Immunogenicity of mRNA encoding RBD SARS-CoV-2 in complex with a polycationic carrier

Andrey P. Rudometov , Sergey V. Sharabrin , Maria B. Borgoyakova , Ekaterina A. Volosnikova , Nadezhda B. Rudometova , Lyubov A. Orlova , Alexander A. Ilyichev , Larisa I. Karpenko

Medical academic journal ›› 2022, Vol. 22 ›› Issue (2) : 243 -248.

PDF
Medical academic journal ›› 2022, Vol. 22 ›› Issue (2) : 243 -248. DOI: 10.17816/MAJ108601
Conference proceedings
oration

Immunogenicity of mRNA encoding RBD SARS-CoV-2 in complex with a polycationic carrier

Author information +
History +
PDF

Abstract

BACKGROUND: RBD, receptor-binding domain, a key region of the SARS-CoV-2 surface glycoprotein for virus binding to host cell receptors and one of the targets of virus-neutralizing antibodies. That is why RBD is a promising immunogen for the development of vaccines that can provide protection against COVID-19. Vaccine mRNA is one of the new and rapidly developing vaccine platforms, and the delivery system is a very important component of it.

AIM: The aim of this work was to present the results of a study of the antigenic properties of mRNA encoding the receptor-binding domain of SARS-CoV-2 when administered in combination with a polycationic carrier.

MATERIALS AND METHODS: Dynamic and electrophoretic light scattering were used to characterize mRNA complexes with a polyglucin-spermidine conjugate. To assess the immunogenicity of mRNA were immunized BALB/c mice. The specific activity of the sera was assessed using enzyme immunoassay.

RESULTS: As a result, the sizes and surface charge of the RBD-encoding mRNA complexes with the polyglucin-spermidine conjugate were determined. It has been shown that wrapping mRNA in a polyglucin-spermidine conjugate shell leads to an increase in the induction of RBD-specific antibodies in BALB/c mice compared to naked mRNA.

CONCLUSIONS: An mRNA encoding the receptor-binding domain of SARS-CoV-2 has been obtained. It has been shown that the packaging of mRNA into the polyglucin-spermidine conjugate shell leads to an increase in immunogenic properties.

Keywords

mRNA vaccines / SARS-CoV-2 / RBD / antibodies / immune response

Cite this article

Download citation ▾
Andrey P. Rudometov, Sergey V. Sharabrin, Maria B. Borgoyakova, Ekaterina A. Volosnikova, Nadezhda B. Rudometova, Lyubov A. Orlova, Alexander A. Ilyichev, Larisa I. Karpenko. Immunogenicity of mRNA encoding RBD SARS-CoV-2 in complex with a polycationic carrier. Medical academic journal, 2022, 22(2): 243-248 DOI:10.17816/MAJ108601

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kleanthous H, Silverman JM, Makar KW, et al. Scientific rationale for developing potent RBD-based vaccines targeting COVID-19. NPJ Vaccines. 2021;6(1):128. DOI: 10.1038/s41541-021-00393-6

[2]

Kleanthous H., Silverman J.M., Makar K.W. et al. Scientific rationale for developing potent RBD-based vaccines targeting COVID-19 // NPJ Vaccines. 2021. Vol. 6, No. 1. P. 128. DOI: 10.1038/s41541-021-00393-6

[3]

Borgoyakova MB, Karpenko LI, Rudometov AP, et al. Self-assembled particles combining SARS-CoV-2 RBD Protein and RBD DNA vaccine induce synergistic enhancement of the humoral response in mice. Int J Mol Sci. 2022;23(4):2188. DOI: 10.3390/ijms23042188

[4]

Borgoyakova M.B., Karpenko L.I., Rudometov A.P. et al. Self-assembled particles combining SARS-CoV-2 RBD Protein and RBD DNA vaccine induce synergistic enhancement of the humoral response in mice // Int. J. Mol. Sci. 2022. Vol. 23, No. 4. P. 2188. DOI: 10.3390/ijms23042188

[5]

Merkuleva IA, Shcherbakov DN, Borgoyakova MB, et al. comparative immunogenicity of the recombinant receptor-binding domain of protein S SARS-CoV-2 obtained in prokaryotic and mammalian expression systems. Vaccines (Basel). 2022;10(1):96. DOI: 10.3390/vaccines10010096

[6]

Merkuleva I.A., Shcherbakov D.N., Borgoyakova M.B. et al. comparative immunogenicity of the recombinant receptor-binding domain of protein S SARS-CoV-2 obtained in prokaryotic and mammalian expression systems // Vaccines (Basel). 2022. Vol. 10, No. 1. P. 96. DOI: 10.3390/vaccines10010096

[7]

Borgoyakova MB, Karpenko LI, Rudometov AP, et al. Immunogenic properties of the DNA construct encoding the receptor-binding domain of the SARS-CoV-2 spike protein. Mol Biol. 2021;55(6):889–898. DOI: 10.1134/S0026893321050046

[8]

Borgoyakova M.B., Karpenko L.I., Rudometov A.P. et al. Immunogenic properties of the DNA construct encoding the receptor-binding domain of the SARS-CoV-2 spike protein // Mol. Biol. 2021. Vol. 55, No. 6. P. 889–898. DOI: 10.1134/S0026893321050046

[9]

Szabó GT, Mahiny AJ, Vlatkovic I. COVID-19 mRNA vaccines: platforms and current developments. Mol Ther. 2022;30(5):1850–1868. DOI: 10.1016/j.ymthe.2022.02.016

[10]

Szabó G.T., Mahiny A.J., Vlatkovic I. COVID-19 mRNA vaccines: platforms and current developments // Mol. Ther. 2022. Vol. 30, No. 5. P. 1850–1868. DOI: 10.1016/j.ymthe.2022.02.016

[11]

Salleh MZ, Norazmi MN, Deris ZZ. Immunogenicity mechanism of mRNA vaccines and their limitations in promoting adaptive protection against SARS-CoV-2. Peer J. 2022;10:e13083. DOI: 10.7717/peerj.13083

[12]

Salleh M.Z., Norazmi M.N., Deris Z.Z. Immunogenicity mechanism of mRNA vaccines and their limitations in promoting adaptive protection against SARS-CoV-2 // Peer J. 2022. Vol. 10. P. e13083. DOI: 10.7717/peerj.13083

[13]

Karpenko LI, Rudometov AP, Sharabrin SV, et al. Delivery of mRNA vaccine against SARS-CoV-2 using a polyglucin: Spermidine conjugate. Vaccines (Basel). 2021;9(2):76. DOI: 10.3390/vaccines9020076

[14]

Karpenko L.I., Rudometov A.P., Sharabrin S.V. et al. Delivery of mRNA vaccine against SARS-CoV-2 using a polyglucin: Spermidine conjugate // Vaccines (Basel). 2021. Vol. 9, No. 2. P. 76. DOI: 10.3390/vaccines9020076

[15]

Starostina EV, Sharabrin SV, Antropov DN, et al. Construction and immunogenicity of modified mRNA-vaccine variants encoding influenza virus antigens. Vaccines (Basel). 2021;9(5):452. DOI: 10.3390/vaccines9050452

[16]

Starostina E.V., Sharabrin S.V., Antropov D.N. et al. Construction and immunogenicity of modified mRNA-vaccine variants encoding influenza virus antigens // Vaccines (Basel). 2021. Vol. 9, No. 5. P. 452. DOI: 10.3390/vaccines9050452

[17]

Karpenko LI, Apartsin EK, Dudko SG, et al. Cationic polymers for the delivery of the Ebola DNA vaccine encoding artificial T-сell immunogen. Vaccines (Basel). 2020;8(4):718. DOI: 10.3390/vaccines8040718

[18]

Karpenko L.I., Apartsin E.K., Dudko S.G. et al. Cationic polymers for the delivery of the Ebola DNA vaccine encoding artificial T-сell immunogen // Vaccines (Basel). 2020. Vol. 8, No. 4. P. 718. DOI: 10.3390/vaccines8040718

[19]

Sahin U, Muik A, Derhovanessian E, et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH 1T cell responses. Nature. 2020;586(7830):594–599. DOI: 10.1038/s41586-020-2814-7

[20]

Sahin U., Muik A., Derhovanessian E. et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH 1 T cell responses // Nature. 2020. Vol. 586, No. 7830. P. 594–599. DOI: 10.1038/s41586-020-2814-7

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

63

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/