Comparative study of the pathogenicity of SARS-CoV-2 B.1 AND B.1.617.2 lineages for syrian hamsters

Kirill S. Yakovlev , Daria А. Mezhenskaya , Konstantin V. Sivak , Larisa G. Rudenko , Irina N. Isakova-Sivak

Medical academic journal ›› 2022, Vol. 22 ›› Issue (2) : 125 -136.

PDF (1732KB)
Medical academic journal ›› 2022, Vol. 22 ›› Issue (2) : 125 -136. DOI: 10.17816/MAJ109066
Original research
research-article

Comparative study of the pathogenicity of SARS-CoV-2 B.1 AND B.1.617.2 lineages for syrian hamsters

Author information +
History +
PDF (1732KB)

Abstract

BACKGROUND: Syrian hamsters are the most sensitive model for studying the pathogenesis of a new coronavirus infection and testing prophylactic and therapeutic drugs against SARS-CoV-2. Accordingly, it is important to identify pathomorphological indicators of tissue damage in coronavirus-infected animals, which would correlate with the severity of the disease.

AIM: Comprehensive assessment of the pathogenicity of SARS-CoV-2 viruses of B.1 and B.1.167.2 lineages on the model of Syrian hamsters to identify the most sensitive criteria that correlate with the clinical manifestation of the disease.

MATERIALS AND METHODS: Intranasal infection of animals with SARS-CoV-2, followed by the assessment of the clinical picture of the disease and detailed pathomorphological studies of various organs collected on the 5th day after infection.

RESULTS: The SARS-CoV-2 Delta virus (B.1.617.2) was shown to be less pathogenic for Syrian hamsters compared to the ancestral strain that circulated during the first wave of the COVID-19 pandemic (B.1). The histopathological characterization of lung tissue sections of infected animals revealed the most sensitive morphometric indicator that correlates with the severity of SARS-CoV-2-induced pathology, namely, the alveolar wall thickness.

CONCLUSIONS: The use of this indicator makes it possible to determine even slight differences in the severity of virus-induced pathology in the Syrian hamster model, which can be critical in the preclinical evaluation of prophylactic and therapeutic drugs for COVID-19.

Keywords

coronavirus / SARS-CoV-2 / Syrian hamsters / pathomorphology / lung pathology / morphometry

Cite this article

Download citation ▾
Kirill S. Yakovlev, Daria А. Mezhenskaya, Konstantin V. Sivak, Larisa G. Rudenko, Irina N. Isakova-Sivak. Comparative study of the pathogenicity of SARS-CoV-2 B.1 AND B.1.617.2 lineages for syrian hamsters. Medical academic journal, 2022, 22(2): 125-136 DOI:10.17816/MAJ109066

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–733. DOI: 10.1056/NEJMoa2001017

[2]

Zhu N., Zhang D., Wang W. et al. A novel coronavirus from patients with pneumonia in China, 2019 // N. Engl. J. Med. 2020. Vol. 382, No. 8. P. 727–733. DOI: 10.1056/NEJMoa2001017

[3]

Anonymous. Worldometer of COVID-19 coronavirus pandemic [Internet]. Available from: https://www.worldometers.info/coronavirus/. Accessed: June 13, 2022.

[4]

Anonymous. Worldometer of COVID-19 coronavirus pandemic [Электронный ресурс]. Режим доступа: https://www.worldometers.info/coronavirus/. Дата обращения: 13.06.2022.

[5]

Chu H, Chan JF, Yuen KY. Animal models in SARS-CoV-2 research. Nat Methods. 2022;19(4):392–394. DOI: 10.1038/s41592-022-01447-w

[6]

Chu H., Chan J.F., Yuen K.Y. Animal models in SARS-CoV-2 research // Nat Methods. 2022. Vol. 19, No. 4. P. 392–394. DOI: 10.1038/s41592-022-01447-w

[7]

Munoz-Fontela C, Dowling WE, Funnell SGP, et al. Animal models for COVID-19. Nature. 2020;586(7830):509–515. DOI: 10.1038/s41586-020-2787-6

[8]

Munoz-Fontela C., Dowling W.E., Funnell S.G.P. et al. Animal models for COVID-19 // Nature. 2020. Vol. 586, No. 7830. P. 509–515. DOI: 10.1038/s41586-020-2787-6

[9]

Bednash JS, Kagan VE, Englert JA, et al. Syrian hamsters as a model of lung injury with SARS-CoV-2 infection: Pathologic, physiologic, and detailed molecular profiling. Transl Res. 2022;240:1–16. DOI: 10.1016/j.trsl.2021.10.007

[10]

Bednash J.S., Kagan V.E., Englert J.A. et al. Syrian hamsters as a model of lung injury with SARS-CoV-2 infection: Pathologic, physiologic, and detailed molecular profiling // Transl. Res. 2022. Vol. 240. P. 1–16. DOI: 10.1016/j.trsl.2021.10.007

[11]

Sia SF, Yan LM, Chin AWH, et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature. 2020;583(7818):834–838. DOI: 10.1038/s41586-020-2342-5

[12]

Sia S.F., Yan L.M., Chin A.W.H. et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters // Nature. 2020. Vol. 583, No. 7818. P. 834–838. DOI: 10.1038/s41586-020-2342-5

[13]

Imai M, Iwatsuki-Horimoto K, Hatta M, et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc Natl Acad Sci USA. 2020;117(28):16587–16595. DOI: 10.1073/pnas.2009799117

[14]

Imai M., Iwatsuki-Horimoto K., Hatta M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development // Proc. Natl. Acad. Sci. USA. 2020. Vol. 117, No. 28. P. 16587–16595. DOI: 10.1073/pnas.2009799117

[15]

Mohandas S, Yadav PD, Shete A, et al. SARS-CoV-2 delta variant pathogenesis and host response in Syrian hamsters. Viruses. 2021;13(9):1773. DOI: 10.3390/v13091773

[16]

Mohandas S., Yadav P.D., Shete A. et al. SARS-CoV-2 delta variant pathogenesis and host response in Syrian hamsters // Viruses. 2021. Vol. 13, No. 9. P. 1773. DOI: 10.3390/v13091773

[17]

Francis ME, Goncin U, Kroeker A, et al. SARS-CoV-2 infection in the Syrian hamster model causes inflammation as well as type I interferon dysregulation in both respiratory and non-respiratory tissues including the heart and kidney. PLoS Pathog. 2021;17(7):e1009705. DOI: 10.1371/journal.ppat.1009705

[18]

Francis M.E., Goncin U., Kroeker A. et al. SARS-CoV-2 infection in the Syrian hamster model causes inflammation as well as type I interferon dysregulation in both respiratory and non-respiratory tissues including the heart and kidney // PLoS Pathog. 2021. Vol. 17, No. 7. P. e1009705. DOI: 10.1371/journal.ppat.1009705

[19]

Moghaddar M, Radman R, Macreadie I. Severity, pathogenicity and transmissibility of delta and lambda variants of SARS-CoV-2, toxicity of spike protein and possibilities for future prevention of COVID-19. Microorganisms. 2021;9(10):2167. DOI: 10.3390/microorganisms9102167

[20]

Moghaddar M., Radman R., Macreadie I. Severity, pathogenicity and transmissibility of delta and lambda variants of SARS-CoV-2, toxicity of spike protein and possibilities for future prevention of COVID-19 // Microorganisms. 2021. Vol. 9, No. 10. P. 2167. DOI: 10.3390/microorganisms9102167

[21]

Yuan S, Ye ZW, Liang R, et al. Pathogenicity, transmissibility, and fitness of SARS-CoV-2 Omicron in Syrian hamsters. Science. 2022;377(6604):428–433. DOI: 10.1126/science.abn8939

[22]

Yuan S., Ye Z.W., Liang R. et al. Pathogenicity, transmissibility, and fitness of SARS-CoV-2 Omicron in Syrian hamsters // Science. 2022. Vol. 377, No. 6604. P. 428–433. DOI: 10.1126/science.abn8939

[23]

Matyushenko V, Isakova-Sivak I, Kudryavtsev I, et al. Detection of IFNgamma-secreting CD4(+) and CD8(+) memory t cells in COVID-19 convalescents after stimulation of peripheral blood mononuclear cells with live SARS-CoV-2. Viruses. 2021;13(8):1490. DOI: 10.3390/v13081490

[24]

Matyushenko V., Isakova-Sivak I., Kudryavtsev I. et al. Detection of IFNgamma-secreting CD4(+) and CD8(+) memory t cells in COVID-19 convalescents after stimulation of peripheral blood mononuclear cells with live SARS-CoV-2 // Viruses. 2021. Vol. 13, No. 8. P. 1490. DOI: 10.3390/v13081490

[25]

Sokolov A, Isakova-Sivak I, Grudinina N, et al. Ferristatin II efficiently inhibits SARS-CoV-2 replication in vero cells. Viruses. 2022;14(2):317. DOI: 10.3390/v14020317

[26]

Sokolov A., Isakova-Sivak I., Grudinina N. et al. Ferristatin II efficiently inhibits SARS-CoV-2 replication in vero cells // Viruses. 2022. Vol. 14, No. 2. P. 317. DOI: 10.3390/v14020317

[27]

Reed LJ, Muench H. A Simple method of estimating fifty per cent endpoints. Am J Epidemiol. 1938;27(3):493–497. DOI: 10.1093/oxfordjournals.aje.a118408

[28]

Reed L.J., Muench H. A Simple method of estimating fifty per cent endpoints // Am. J. Epidemiol. 1938. Vol. 27, No. 3. P. 493–497. DOI: 10.1093/oxfordjournals.aje.a118408

[29]

Directive 2010/63/EU of the European Parliament 263 and of the Council 264 of 22 September 2010 on the protection of animals used for scientific purposes. Official Journal of the European Union. 2010;53:33–79.

[30]

Directive 2010/63/EU of the European Parliament 263 and of the Council 264 of 22 September 2010 on the protection of animals used for scientific purposes // Official Journal of the European Union. 2010. Vol. 53. P. 33–79.

[31]

Hsia CC, Hyde DM, Ochs M, et al. An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. Am J Respir Crit Care Med. 2010;181(4):394–418. DOI: 10.1164/rccm.200809-1522ST

[32]

Hsia C.C., Hyde D.M., Ochs M. et al. An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure // Am. J. Respir. Crit. Care Med. 2010. Vol. 181, No. 4. P. 394–418. DOI: 10.1164/rccm.200809-1522ST

[33]

Carroll T, Fox D, van Doremalen N, et al. The B.1.427/1.429 (epsilon) SARS-CoV-2 variants are more virulent than ancestral B.1 (614G) in Syrian hamsters. PLoS Pathog. 2022;18(2):e1009914. DOI: 10.1371/journal.ppat.1009914

[34]

Carroll T., Fox D., van Doremalen N. et al. The B.1.427/1.429 (epsilon) SARS-CoV-2 variants are more virulent than ancestral B.1 (614G) in Syrian hamsters // PLoS Pathog. 2022. Vol. 18, No. 2. P. e1009914. DOI: 10.1371/journal.ppat.1009914

[35]

Fischer RJ, van Doremalen N, Adney DR, et al. ChAdOx1 nCoV-19 (AZD1222) protects Syrian hamsters against SARS-CoV-2 B.1.351 and B.1.1.7. bioRxiv. 2021. DOI: 10.1101/2021.03.11.435000

[36]

Fischer R.J., van Doremalen N., Adney D.R. et al. ChAdOx1 nCoV-19 (AZD1222) protects Syrian hamsters against SARS-CoV-2 B.1.351 and B.1.1.7 // bioRxiv. 2021. DOI: 10.1101/2021.03.11.435000

[37]

Van der Lubbe JEM, Rosendahl Huber SK, Vijayan A, et al. Ad26.COV2.S protects Syrian hamsters against G614 spike variant SARS-CoV-2 and does not enhance respiratory disease. NPJ Vaccines. 2021;6(1):39. DOI: 10.1038/s41541-021-00301-y

[38]

Van der Lubbe J.E.M., Rosendahl Huber S.K., Vijayan A. et al. Ad26.COV2.S protects Syrian hamsters against G614 spike variant SARS-CoV-2 and does not enhance respiratory disease // NPJ Vaccines. 2021. Vol. 6, No. 1. P. 39. DOI: 10.1038/s41541-021-00301-y

[39]

Tamming LA, Duque D, Tran A, et al. DNA based vaccine expressing SARS-CoV-2 Spike-CD40L fusion protein confers protection against challenge in a Syrian hamster model. Front Immunol. 2021;12:785349. DOI: 10.3389/fimmu.2021.785349

[40]

Tamming L.A., Duque D., Tran A. et al. DNA based vaccine expressing SARS-CoV-2 Spike-CD40L fusion protein confers protection against challenge in a Syrian hamster model // Front. Immunol. 2021. Vol. 12. P. 785349. DOI: 10.3389/fimmu.2021.785349

[41]

Johnson S, Martinez CI, Tedjakusuma SN, et al. Oral vaccination protects against severe acute respiratory syndrome coronavirus 2 in a Syrian hamster challenge model. J Infect Dis. 2022;225(1):34–41. DOI: 10.1093/infdis/jiab561

[42]

Johnson S., Martinez C.I., Tedjakusuma S.N. et al. Oral vaccination protects against severe acute respiratory syndrome coronavirus 2 in a Syrian hamster challenge model // J. Infect. Dis. 2022. Vol. 225, No. 1. P. 34–41. DOI: 10.1093/infdis/jiab561

[43]

Kulkarni R, Chen WC, Lee Y, et al. Vaccinia virus-based vaccines confer protective immunity against SARS-CoV-2 virus in Syrian hamsters. PLoS One. 2021;16(9):e0257191. DOI: 10.1371/journal.pone.0257191

[44]

Kulkarni R., Chen W.C., Lee Y. et al. Vaccinia virus-based vaccines confer protective immunity against SARS-CoV-2 virus in Syrian hamsters // PLoS One. 2021. Vol. 16, No. 9. P. e0257191. DOI: 10.1371/journal.pone.0257191

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1732KB)

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/