Alphacoronaviruses detected in fecal samples of bats captured in Moscow and Rostov-on-Don in 2021
Elena V. Korneenko , Andrei E. Samoilov , Ilya V. Artyushin , Alexander P. Yusefovich , Sofya M. Dolotova , Ekaterina O. Klyuchnikova , Valeriya A. Sbarzaglia , Anna S. Gladkikh , Vladimir G. Dedkov , Anna S. Speranskaya
Medical academic journal ›› 2022, Vol. 22 ›› Issue (2) : 203 -208.
Alphacoronaviruses detected in fecal samples of bats captured in Moscow and Rostov-on-Don in 2021
BACKGROUND: Bats are a reservoir of a large number of viruses, including coronaviruses. Monitoring viruses in bats is an important task.
AIM: To detect viruses belonging to Coronaviridae family in bats which habitat in European part of Russia.
MATERIALS AND METHODS: We used PCR amplification of viral genome fragments, followed by high-throughput sequencing.
RESULTS: RdRp gene fragments of at least two different alphacoronaviruses (Bat coronavirus, Coronaviridae) were revealed in four bats of three species.
CONCLUSIONS: Our results demonstrate the presence of viruses of the Alphacoronavirus genus in 4 of 17 bats. Coronavirus-positive animals were captured in 2021 in Moscow, Moscow Region and Rostov-on-Don, these four animals have been found to be carriers of different isolates of the same alphacoronavirus, which allows us to suggest the possibility of transmission of this virus between animals between different species. One animal was found as carrier of genome fragments of two different alphacoronaviruses.
bats as virus reservoirs / analyzing new coronaviruses / alphacoronaviruses from bat fecal samples / interspecies virus transmission
| [1] |
Moratelli R, Calisher CH. Bats and zoonotic viruses: Can we confidently link bats with emerging deadly viruses? Mem Inst Oswaldo Cruz. 2015;110(1):1–22. DOI: 10.1590/0074-02760150048 |
| [2] |
Moratelli R., Calisher C.H. Bats and zoonotic viruses: Can we confidently link bats with emerging deadly viruses? // Mem. Inst. Oswaldo Cruz. 2015. Vol. 110, No. 1. P. 1–22. DOI: 10.1590/0074-02760150048 |
| [3] |
Shi ZL. Emerging infectious diseases associated with bat viruses. Sci China Life Sci. 2013;56(8):678–682. DOI: 10.1007/s11427-013-4517-x |
| [4] |
Shi Z.L. Emerging infectious diseases associated with bat viruses // Sci. China Life Sci. 2013. Vol. 56, No. 8. P. 678–682. DOI: 10.1007/s11427-013-4517-x |
| [5] |
Smith I, Wang LF. Bats and their virome: An important source of emerging viruses capable of infecting humans. Curr Opin Virol. 2013;3(1):84–91. DOI: 10.1016/j.coviro.2012.11.006 |
| [6] |
Smith I., Wang L.F. Bats and their virome: An important source of emerging viruses capable of infecting humans // Curr. Opin. Virol. 2013. Vol. 3, No. 1. P. 84–91. DOI: 10.1016/j.coviro.2012.11.006 |
| [7] |
Woo PC, Lau SK, Lam CS, et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol. 2012;86(7):3995–4008. DOI: 10.1128/JVI.06540-11 |
| [8] |
Woo P.C., Lau S.K., Lam C.S. et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus // J. Virol. 2012. Vol. 86, No. 7. P. 3996–4008. DOI: 10.1128/JVI.06540-11 |
| [9] |
Letko M, Seifert SN, Olival KJ, et al. Bat-borne virus diversity, spillover and emergence. Nat Rev Microbiol. 2020;18(8):461–471. DOI: 10.1038/s41579-020-0394-z |
| [10] |
Letko M., Seifert S.N., Olival K.J. et al. Bat-borne virus diversity, spillover and emergence // Nat. Rev. Microbiol. 2020. Vol. 18, No. 8. P. 461–471. DOI: 10.1038/s41579-020-0394-z |
| [11] |
Kohl C, Kurth A. European bats as carriers of viruses with zoonotic potential. Viruses. 2014;6(8):3110–3128. DOI: 10.3390/v6083110 |
| [12] |
Kohl C., Kurth A. European bats as carriers of viruses with zoonotic potential // Viruses. 2014. Vol. 6, No. 8. P. 3110–3128. DOI: 10.3390/v6083110 |
| [13] |
Phelps KL, Hamel L, Alhmoud N, et al. Bat research networks and viral surveillance: Gaps and opportunities in western Asia. Viruses. 2019;11(3):240. DOI: 10.3390/v11030240 |
| [14] |
Phelps K.L., Hamel L., Alhmoud N. et al. Bat research networks and viral surveillance: Gaps and opportunities in western Asia // Viruses. 2019. Vol. 11, No. 3. P. 240. DOI: 10.3390/v11030240 |
| [15] |
Alkhovsky S, Lenshin S, Romashin A, et al. SARS-Like Coronaviruses in Horseshoe Bats (Rhinolophus spp.) in Russia, 2020. Viruses. 2022;14(1):113. DOI: 10.3390/v14010113 |
| [16] |
Alkhovsky S., Lenshin S., Romashin A. et al. SARS-like coronaviruses in horseshoe bats (Rhinolophus spp.) in Russia, 2020 // Viruses. 2022. Vol. 14, No. 1. P. 113. DOI: 10.3390/v14010113 |
| [17] |
Lvov DK, Alkhovsky SV. Source of the COVID-19 pandemic: Ecology and genetics of coronaviruses (Betacoronavirus: Coronaviridae) SARS-CoV, SARS-CoV-2 (subgenus Sarbecovirus), and MERS-CoV (subgenus Merbecovirus). Vopr Virusol. 2020;65(2):62–70. DOI: 10.36233/0507-4088-2020-65-2-62-70 |
| [18] |
Львов Д.К., Альховский С.В. Истоки пандемии COVID-19: экология и генетика коронавирусов (Betacoronavirus: Coronaviridae) SARS-CoV, SARS-CoV-2 (подрод Sarbecovirus), MERS-CoV (подрод Merbecovirus) // Вопросы вирусологии. 2020. Т. 65, № 2. С. 62–70. DOI: 10.36233/0507-4088-2020-65-2-62-70 |
| [19] |
Da Silva Filho LV, Zerbinati RM, Tateno AF, et al. The differential clinical impact of human coronavirus species in children with cystic fibrosis. J Infect Dis. 2012;206(3):384–388. DOI: 10.1093/infdis/jis274 |
| [20] |
Da Silva Filho L.V., Zerbinati R.M., Tateno A.F. et al. The differential clinical impact of human coronavirus species in children with cystic fibrosis // J. Infect. Dis. 2012. Vol. 206, No. 3. P. 384–388. DOI: 10.1093/infdis/jis274 |
| [21] |
Safonova MV, Shchelkanov MY, Khafizov K, et al. Sequencing and genetic characterization of two strains Paramushir virus obtained from the Tyuleniy Island in the Okhotsk Sea (2015). Ticks Tick Borne Dis. 2019;10(2):269–279. DOI: 10.1016/j.ttbdis.2018.11.004 |
| [22] |
Safonova M.V., Shchelkanov M.Y., Khafizov K. et al. Sequencing and genetic characterization of two strains Paramushir virus obtained from the Tyuleniy Island in the Okhotsk Sea (2015) // Ticks Tick Borne Dis. 2019. Vol. 10, No. 2. P. 269–279. DOI: 10.1016/j.ttbdis.2018.11.004 |
| [23] |
Moreno A, Lelli D, de Sabato L, et al. Detection and full genome characterization of two beta CoV viruses related to Middle East respiratory syndrome from bats in Italy. Virol J. 2017;14(1):239. DOI: 10.1186/s12985-017-0907-1 |
| [24] |
Moreno A., Lelli D., de Sabato L. et al. Detection and full genome characterization of two beta CoV viruses related to Middle East respiratory syndrome from bats in Italy // Virol. J. 2017. Vol. 14, No. 1. P. 239. DOI: 10.1186/s12985-017-0907-1 |
| [25] |
Alcalde JT, Jiménez M, Brila I, et al. Transcontinental 2200 km migration of a Nathusius pipistrelle (Pipistrellus nathusii) across Europe. Mammalia. 2021;85(2):161–163. DOI: 10.1515/mammalia-2020-0069 |
| [26] |
Alcalde J.T., Jiménez M., Brila I. et al. Transcontinental 2200 km migration of a Nathusius’ pipistrelle (Pipistrellus nathusii) across Europe // Mammalia. 2021. Vol. 85, No. 2. P. 161–163. DOI: 10.1515/mammalia-2020-0069 |
| [27] |
Vasenkov D, Desmet J-F, Popov I, Sidorchuk N, et al. Bats can migrate farther than it was previously known: a new longest migration record by Nathusius’ pipistrelle Pipistrellus nathusii (Chiroptera: Vespertilionidae). Mammalia. 2022. DOI: 10.1515/mammalia-2021-0139 |
| [28] |
Vasenkov D., Desmet J.-F., Popov I., Sidorchuk N. et al. Bats can migrate farther than it was previously known: a new longest migration record by Nathusius’ pipistrelle Pipistrellus nathusii (Chiroptera: Vespertilionidae) // Mammalia. 2022. DOI: 10.1515/mammalia-2021-0139 |
Eco-Vector
/
| 〈 |
|
〉 |