Attenuation markers of cold-adapted SARS-CoV-2 variants

Anastasiia V. Gracheva , Ekaterina R. Korchevaya , Roman V. Samoilikov , Daria I. Smirnova , Irina А. Leneva , Artem A. Poromov , Andrey А. Pankratov , Galina V. Trunova , Varvara А. Khokhlova , Firaya G. Nagieva , Oksana А. Svitich , Vitaly V. Zverev , Evgeny В. Faizuloev

Medical academic journal ›› 2022, Vol. 22 ›› Issue (2) : 79 -88.

PDF
Medical academic journal ›› 2022, Vol. 22 ›› Issue (2) : 79 -88. DOI: 10.17816/MAJ108725
Original research
research-article

Attenuation markers of cold-adapted SARS-CoV-2 variants

Author information +
History +
PDF

Abstract

BACKGROUND: Unprecedented anti-epidemic measures and the widespread use of vaccines against COVID-19 have reduced the rate of hospitalization and mortality from the disease, but have not stopped the SARS-CoV-2 pandemic spread. The development of live vaccines against COVID-19, capable of providing the formation of a long-term humoral and cellular immune response and cross-protection against new SARS-CoV-2 variants of concern, is relevant. Previously at the I.I. Mechnikov Research Institute of Vaccines and Sera SARS-CoV-2 cold-adapted (ca, cold-adapted) variants were obtained. This work is aimed to search for methodological approaches that allow in vitro screening studies to assess the attenuation (att) phenotype of ca SARS-CoV-2 variants.

MATERIALS AND METHODS: The SARS-CoV-2 laboratory strain Dubrovka and its variants were cultured in Vero and Calu-3 cells. Quantitation of the virus was carried out by titration in Vero cells and by real-time RT-PCR. The attenuation (att) phenotype of SARS-CoV-2 variants was determined on an animal model of COVID-19 on Syrian hamsters.

RESULTS: In experiments on Syrian hamsters, the presence of the att phenotype in the ca variants of the virus was established. Animals infected with virus ca variants had significantly less weight lost, had less viral load in the lungs and brain and less pronounced pathological changes in the lungs compared to infection with the virulent strain. In vitro experiments on Vero and Calu-3 cells revealed probable attenuation markers of the virus ca variants for syrian hamsters: (1) ability to reproduce at low temperature (ca phenotype); (2) inability to reproduce at 39 °C (ts phenotype); (3) changes in the species and tissue specificity of the virus.

CONCLUSIONS: The developed methodological approaches to the identification of SARS-CoV-2 attenuation markers are a valuable tool for monitoring the stability of the phenotype of candidate vaccine strains.

Keywords

SARS-CoV-2 / cold-adapted virus / attenuation markers / live vaccine

Cite this article

Download citation ▾
Anastasiia V. Gracheva, Ekaterina R. Korchevaya, Roman V. Samoilikov, Daria I. Smirnova, Irina А. Leneva, Artem A. Poromov, Andrey А. Pankratov, Galina V. Trunova, Varvara А. Khokhlova, Firaya G. Nagieva, Oksana А. Svitich, Vitaly V. Zverev, Evgeny В. Faizuloev. Attenuation markers of cold-adapted SARS-CoV-2 variants. Medical academic journal, 2022, 22(2): 79-88 DOI:10.17816/MAJ108725

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gómez-Carballa A, Pardo-Seco J, Bello X, et al. Superspreading in the emergence of COVID-19 variants. Trends Genet. 2021;37(12):1069–1080. DOI: 10.1016/j.tig.2021.09.003

[2]

Gómez-Carballa A., Pardo-Seco J., Bello X. et al. Superspreading in the emergence of COVID-19 variants // Trends Genet. 2021. Vol. 37, No. 12. P. 1069–1080. DOI: 10.1016/j.tig.2021.09.003

[3]

Nikonova AA, Faizuloev EB, Gracheva AV, et al. Genetic diversity and evolution of the biological features of the pandemic SARS-CoV-2. Acta Naturae. 2021;13(3):77–88. DOI: 10.32607/actanaturae.11337

[4]

Nikonova A.A., Faizuloev E.B., Gracheva A.V. et al. Genetic diversity and evolution of the biological features of the pandemic SARS-CoV-2 // Acta Naturae. 2021. Vol. 13, No. 3. P. 77–88. DOI: 10.32607/actanaturae.11337

[5]

Choi JY, Smith DM. SARS-CoV-2 variants of concern. Yonsei Med J. 2021;62(11):961–968. DOI: 10.3349/ymj.2021.62.11.961

[6]

Choi J.Y., Smith D.M. SARS-CoV-2 variants of concern // Yonsei Med. J. 2021. Vol. 62, No. 11. P. 961–968. DOI: 10.3349/ymj.2021.62.11.961

[7]

Dupont L, Snell LB, Graham C, et al. Neutralizing antibody activity in convalescent sera from infection in humans with SARS-CoV-2 and variants of concern. Nat Microbiol. 2021;6(11):1433–1442. DOI: 10.1038/s41564-021-00974-0

[8]

Dupont L., Snell L.B., Graham C. et al. Neutralizing antibody activity in convalescent sera from infection in humans with SARS-CoV-2 and variants of concern // Nat. Microbiol. 2021. Vol. 6, No. 11. P. 1433–1442. DOI: 10.1038/s41564-021-00974-0

[9]

Tao K, Tzou PL, Nouhin J, et al. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat Rev Genet. 2021;22(12):757–773. DOI: 10.1038/s41576-021-00408-x

[10]

Tao K., Tzou P.L., Nouhin J. et al. The biological and clinical significance of emerging SARS-CoV-2 variants // Nat. Rev. Genet. 2021. Vol. 22, No. 12. P. 757–773. DOI: 10.1038/s41576-021-00408-x

[11]

Saito A, Irie T, Suzuki R, et al. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature. 2022;602(7896):300–306. DOI: 10.1038/s41586-021-04266-9

[12]

Saito A., Irie T., Suzuki R. et al. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation // Nature. 2022. Vol. 602, No. 7896. P. 300–306. DOI: 10.1038/s41586-021-04266-9

[13]

Bowen JE, Sprouse KR, Walls AC, et al. Omicron BA.1 and BA.2 neutralizing activity elicited by a comprehensive panel of human vaccines. bioRxiv. 2022. DOI: 10.1101/2022.03.15.484542

[14]

Bowen J.E., Sprouse K.R., Walls A.C. et al. Omicron BA.1 and BA.2 neutralizing activity elicited by a comprehensive panel of human vaccines // bioRxiv. 2022. DOI: 10.1101/2022.03.15.484542

[15]

Fajzuloev EB, Gracheva AV, Korchevaja ER, et al. Poluchenie i harakteristika holodoadaptirovannogo shtamma koronavirusa SARS-CoV-2. In: Modern immunoprophylaxis: challenges, opportunities, prospects: Abstracts of the All-Russian scientific and practical conference with international participation (October 7–8, 2021). Moscow; 2021. P. 79. (In Russ.)

[16]

Файзулоев Е.Б., Грачева А.В., Корчевая Е.Р. и др. Получение и характеристика холодоадаптированного штамма коронавируса SARS-CoV-2 // Сборник тезисов Всероссийской научно-практической конференции с международным участием «Современная иммунопрофилактика: вызовы, возможности, перспективы», Москва, 7–8 октября 2021 г. Москва, 2021. С. 79.

[17]

Gracheva AV, Korchevaya ER, Kudryashova AM, et al. Adaptation of the MTT assay for detection of neutralizing antibodies against the SARS-CoV-2 virus. Journal of microbiology, epidemiology and immunobiology. 2021;98(3)253–265. (In Russ.). DOI: 10.36233/0372-9311-136

[18]

Грачева А.В., Корчевая Е.Р., Кудряшова А.М. и др. Адаптация МТТ-теста для определения нейтрализующих антител к вирусу SARS-CoV-2 // Журнал микробиологии, эпидемиологии и иммунобиологии. 2021. Т. 98, № 3. С. 253–265. DOI: 10.36233/0372-9311-136

[19]

Ramakrishnan MA. Determination of 50% endpoint titer using a simple formula. World J Virol. 2016;5(2):85–86. DOI: 10.5501/wjv.v5.i2.85

[20]

Ramakrishnan M.A. Determination of 50% endpoint titer using a simple formula // World J. Virol. 2016. Vol. 5, No. 2. P. 85–86. DOI: 10.5501/wjv.v5.i2.85

[21]

Chan JF, Yip CC, To KK, et al. Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-PCR assay validated in vitro and with clinical specimens. J Clin Microbiol. 2020;58(5):e00310–20. DOI: 10.1128/JCM.00310-20

[22]

Chan J.F., Yip C.C., To K.K. et al. Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-PCR assay validated in vitro and with clinical specimens // J. Clin. Microbiol. 2020. Vol. 58, No. 5. P. e00310–20. DOI: 10.1128/JCM.00310-20

[23]

Maassab HF, DeBorde DC. Development and characterization of cold-adapted viruses for use as live virus vaccines. Vaccine. 1985;3(5):355–369. DOI: 10.1016/0264-410x(85)90124-0

[24]

Maassab H.F., DeBorde D.C. Development and characterization of cold-adapted viruses for use as live virus vaccines // Vaccine. 1985. Vol. 3, No. 5. P. 355–369. DOI: 10.1016/0264-410x(85)90124-0

[25]

Alexandrova GI, Smorodinstev AA. Obtaining of an additionally attenuated vaccinating cryophil influenza strain. Revue Roumaine d’Inframicrobiologie. 1965;2(3):179–186.

[26]

Alexandrova G.I., Smorodinstev A.A. Obtaining of an additionally attenuated vaccinating cryophil influenza strain // Revue Roumaine d’Inframicrobiologie. 1965. Vol. 2, No. 3. P. 179–186.

[27]

Ghendon YZ, Polezhaev FI, Lisovskaya KV, et al. 1984. Recombinant cold-adapted attenuated influenza A vaccines for use in children: molecular genetic analysis of the cold-adapted donor and recombinants. Infect Immun. 1984;44(3):730–733. DOI: 10.1128/IAI.44.3.730-733.1984

[28]

Ghendon Y.Z., Polezhaev F.I., Lisovskaya K.V. et al. 1984. Recombinant cold-adapted attenuated influenza A vaccines for use in children: molecular genetic analysis of the cold-adapted donor and recombinants // Infect. Immun. 1984. Vol. 44, No. 3. P. 730–733. DOI: 10.1128/IAI.44.3.730-733.1984

[29]

Maassab HF. Adaptation and growth characteristics of influenza virus at 25 degrees c. Nature. 1967;213(5076):612–614. DOI: 10.1038/213612a0

[30]

Maassab H.F. Adaptation and growth characteristics of influenza virus at 25 degrees c // Nature. 1967. Vol. 213, No. 5076. P. 612–614. DOI: 10.1038/213612a0

[31]

Rudenko LG, Slepushkin AN, Monto AS, et al. Efficacy of live attenuated and inactivated influenza vaccines in schoolchildren and their unvaccinated contacts in Novgorod, Russia. J Infect Dis. 1993;168(4):881–887. DOI: 10.1093/infdis/168.4.881

[32]

Rudenko L.G., Slepushkin A.N., Monto A.S. et al. Efficacy of live attenuated and inactivated influenza vaccines in schoolchildren and their unvaccinated contacts in Novgorod, Russia // J. Infect. Dis. 1993. Vol. 168, No. 4. P. 881–887. DOI: 10.1093/infdis/168.4.881

[33]

Lu X, Edwards LE, Desheva JA, et al. Cross-protective immunity in mice induced by live-attenuated or inactivated vaccines against highly pathogenic influenza A (H5N1) viruses. Vaccine. 2006;24(44–46):6588–6593. DOI: 10.1016/j.vaccine.2006.05.039

[34]

Lu X., Edwards L.E., Desheva J.A. et al. Cross-protective immunity in mice induced by live-attenuated or inactivated vaccines against highly pathogenic influenza A (H5N1) viruses // Vaccine. 2006. Vol. 24, No. 44–46. P. 6588–6593. DOI: 10.1016/j.vaccine.2006.05.039

[35]

Seo SH, Jang Y. Cold-adapted live attenuated SARS-Cov-2 vaccine completely protects human ACE2 transgenic mice from SARS-Cov-2 infection. Vaccines (Basel). 2020;8(4):584. DOI: 10.3390/vaccines8040584

[36]

Seo S.H., Jang Y. Cold-adapted live attenuated SARS-Cov-2 vaccine completely protects human ACE2 transgenic mice from SARS-Cov-2 infection // Vaccines (Basel). 2020. Vol. 8, No. 4. P. 584. DOI: 10.3390/vaccines8040584

[37]

Okamura S, Ebina H. Could live attenuated vaccines better control COVID-19? Vaccine. 2021;39(39):5719–5726. DOI: 10.1016/j.vaccine.2021.08.018

[38]

Okamura S., Ebina H. Could live attenuated vaccines better control COVID-19? // Vaccine. 2021. Vol. 39, No. 39. P. 5719–5726. DOI: 10.1016/j.vaccine.2021.08.018

[39]

Tsfasman TM, Markushin SG, Akopova II, Ghendon YZ. Molecular mechanisms of reversion to the ts+ (non-temperature-sensitive) phenotype of influenza A cold-adapted (ca) virus strains. J Gen Virol. 2007;88(Pt 10):2724–2729. DOI: 10.1099/vir.0.83014-0

[40]

Tsfasman T.M., Markushin S.G., Akopova I.I., Ghendon YZ. Molecular mechanisms of reversion to the ts+ (non-temperature-sensitive) phenotype of influenza A cold-adapted (ca) virus strains // J. Gen. Virol. 2007. Vol. 88, No. Pt 10. P. 2724–2729. DOI: 10.1099/vir.0.83014-0

[41]

Ammour Y, Faizuloev E, Borisova T, et al. Quantification of measles, mumps and rubella viruses using real-time quantitative TaqMan-based RT-PCR assay. J Virol Methods. 2013;187(1):57–64. DOI: 10.1016/j.jviromet.2012.09.011

[42]

Ammour Y., Faizuloev E., Borisova T. et al. Quantification of measles, mumps and rubella viruses using real-time quantitative TaqMan-based RT-PCR assay // J. Virol. Methods. 2013. Vol. 187, No. 1. P. 57–64. DOI: 10.1016/j.jviromet.2012.09.011

[43]

Landgraf G, Desheva YA, Rudenko LG. Evaluation of influenza A and B cold-adapted reassortant virus reproduction in trivalent live influenza vaccines. Virus Res. 2021;300:198396. DOI: 10.1016/j.virusres.2021.198396

[44]

Landgraf G., Desheva Y.A., Rudenko L.G. Evaluation of influenza A and B cold-adapted reassortant virus reproduction in trivalent live influenza vaccines // Virus Res. 2021. Vol. 300. P. 198396. DOI: 10.1016/j.virusres.2021.198396

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

56

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/