesthesiology and Reanimatology. 2018;6:75–81. (In Russ.) DOI: 10.17116/anaesthesiology201806175 |
| [16] |
Рыжков И.А., Заржецкий Ю.В., Молчанов И.В. Эффективность применения раствора модифицированного жидкого желатина и аутокрови для восполнения острой кровопотери // Анестезиология и реаниматология. 2018. № 6. С. 75–81. DOI: 10.17116/anaesthesiology201806175 |
| [17] |
Shulepov AV, Shperling IA, Yurkevich YuV, et al. Microcirculatory status and metabolic activity of tissues after local administration of autologous plasma on the model of explosive soft tissue wound in rats. Kuban Scientific Medical Bulletin. 2022;29(4):53–74. (In Russ.) DOI: 10.25207/1608-6228-2022-29-4-53-74 |
| [18] |
Шулепов А.В., Шперлинг И.А., Юркевич Ю.В. и др. Микроциркуляторный статус и метаболическая активность тканей после локального введения аутологичной плазмы на модели взрывной раны мягких тканей у крыс // Кубанский научный медицинский вестник. 2022. Т. 29, № 4. С. 53–74. DOI: 10.25207/1608-6228-2022-29-4-53-74 |
| [19] |
Braga D, Barcella M, D’Avila F, et al. Preliminary profiling of blood transcriptome in a rat model of hemorrhagic shock. Exp Biol Med (Maywood). 2017;242(14):1462–1470. DOI: 10.1177/1535370217717978 |
| [20] |
Braga D., Barcella M., D’Avila F. et al. Preliminary profiling of blood transcriptome in a rat model of hemorrhagic shock // Exp. Biol. Med. (Maywood). 2017. Vol. 242, No. 14. P. 1462–1470. DOI: 10.1177/1535370217717978 |
| [21] |
Xu P, Xu W, Gao S, et al. Global metabolic profiling of hemorrhagic shock and resuscitation. Biomed Chromatogr. 2021;35(4):e5044. DOI: 10.1002/bmc.5044 |
| [22] |
Xu P., Xu W., Gao S. et al. Global metabolic profiling of hemorrhagic shock and resuscitation // Biomed. Chromatogr. 2021. Vol. 35, No. 4. P. e5044. DOI: 10.1002/bmc.5044 |
| [23] |
Hall K., Drobatz K. Volume resuscitation in the acutely hemorrhaging patient: historic use to current applications. Front Vet Sci. 2021;8:638104. DOI: 10.3389/fvets.2021.638104 |
| [24] |
Hall K., Drobatz K. Volume resuscitation in the acutely hemorrhaging patient: historic use to current applications // Front. Vet. Sci. 2021. Vol. 8. P. 638104. DOI: 10.3389/fvets.2021.638104 |
| [25] |
Grigor’ev EV, Lebedinskii KM, Shchegolev AV, et al. Resuscitation and intensive care in acute massive blood loss in adults (clinical guidelines). Russian Journal of Anaesthesiology and Reanimatology. 2020;1:5–24. (In Russ.) DOI: 10.17116/anaesthesiology20200115 |
| [26] |
Григорьев Е.В., Лебединский К.М., Щеголев А.В. и др. Реанимация и интенсивная терапия при острой массивной кровопотере у взрослых пациентов // Анестезиология и реаниматология. 2020. № 1. С. 5–24. DOI: 10.17116/anaesthesiology20200115 |
| [27] |
Laboratornye zhivotnye. Ed. by A.A. Stekol’nikov, G.G. Shcherbakov. Saint Petersburg: Lan’; 2021. 316 p. (In Russ.) |
| [28] |
Лабораторные животные / под ред. А.А. Стекольникова, Г.Г. Щербакова. Санкт-Петербург: Лань, 2021. 316 с. |
| [29] |
Korpacheva OV. Pain and hemorrhage effect on the cardiovascular system and thanatogenesis in experimental myocardial contusion. Politravma. 2007;(4):11–15. (In Russ.) |
| [30] |
Корпачева О.В. Влияние боли и кровопотери на реакцию сердечно-сосудистой системы и танатогенез при экспериментальном ушибе сердца // Политравма. 2007. № 4. С. 11–15. |
| [31] |
Kolesnikov AM, Yudin MA, Nikiforov AS, et al. Issledovanie oksim-indutsirovannoi reaktivatsii atsetili butirilkholinesterazy cheloveka pri ugnetenii fosfororganicheskim insektitsidom in vitro. Byulleten’ eksperimental’noi biologii i meditsiny. 2017;164(11):577–581. (In Russ.) |
| [32] |
Колесников А.М., Юдин М.А., Никифоров А.С. и др. Исследование оксим-индуцированной реактивации ацетил- и бутирилхолинэстеразы человека при угнетении фосфорорганическим инсектицидом in vitro // Бюллетень экспериментальной биологии и медицины. 2017. Т. 164, № 11. С. 577–581. |
| [33] |
Remizova MI, Gerbut KA, Grishina GV, Kochetygov NI. Regulation of the blood circulation by selective inhibitors of nitric oxide synthesis in experimental haemorrhagic shock. Medical Academic Journal. 2010;10(1):57–63. (In Russ.) |
| [34] |
Ремизова М.И., Гербут К.А., Гришина Г.В., Кочетыгов Н.И. Регуляция кровообращения селективными ингибиторами синтеза оксида азота при геморрагическом шоке в эксперименте // Медицинский академический журнал. 2010. Т. 10, № 1. С. 57–63. |
| [35] |
Vasil’ev AG, Hajcev NV, Balashov AL, et al. Correction of hematological, cardiovascular and pulmonary parameters with succinate preparations in white rats after massive blood loss. Russian Biomedical Research. 2019;4(4):17–28. (In Russ.) |
| [36] |
Васильев А.Г., Хайцев Н.В., Балашов А.Л. и др. Коррекция показателей системы крови, дыхательной и сердечно-сосудистой систем белых крыс при острой массивной кровопотере сукцинат-содержащими препаратами // Российские биомедицинские исследования. 2019. Т. 4, № 4. С. 17–28. |
| [37] |
Grigor’ev EV, Lebedinskij KM, Shhegolev AV, et al. Resuscitation and intensive care in acute massive blood loss in adults (clinical guidelines). Russian Journal of Anaesthesiology and Reanimatology. 2020;1:5–24. (In Russ.) DOI: 10.17116/anaesthesiology20200115 |
| [38] |
Григорьев Е.В., Лебединский К.М., Щеголев А.В. и др. Реанимация и интенсивная терапия при острой массивной кровопотере у взрослых пациентов // Анестезиология и реаниматология. 2020. № 1. С. 5–24. DOI: 10.17116/anaesthesiology20200115 |
| [39] |
Curcio L, D’Orsi L, Cibella F, et al. A simple cardiovascular model for the study of hemorrhagic shock. Comput Math Methods Med. 2020;2020:7936895. DOI: 10.1155/2020/7936895 |
| [40] |
Curcio L., D’Orsi L., Cibella F. et al. A simple cardiovascular model for the study of hemorrhagic shock // Comput. Math. Methods Med. 2020. Vol. 2020. P. 7936895. DOI: 10.1155/2020/7936895 |
| [41] |
Fundamental’naya i medicinskaya fiziologiya. Ed. by A.G. Kamkin. Moscow: De Libri; 2019. 392 p. (In Russ.) |
| [42] |
Фундаментальная и медицинская физиология / под ред. А.Г. Камкина. Москва: Де Либри, 2019. 392 с. |
| [43] |
Bahovadinov BB, Baryshev BA. Krovezameniteli. Komponenty krovi. Posttransfuzionnye reakcii i oslozhneniya: spravochnik dlya vrachei. Saint Petersburg: Optima; 2018. 288 p. (In Russ.) |
| [44] |
Баховадинов Б.Б., Барышев Б.А. Кровезаменители. Компоненты крови. Посттрансфузионные реакции и осложнения: справочник для врачей. Санкт-Петербург: Оптима, 2018. 288 с. |
Eco-Vector
/
| 〈 |
|
〉 |