Antiviral activity of adamantane derivatives against respiratory syncytial virus
Anna A. Shtro , Anastasiya V. Galochkina , Yulia V. Nikolaeva , Anzhelika V. Garshinina , Daria N. Razgulyaeva , Konstantin Yu. Ponomarev , Evgeny S. Mozhaytsev , Evgeny V. Suslov , Konstantin P. Volcho , Nariman F. Salakhutdinov
Medical academic journal ›› 2022, Vol. 22 ›› Issue (2) : 115 -123.
Antiviral activity of adamantane derivatives against respiratory syncytial virus
BACKGROUND: Respiratory syncytial infection annually affects large segments of the population around the world. Despite the ease of clinical manifestations in most adults, for children under two years of age, this disease is a serious danger, leading to the development of severe bronchiolitis, even death.
AIM: The aim of this study was to search for drugs with antiviral activity among adamantane derivatives.
MATERIALS AND METHODS: Preparations of the group of adamantane derivatives were synthesized in the Department of Medicinal Chemistry of Natural Compounds of the N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS. The cytotoxicity and antiviral activity of the compounds were studied in HEp-2 cell culture using the MTT test and enzyme immunoassay, respectively.
RESULTS: There were no drugs with high antiviral properties against RSV in this group.
CONCLUSIONS: Despite the absence of drugs with pronounced anti-RSV properties, the information obtained in the course of the work can be used for a targeted search for antitumor substances.
respiratory-syncytial virus / adamantanes / antiviral activity / cell culture
| [1] |
Hall CB, Weinberg GA, Iwane MK, et al. The burden of respiratory syncytial virus infection in young children. N Engl J Med. 2009;360(6):588–598. DOI: 10.1056/NEJMoa0804877 |
| [2] |
Hall C.B., Weinberg G.A., Iwane M.K. et al. The burden of respiratory syncytial virus infection in young children // N. Engl. J. Med. 2009. Vol. 360, No. 6. P. 588–598. DOI: 10.1056/NEJMoa0804877 |
| [3] |
Falsey AR, Hennessey PA, Formica MA, et al. Respiratory syncytial virus infection in elderly and high-risk adults. N Engl J Med. 2005;352(17):1749–1759. DOI: 10.1056/NEJMoa043951 |
| [4] |
Falsey A.R., Hennessey P.A., Formica M.A. et al. Respiratory syncytial virus infection in elderly and high-risk adults // N. Engl. J. Med. 2005. Vol. 352, No. 17. P. 1749–1759. DOI: 10.1056/NEJMoa043951 |
| [5] |
Collins PL, Crowe JE. Respiratory syncytial virus and Metapneumovirus. In: Fields Virology. D.M. Knipe, P.M. Howley, D.E. Griffin (editors). 5th ed. Lippincott Williams and Wilkins, Philadelphia: USA; 2007. P. 1601–1646. |
| [6] |
Collins PL, Crowe JE. Respiratory syncytial virus and Metapneumovirus // Fields Virology. Ed. by D.M. Knipe, P.M. Howley, D.E. Griffin, et al. 5th ed. Lippincott Williams and Wilkins, Philadelphia: USA, 2007. P. 1601–1646. |
| [7] |
Kuhn JH, Dietzgen RG, Easton AJ, et al. Elevation of the paramyxoviral subfamily Pneumovirinae to family status as family Pneumoviridae in the order Mononegavirales; and renaming of one pneumoviral genus. ICTV. 2015.011a-gM. 2015. 14 p. DOI: 10.13140/RG.2.1.2275.2081 |
| [8] |
Kuhn J.H., Dietzgen R.G., Easton A.J. et al. Elevation of the paramyxoviral subfamily Pneumovirinae to family status as family Pneumoviridae in the order Mononegavirales; and renaming of one pneumoviral genus // ICTV. 2015.011a-gM. 2015. 14 p. DOI: 10.13140/RG.2.1.2275.2081 |
| [9] |
Bukreyev A, Whitehead SS, Murphy BR, Collins PL. Recombinant respiratory syncytial virus from which the entire SH gene has been deleted grows efficiently in cell culture and exhibits site-specific attenuation in the respiratory tract of the mouse. J Virol. 1997;71(12):8973–8982. DOI: 10.1128/JVI.71.12.8973-8982.1997 |
| [10] |
Bukreyev A., Whitehead S.S., Murphy B.R., Collins P.L. Recombinant respiratory syncytial virus from which the entire SH gene has been deleted grows efficiently in cell culture and exhibits site-specific attenuation in the respiratory tract of the mouse // J. Virol. 1997. Vol. 71, No. 12. P. 8973–8982. DOI: 10.1128/JVI.71.12.8973-8982.1997 |
| [11] |
Whitehead SS, Bukreyev A, Teng MN, et al. Recombinant respiratory syncytial virus bearing a deletion of either the NS2 or SH gene is attenuated in chimpanzees. J Virol. 1999;73(4):3438–3442. DOI: 10.1128/JVI.73.4.3438-3442.1999 |
| [12] |
Whitehead S.S., Bukreyev A., Teng M.N. et al. Recombinant respiratory syncytial virus bearing a deletion of either the NS2 or SH gene is attenuated in chimpanzees // J. Virol. 1999. Vol. 73, No. 4. P. 3438–3442. DOI: 10.1128/JVI.73.4.3438-3442.1999 |
| [13] |
Perez M, García-Barreno B, Melero JA, et al. Membrane permeability changes induced in Escherichia coli by the SH protein of human respiratory syncytial virus. Virology. 1997;235(2):342–351. DOI: 10.1006/viro.1997.8696 |
| [14] |
Perez M., García-Barreno B., Melero J.A. et al. Membrane permeability changes induced in Escherichia coli by the SH protein of human respiratory syncytial virus // Virology. 1997. Vol. 235, No. 2. P. 342–351. DOI: 10.1006/viro.1997.8696 |
| [15] |
Wanka L, Iqbal K, Schreiner PR. The lipophilic bullet hits the targets: Medicinal chemistry of adamantane derivatives. Chem Rev. 2013;113(5):3516–3604. DOI: 10.1021/cr100264t |
| [16] |
Wanka L., Iqbal K., Schreiner P.R. The lipophilic bullet hits the targets: Medicinal chemistry of adamantane derivatives // Chem. Rev. 2013. Vol. 113, No. 5. P. 3516–3604. DOI: 10.1021/cr100264t |
| [17] |
Teplov GV, Suslov EV, Zarubaev VV, et al. Synthesis of new compounds combining adamantanamine and monoterpene fragments and their antiviral activity against influenza virus A(H1N1)pdm09. Letters in Drug Design and Discovery. 2013;10(6):477–485. DOI: 10.2174/1570180811310060002 |
| [18] |
Teplov G.V., Suslov E.V., Zarubaev V.V. et al. Synthesis of new compounds combining adamantanamine and monoterpene fragments and their antiviral activity against influenza virus A(H1N1)pdm09 // Letters in Drug Design and Discovery. 2013. Vol. 10, No. 6. P. 477–485. DOI: 10.2174/1570180811310060002 |
| [19] |
Suslov EV, Ponomarev KJu, Volcho KP, Salahutdinov NF. Azaadamantanes — a new perspective scaffold for medical chemistry. Russian Journal of Bioorganic Chemistry. 2021;47(6):659–682. (In Russ.). DOI: 10.31857/S0132342321060233 |
| [20] |
Суслов Е.В., Пономарев К.Ю., Волчо К.П. Салахутдинов Н.Ф. Азаадамантаны — новый перспективный каркасный блок для медицинской химии и фармакологии // Биоорганическая химия. 2021. Т. 47, № 6. С. 659–682. DOI: 10.31857/S0132342321060233 |
| [21] |
Vichkanova SA, Goryunova LV, Shipulina LD, et al. Protivovirusnaya aktivnost’ proizvodnykh 1,3,5-triazaadamanatana. Farmakologiya i toksikologiya. 1974;37:76–79. (In Russ.) |
| [22] |
Вичканова С.А., Горюнова Л.В., Шипулина Л.Д. и др. Противовирусная активность производных 1,3,5-триазаадаманатана // Фармакология и токсикология. 1974. Т. 37. C. 76–79. |
| [23] |
Kozeletskaya KN, Stotskaya LL, Serbin AV, et al. The structure and antiviral activity of adamantane-containing polymer preparations. Problems of Virology. 2003;48(5):19–26. (In Russ.) |
| [24] |
Козелецкая К.Н., Стоцкая Л.Л., Сербин А.В. и др. Структура и антивирусная активность адамантансодержащих полимерных препаратов // Вопросы вирусологии. 2003. Т. 48, № 5. С. 19–26. |
| [25] |
Suslov E, Zarubaev VV, Slita AV, et al. Anti-influenza activity of diazaadamantanes combined with monoterpene moieties. Bioorg Med Chem Lett. 2017;27(19):4531–4535. DOI: 10.1016/j.bmcl.2017.08.062 |
| [26] |
Suslov E., Zarubaev V.V., Slita A.V. et al. Anti-influenza activity of diazaadamantanes combined with monoterpene moieties // Bioorg. Med. Chem. Lett. 2017. Vol. 27, No. 19. P. 4531–4535. DOI: 10.1016/j.bmcl.2017.08.062 |
| [27] |
Šafář M, Galík V, Kafka Z, et al. Nitrogen compounds of adamantane part 7, New preparation of 7-nitro-1,3,5-triazaadamantane and its derivatives obtained by hydrogenation and ozonisation. Coll Czech CC. 1975;40:2179–2182. DOI: 10.1002/CHIN.197540262 |
| [28] |
Šafář M., Galík V., Kafka Z. et al. Nitrogen compounds of adamantane part 7, New preparation of 7-nitro-1,3,5-triazaadamantane and its derivatives obtained by hydrogenation and ozonisation // Coll. Czech CC. 1975. Vol. 40. P. 2179–2182. DOI: 10.1002/CHIN.197540262 |
| [29] |
Patent RU 2760459C1/11.25.2021. Suslov EV, Volcho KP, Kotliarova AA, et al. Quaternary ammonium salts of diazaadamantans with actoprotective activity. (In Russ.) |
| [30] |
Патент RU 2760459C1/ 25.11.2021. Суслов Е.В., Волчо К.П., Котлярова А.А. и др. Четвертичные аммонийные соли диазаадамантанов, обладающие актопротекторной активностью. |
| [31] |
Suslov EV, Mozhaytsev ES, Korchagina DV, et al. New chemical agents based on adamantane–monoterpene conjugates against orthopoxvirus infections. RSC Med Chem. 2020;11(10):1185–1195. DOI: 10.1039/d0md00108b |
| [32] |
Suslov E.V., Mozhaytsev E.S., Korchagina D.V. et al. New chemical agents based on adamantane–monoterpene conjugates against orthopoxvirus infections // RSC Med. Chem. 2020. Vol. 11, No. 10. P. 1185–1195. DOI: 10.1039/d0md00108b |
| [33] |
Bayguzina AR, Lutfullina AR, Khusnutdinov RI. Synthesis of N-(Adamantan-1-yl)carbamides by Ritter Reaction from Adamantan-1-ol and Nitriles in the Presence of Cu-Catalysts. Rus J Org Chem. 2018;54(8):1127–1133. DOI: 10.1134/S1070428018080031 |
| [34] |
Bayguzina A.R., Lutfullina A.R., Khusnutdinov R.I. Synthesis of N-(Adamantan-1-yl)carbamides by Ritter Reaction from Adamantan-1-ol and Nitriles in the Presence of Cu-Catalysts // Rus. J. Org. Chem. 2018. Vol. 54, No. 8. P. 1127–1133. DOI: 10.1134/S1070428018080031 |
| [35] |
Hamstra DFJ, Lenstra DC, Koenders TJ, et al. Poly(methylhydrosiloxane) as a green reducing agent in organophosphorus-catalysed amide bond formation. Org Biomol Chem. 2017;15(30):6426–6432. DOI: 10.1039/c7ob01510k |
| [36] |
Hamstra D.F.J., Lenstra D.C., Koenders T.J. et al. Poly(methylhydrosiloxane) as a green reducing agent in organophosphorus-catalysed amide bond formation // Org. Biomol. Chem. 2017. Vol. 15, No. 30. P. 6426–6432. DOI: 10.1039/c7ob01510k |
Eco-Vector
/
| 〈 |
|
〉 |