Application of herbal medicinal raw material in complex treatment COVID-19
Alyona S. Khaliullina , Dilyara Kh. Shakirova , Leysan A. Aliullina , Olga V. Morgatskaya
Medical academic journal ›› 2022, Vol. 22 ›› Issue (2) : 53 -64.
Application of herbal medicinal raw material in complex treatment COVID-19
COVID-19 is an acute respiratory viral infection caused by the coronavirus SARS-CoV-2 (2019-nCoV). Currently, approaches to coronavirus infusion are mostly confined to pathogenetic and symptomatic therapy. New treatment strategies include research to find new molecul candidates for COVID-19 treatment, as well as the repositioning of existing medicinal products. Recently, medicinal plants have been actively studied as potential candidates for COVID-19 treatment, showing high levels of antiviral activity and anti-inflammatory activity. This review focuses on medicinal plants whose biologically active substances are used or can be used for the treatment and the supportive therapy for a new coronavirus infection.
SARS-CoV-2 / coronavirus infection / medicinal plants / bioactive substances
| [1] |
Rai P, Kumar BK, Deekshit VK, et al. Detection technologies and recent developments in the diagnosis of COVID-19 infection. Appl Microbiol Biotechnol. 2021;105(2):441–455. DOI: 10.1007/s00253-020-11061-5 |
| [2] |
Rai P., Kumar B.K., Deekshit V.K. et al. Detection technologies and recent developments in the diagnosis of COVID-19 infection // Appl. Microbiol. Biotechnol. 2021. Vol. 105, No. 2. P. 441–455. DOI: 10.1007/s00253-020-11061-5 |
| [3] |
Majumder J, Minko T. Recent developments on therapeutic and diagnostic approaches for COVID-19. AAPS J. 2021;23(1):14. DOI: 10.1208/s12248-020-00532-2 |
| [4] |
Majumder J., Minko T. Recent developments on therapeutic and diagnostic approaches for COVID-19 // AAPS J. 2021. Vol. 23, No. 1. P. 14. DOI: 10.1208/s12248-020-00532-2 |
| [5] |
Ministerstvo zdravookhraneniya Rossiiskoi Federatsii. Vremennye metodicheskie rekomendatsii: Profilaktika, diagnostika i lechenie novoi koronavirusnoi infektsii (COVID-19). Versiya 15 (22.02.2022). (In Russ.) |
| [6] |
Министерство здравоохранения Российской Федерации. Временные методические рекомендации: Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 15 от 22.02.2022. |
| [7] |
Rehman SU, Rehman SU, Yoo HH. COVID-19 challenges and its therapeutics. Biomed Phamacother. 2021;142:112015. DOI: 10.1016/j.biopha.2021.112015 |
| [8] |
Rehman S.U., Rehman S.U., Yoo H.H. COVID-19 challenges and its therapeutics // Biomed. Phamacother. 2021. Vol. 142. P. 112015. DOI: 10.1016/j.biopha.2021.112015 |
| [9] |
Muthumanickam S, Kamaladevi A, Boomi P, et al. Indian ethnomedicinal phytochemicals as promising inhibitors of RNA-binding domain of SARS-CoV-2 nucleocapsid phosphoprotein: an in silico study. Front Mol Biosci. 2021;8:637329. DOI: 10.3389/fmolb.2021.637329 |
| [10] |
Muthumanickam S., Kamaladevi A., Boomi P. et al. Indian ethnomedicinal phytochemicals as promising inhibitors of RNA-binding domain of SARS-CoV-2 nucleocapsid phosphoprotein: an in silico study // Front. Mol. Biosci. 2021. Vol. 8. P. 637329. DOI: 10.3389/fmolb.2021.637329 |
| [11] |
Alhazmi HA, Najmi A, Javed SA, et al. Medicinal plants and isolated molecules demonstrating immunomodulation activity as potential alternative therapies for viral diseases including COVID-19. Front Immunol. 2021;12:637553. DOI: 10.3389/fimmu.2021.637553 |
| [12] |
Alhazmi H.A., Najmi A., Javed S.A. et al. Medicinal plants and isolated molecules demonstrating immunomodulation activity as potential alternative therapies for viral diseases including COVID-19 // Front. Immunol. 2021. Vol. 12. P. 637553. DOI: 10.3389/fimmu.2021.637553 |
| [13] |
Sreepadmanabh M, Sahu AK, Chande A. COVID-19: Advances in diagnostic tools, treatment strategies, and vaccine development. J Biosci. 2020;45(1):148. DOI: 10.1007/s12038-020-00114-6 |
| [14] |
Sreepadmanabh M., Sahu A.K., Chande A. COVID-19: Advances in diagnostic tools, treatment strategies, and vaccine development // J. Biosci. 2020. Vol. 45, No. 1. P. 148. DOI: 10.1007/s12038-020-00114-6 |
| [15] |
Ullah S, Munir B, Al-Sehemi AG, et al. Identification of phytochemical inhibitors of SARS-CoV-2 protease 3CLpro from selected medicinal plants as per molecular docking, bond energies and amino acid binding energies. Saudi J Biol Sci. 2022;29(6):103274. DOI: 10.1016/j.sjbs.2022.03.024 |
| [16] |
Ullah S., Munir B., Al-Sehemi A.G. et al. Identification of phytochemical inhibitors of SARS-CoV-2 protease 3CLpro from selected medicinal plants as per molecular docking, bond energies and amino acid binding energies // Saudi J. Biol. Sci. 2022. Vol. 29, No. 6. P. 103274. DOI: 10.1016/j.sjbs.2022.03.024 |
| [17] |
Qin H, Zhao A. Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics. Protein Cell. 2020;11(10):707–722. DOI: 10.1007/s13238-020-00738-2 |
| [18] |
Qin H., Zhao A. Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics // Protein Cell. 2020. Vol. 11, No. 10. P. 707–722. DOI: 10.1007/s13238-020-00738-2 |
| [19] |
Li Z, Niu S, Guo B, et al. Stem cell therapy for COVID-19, ARDS and pulmonary fibrosis. Cell Prolif. 2020;53(12):e12939. DOI: 10.1111/cpr.12939 |
| [20] |
Li Z., Niu S., Guo B. et al. Stem cell therapy for COVID-19, ARDS and pulmonary fibrosis // Cell Prolif. 2020. Vol. 53, No. 12. P. e12939. DOI: 10.1111/cpr.12939 |
| [21] |
Pollard CA, Morran MP, Nestor-Kalinoski AL. The COVID-19 pandemic: a global health crisis. Physiol Genomics. 2020;52(11):549–557. DOI: 10.1152/physiolgenomics.00089.2020 |
| [22] |
Pollard C.A., Morran M.P., Nestor-Kalinoski A.L. The COVID-19 pandemic: a global health crisis // Physiol. Genomics. 2020. Vol. 52, No. 11. P. 549–557. DOI: 10.1152/physiolgenomics.00089.2020 |
| [23] |
Chaachouay N, Douira A, Zidane L. COVID-19, prevention and treatment with herbal medicine in the herbal markets of Salé Prefecture, North-Western Morocco. Eur J Integr Med. 2021;42:101285. DOI: 10.1016/j.eujim.2021.101285 |
| [24] |
Chaachouay N., Douira A., Zidane L. COVID-19, prevention and treatment with herbal medicine in the herbal markets of Salé Prefecture, North-Western Morocco // Eur. J. Integr. Med. 2021. Vol. 42. P. 101285. DOI: 10.1016/j.eujim.2021.101285 |
| [25] |
Chinsembu KC. Coronaviruses and nature’s pharmacy for the relief of coronavirus disease 2019. Rev Bras Farmacogn. 2020;30(5):603–621. DOI: 10.1007/s43450-020-00104-7 |
| [26] |
Chinsembu K.C. Coronaviruses and nature’s pharmacy for the relief of coronavirus disease 2019 // Rev. Bras. Farmacogn. 2020. Vol. 30, No. 5. P. 603–621. DOI: 10.1007/s43450-020-00104-7 |
| [27] |
Adhikari B, Marasini BP, Rayamajhee B, et al. Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID-19: A review. Phytother Res. 2021;35(3):1298–1312. DOI: 10.1002/ptr.6893 |
| [28] |
Adhikari B., Marasini B.P., Rayamajhee B. et al. Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID-19: A review // Phytother. Res. 2021. Vol. 35, No. 3. P. 1298–1312. DOI: 10.1002/ptr.6893 |
| [29] |
Khan T, Khan MA, Mashwani ZU, et al. Therapeutic potential of medicinal plants against COVID-19: The role of antiviral medicinal metabolites. Biocatal Agric Biotechnol. 2021;31:101890. DOI: 0.1016/j.bcab.2020.101890 |
| [30] |
Khan T., Khan M.A., Mashwani Z.U. et al. Therapeutic potential of medicinal plants against COVID-19: The role of antiviral medicinal metabolites // Biocatal. Agric. Biotechnol. 2021. Vol. 31. P. 101890. DOI: 0.1016/j.bcab.2020.101890 |
| [31] |
Khan SA, Al-Balushi K. Combating COVID-19: The role of drug repurposing and medicinal plants. J Infect Public Health. 2021;14(4):495–503. DOI: 10.1016/j.jiph.2020.10.012 |
| [32] |
Khan S.A., Al-Balushi K. Combating COVID-19: The role of drug repurposing and medicinal plants // J. Infect. Public Health. 2021. Vol. 14, No. 4. P. 495–503. DOI: 10.1016/j.jiph.2020.10.012 |
| [33] |
Jalali A, Dabaghian F, Akbrialiabad H, et al. A pharmacology-based comprehensive review on medicinal plants and phytoactive constituents possibly effective in the management of COVID-19. Phytother Res. 2021;35(4):1925–1938. DOI: 10.1002/ptr.6936 |
| [34] |
Jalali A., Dabaghian F., Akbrialiabad H. et al. A pharmacology-based comprehensive review on medicinal plants and phytoactive constituents possibly effective in the management of COVID-19 // Phytother. Res. 2021. Vol. 35, No. 4. P. 1925–1938. DOI: 10.1002/ptr.6936 |
| [35] |
Anand AV, Balamuralikrishnan B, Kaviya M, et al. Medicinal plants, phytochemicals, and herbs to combat viral pathogens including SARS-CoV-2. Molecules. 2021;26(6):1775. DOI: 10.3390/molecules26061775 |
| [36] |
Anand A.V., Balamuralikrishnan B., Kaviya M. et al. Medicinal plants, phytochemicals, and herbs to combat viral pathogens including SARS-CoV-2 // Molecules. 2021. Vol. 26, No. 6. P. 1775. DOI: 10.3390/molecules26061775 |
| [37] |
Maideen NMP. Prophetic medicine — Nigella Sativa (black cumin seeds) — potential herb for COVID-19? J Pharmacopuncture. 2020;23(2):62–70. DOI: 10.3831/KPI.2020.23.010 |
| [38] |
Maideen N.M.P. Prophetic medicine — Nigella Sativa (black cumin seeds) — potential herb for COVID-19? // J. Pharmacopuncture. 2020. Vol. 23, No. 2. P. 62–70. DOI: 10.3831/KPI.2020.23.010 |
| [39] |
Imran M, Khan SA, Abida, et al. Nigella sativa L. and COVID-19: A glance at the anti-COVID-19 chemical constituents, clinical trials, inventions, and patent literature. Molecules. 2022;27(9):2750. DOI: 10.3390/molecules27092750 |
| [40] |
Imran M., Khan S.A., Abida. et al. Nigella sativa L. and COVID-19: A glance at the anti-COVID-19 chemical constituents, clinical trials, inventions, and patent literature // Molecules. 2022. Vol. 27, No. 9. P. 2750. DOI: 10.3390/molecules27092750 |
| [41] |
Shirvani H, Rostamkhani F, Arabzadeh E, et al. Potential role of Nigella sativa supplementation with physical activity in prophylaxis and treatment of COVID-19: a contemporary review. Sport Sci Health. 2021;17(4):849–854. DOI: 10.1007/s11332-021-00787-y |
| [42] |
Shirvani H., Rostamkhani F., Arabzadeh E. et al. Potential role of Nigella sativa supplementation with physical activity in prophylaxis and treatment of COVID-19: a contemporary review // Sport Sci. Health. 2021. Vol. 17, No. 4. P. 849–854. DOI: 10.1007/s11332-021-00787-y |
| [43] |
Elebeedy D, Elkhatib WF, Kandeil A, et al. Anti-SARS-CoV-2 activities of tanshinone IIA, carnosic acid, rosmarinic acid, salvianolic acid, baicalein, and glycyrrhetinic acid between computational and in vitro insights. RSC Adv. 2021;11(47):29267–29286. DOI: 10.1039/d1ra05268c |
| [44] |
Elebeedy D., Elkhatib W.F., Kandeil A. et al. Anti-SARS-CoV-2 activities of tanshinone IIA, carnosic acid, rosmarinic acid, salvianolic acid, baicalein, and glycyrrhetinic acid between computational and in vitro insights // RSC Adv. 2021. Vol. 11, No. 47. P. 29267–29286. DOI: 10.1039/d1ra05268c |
| [45] |
Li J, Xu D, Wang L, et al. Glycyrrhizic Acid Inhibits SARS-CoV-2 infection by blocking spike protein-mediated cell attachment. Molecules. 2021;26(20):6090. DOI: 10.3390/molecules26206090 |
| [46] |
Li J., Xu D., Wang L. et al. Glycyrrhizic Acid Inhibits SARS-CoV-2 infection by blocking spike protein-mediated cell attachment // Molecules. 2021. Vol. 26, No. 20. P. 6090. DOI: 10.3390/molecules26206090 |
| [47] |
Li R, Wu K, Li Y, et al. Integrative pharmacological mechanism of vitamin C combined with glycyrrhizic acid against COVID-19: findings of bioinformatics analyses. Brief Bioinform. 2021;22(2):1161–1174. DOI: 10.1093/bib/bbaa141 |
| [48] |
Li R., Wu K., Li Y. et al. Integrative pharmacological mechanism of vitamin C combined with glycyrrhizic acid against COVID-19: findings of bioinformatics analyses // Brief. Bioinform. 2021. Vol. 22, No. 2. P. 1161–1174. DOI: 10.1093/bib/bbaa141 |
| [49] |
Demeke CA, Woldeyohanins AE, Kifle ZD. Herbal medicine use for the management of COVID-19: a review article. Metabol Open. 2021;12:100141. DOI: 10.1016/j.metop.2021.100141 |
| [50] |
Demeke C.A., Woldeyohanins A.E., Kifle Z.D. Herbal medicine use for the management of COVID-19: A review article // Metabol. Open. 2021. Vol. 12. P. 100141. DOI: 10.1016/j.metop.2021.100141 |
| [51] |
Zhong S, Guozhong H, Ninghao H, et al. Glycyrrhizic Acid: a natural plant ingredient as a drug candidate to treat COVID-19. Front Pharmacol. 2021;12:707205. DOI: 10.3389/fphar.2021.707205 |
| [52] |
Zhong S., Guozhong H., Ninghao H. et al. Glycyrrhizic Acid: a natural plant ingredient as a drug candidate to treat COVID-19 // Front. Pharmacol. 2021. Vol. 12. P. 707205. DOI: 10.3389/fphar.2021.707205 |
| [53] |
Yu S, Zhu Y, Xu J, et al. Glycyrrhizic acid exerts inhibitory activity against the spike protein of SARS-CoV-2. Phytomedicine. 2021;85:153364. DOI: 10.1016/j.phymed.2020.153364 |
| [54] |
Yu S., Zhu Y., Xu J. et al. Glycyrrhizic acid exerts inhibitory activity against the spike protein of SARS-CoV-2 // Phytomedicine. 2021. Vol. 85. P. 153364. DOI: 10.1016/j.phymed.2020.153364 |
| [55] |
Van de Sand L, Bormann M, Alt M, et al. Glycyrrhizin effectively inhibits SARS-CoV-2 replication by inhibiting the viral main protease. Viruses. 2021;13(4):609. DOI: 10.3390/v13040609 |
| [56] |
Van de Sand L., Bormann M., Alt M. et al. Glycyrrhizin effectively inhibits SARS-CoV-2 replication by inhibiting the viral main protease // Viruses. 2021. Vol. 13, No. 4. P. 609. DOI: 10.3390/v13040609 |
| [57] |
Al-Kamel H, Grundmann O. Glycyrrhizin as a potential treatment for the novel coronavirus (COVID-19). Mini Rev Med Chem. 2021;21(16):2204–2208. DOI: 10.2174/1389557521666210210160237 |
| [58] |
Al-Kamel H., Grundmann O. Glycyrrhizin as a potential treatment for the novel coronavirus (COVID-19) // Mini. Rev. Med. Chem. 2021. Vol. 21, No. 16. P. 2204–2208. DOI: 10.2174/1389557521666210210160237 |
| [59] |
Zheng W, Huang X, Lai Y, et al. Glycyrrhizic Acid for COVID-19: findings of targeting pivotal inflammatory pathways triggered by SARS-CoV-2. Front Pharmacol. 2021;12:631206. DOI: 10.3389/fphar.2021.631206 |
| [60] |
Zheng W., Huang X., Lai Y. et al. Glycyrrhizic Acid for COVID-19: findings of targeting pivotal inflammatory pathways triggered by SARS-CoV-2 // Front. Pharmacol. 2021. Vol. 12. P. 631206. DOI: 10.3389/fphar.2021.631206 |
| [61] |
Lucas K, Fröhlich-Nowoisky J, Oppitz N, Ackermann M. Cinnamon and Hop extracts as potential immunomodulators for severe COVID-19 cases. Front Plant Sci. 2021;12:589783. DOI: 10.3389/fpls.2021.589783 |
| [62] |
Lucas K., Fröhlich-Nowoisky J., Oppitz N., Ackermann M. Cinnamon and Hop extracts as potential immunomodulators for severe COVID-19 cases // Front. Plant Sci. 2021. Vol. 12. P. 589783. DOI: 10.3389/fpls.2021.589783 |
| [63] |
Lin Y, Zang R, Ma Y, et al. Xanthohumol is a potent pan-inhibitor of coronaviruses targeting main protease. Int J Mol Sci. 2021;22(22):12134. DOI: 10.3390/ijms222212134 |
| [64] |
Lin Y., Zang R., Ma Y. et al. Xanthohumol is a potent pan-inhibitor of coronaviruses targeting main protease // Int. J. Mol. Sci. 2021. Vol. 22, No. 22. P. 12134. DOI: 10.3390/ijms222212134 |
| [65] |
Teisseyre A, Chmielarz M, Uryga A, et al. Co-application of statin and flavonoids as an effective strategy to reduce the activity of voltage-gated potassium channels kv1.3 and induce apoptosis in human leukemic T cell line jurkat. Molecules. 2022;27(10):3227. DOI: 10.3390/molecules27103227 |
| [66] |
Teisseyre A., Chmielarz M., Uryga A. et al. Co-application of statin and flavonoids as an effective strategy to reduce the activity of voltage-gated potassium channels kv1.3 and induce apoptosis in human leukemic t cell line jurkat // Molecules. 2022. Vol. 27, No. 10. P. 3227. DOI: 10.3390/molecules27103227 |
| [67] |
Buckett L, Schönberger S, Spindler V, et al. Synthesis of human phase I and phase II metabolites of hop (Humulus lupulus) prenylated flavonoids. Metabolites. 2022;12(4):345. DOI: 10.3390/metabo12040345 |
| [68] |
Buckett L., Schönberger S., Spindler V. et al. Synthesis of human phase I and phase II metabolites of hop (Humulus lupulus) prenylated flavonoids // Metabolites. 2022. Vol. 12, No. 4. P. 345. DOI: 10.3390/metabo12040345 |
| [69] |
Xiong Y, Zhu GH, Wang HN, et al. Discovery of naturally occurring inhibitors against SARS-CoV-2 3CLpro from Ginkgo biloba leaves via large-scale screening. Fitoterapia. 2021;152:104909. DOI: 10.1016/j.fitote.2021.104909 |
| [70] |
Xiong Y., Zhu G.H., Wang H.N. et al. Discovery of naturally occurring inhibitors against SARS-CoV-2 3CLpro from Ginkgo biloba leaves via large-scale screening // Fitoterapia. 2021. Vol. 152. P. 104909. DOI: 10.1016/j.fitote.2021.104909 |
| [71] |
Zrig A. The effect of phytocompounds of medicinal plants on coronavirus (2019-NCOV) infection. Pharm Chem J. 2022;55(10):1080–1084. DOI: 10.1007/s11094-021-02540-8 |
| [72] |
Zrig A. The effect of phytocompounds of medicinal plants on coronavirus (2019-NCOV) infection // Pharm. Chem. J. 2022. Vol. 55, No. 10. P. 1080–1084. DOI: 10.1007/s11094-021-02540-8 |
| [73] |
Silva ER, de Carvalho FO, Teixeira L, et al. Pharmacological effects of Carvacrol in in vitro studies: a review. Curr Pharm Des. 2018;24(29):3454–3465. DOI: 10.2174/1381612824666181003123400 |
| [74] |
Silva E.R., de Carvalho F.O., Teixeira L. et al. Pharmacological effects of Carvacrol in in vitro studies: a review // Curr. Pharm. Des. 2018. Vol. 24, No. 29. P. 3454–3465. DOI: 10.2174/1381612824666181003123400 |
| [75] |
Mieres-Castro D, Ahmar S, Shabbir R, Mora-Poblete F. Antiviral activities of Eucalyptus Essential Oils: Their effectiveness as therapeutic targets against human viruses. Pharmaceuticals (Basel). 2021;14(12):1210. DOI: 10.3390/ph14121210 |
| [76] |
Mieres-Castro D., Ahmar S., Shabbir R., Mora-Poblete F. Antiviral activities of Eucalyptus Essential Oils: Their effectiveness as therapeutic targets against human viruses // Pharmaceuticals (Basel). 2021. Vol. 14, No. 12. P. 1210. DOI: 10.3390/ph14121210 |
| [77] |
Panikar S, Shoba G, Arun M, et al. Essential oils as an effective alternative for the treatment of COVID-19: Molecular interaction analysis of protease (Mpro) with pharmacokinetics and toxicological properties. J Infect Public Health. 2021;14(5):601–610. DOI: 10.1016/j.jiph.2020.12.037 |
| [78] |
Panikar S., Shoba G., Arun M. et al. Essential oils as an effective alternative for the treatment of COVID-19: Molecular interaction analysis of protease (Mpro) with pharmacokinetics and toxicological properties // J. Infect. Public Health. 2021. Vol. 14, No. 5. P. 601–610. DOI: 10.1016/j.jiph.2020.12.037 |
| [79] |
Villena-Tejada M, Vera-Ferchau I, Cardona-Rivero A, et al. Use of medicinal plants for COVID-19 prevention and respiratory symptom treatment during the pandemic in Cusco, Peru: a cross-sectional survey. PLoS One. 2021;16(9):e0257165. DOI: 10.1371/journal.pone.0257165 |
| [80] |
Villena-Tejada M., Vera-Ferchau I., Cardona-Rivero A. et al. Use of medicinal plants for COVID-19 prevention and respiratory symptom treatment during the pandemic in Cusco, Peru: a cross-sectional survey // PLoS One. 2021. Vol. 16, No. 9. P. e0257165. DOI: 10.1371/journal.pone.0257165 |
| [81] |
Song JW, Long JY, Xie L, et al. Applications, phytochemistry, pharmacological effects, pharmacokinetics, toxicity of Scutellaria baicalensis Georgi and its probably potential therapeutic effects on COVID-19: a review. Chin Med. 2020;15:102. DOI: 10.1186/s13020-020-00384-0 |
| [82] |
Song J.W., Long J.Y., Xie L. et al. Applications, phytochemistry, pharmacological effects, pharmacokinetics, toxicity of Scutellaria baicalensis Georgi and its probably potential therapeutic effects on COVID-19: a review // Chin. Med. 2020. Vol. 15. P. 102. DOI: 10.1186/s13020-020-00384-0 |
| [83] |
Liu H, Ye F, Sun Q, et al. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. J Enzyme Inhib Med Chem. 2021;36(1):497–503. DOI: 10.1080/14756366.2021.1873977 |
| [84] |
Liu H., Ye F., Sun Q. et al. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro // J. Enzyme Inhib. Med. Chem. 2021. Vol. 36, No. 1. P. 497–503. DOI: 10.1080/14756366.2021.1873977 |
| [85] |
Boozari M, Hosseinzadeh H. Natural products for COVID-19 prevention and treatment regarding to previous coronavirus infections and novel studies. Phytother Res. 2021;35(2):864–876. DOI: 10.1002/ptr.6873 |
| [86] |
Boozari M., Hosseinzadeh H. Natural products for COVID-19 prevention and treatment regarding to previous coronavirus infections and novel studies // Phytother. Res. 2021. Vol. 35, No. 2. P. 864–876. DOI: 10.1002/ptr.6873 |
| [87] |
Speciale A, Muscarà C, Molonia MS, et al. Silibinin as potential tool against SARS-Cov-2: In silico spike receptor-binding domain and main protease molecular docking analysis, and in vitro endothelial protective effects. Phytother Res. 2021;35(8):4616–4625. DOI: 10.1002/ptr.7107 |
| [88] |
Speciale A., Muscarà C., Molonia M.S. et al. Silibinin as potential tool against SARS-Cov-2: In silico spike receptor-binding domain and main protease molecular docking analysis, and in vitro endothelial protective effects // Phytother. Res. 2021. Vol. 35, No. 8. P. 4616–4625. DOI: 10.1002/ptr.7107 |
| [89] |
Hanafy NAN, El-Kemary MA. Silymarin/curcumin loaded albumin nanoparticles coated by chitosan as muco-inhalable delivery system observing anti-inflammatory and anti COVID-19 characterizations in oleic acid triggered lung injury and in vitro COVID-19 experiment. Int J Biol Macromol. 2022;198:101–110. DOI: 10.1016/j.ijbiomac.2021.12.073 |
| [90] |
Hanafy N.A.N., El-Kemary M.A. Silymarin/curcumin loaded albumin nanoparticles coated by chitosan as muco-inhalable delivery system observing anti-inflammatory and anti COVID-19 characterizations in oleic acid triggered lung injury and in vitro COVID-19 experiment // Int. J. Biol. Macromol. 2022. Vol. 198. P. 101–110. DOI: 10.1016/j.ijbiomac.2021.12.073 |
| [91] |
Chinsembu KC. Coronaviruses and nature’s pharmacy for the relief of coronavirus disease 2019. Rev Bras Farmacogn. 2020;30(5):603–621. DOI: 10.1007/s43450-020-00104-7 |
| [92] |
Chinsembu K.C. Coronaviruses and nature’s pharmacy for the relief of coronavirus disease 2019 // Rev. Bras. Farmacogn. 2020. Vol. 30, No. 5. P. 603–621. DOI: 10.1007/s43450-020-00104-7 |
| [93] |
Xu H, Li J, Song S, et al. Effective inhibition of coronavirus replication by Polygonum cuspidatum. Front Biosci (Landmark Ed). 2021;26(10):789–798. DOI: 10.52586/4988 |
| [94] |
Xu H., Li J., Song S. et al. Effective inhibition of coronavirus replication by Polygonum cuspidatum // Front. Biosci. (Landmark Ed). 2021. Vol. 26, No. 10. P. 789–798. DOI: 10.52586/4988 |
| [95] |
Lewis DSM, Ho J, Wills S, et al. Aloin isoforms (A and B) selectively inhibits proteolytic and deubiquitinating activity of papain like protease (PLpro) of SARS-CoV-2 in vitro. Sci Rep. 2022;12(1):2145. DOI: 10.1038/s41598-022-06104-y |
| [96] |
Lewis D.S.M., Ho J., Wills S. et al. Aloin isoforms (A and B) selectively inhibits proteolytic and deubiquitinating activity of papain like protease (PLpro) of SARS-CoV-2 in vitro // Sci. Rep. 2022. Vol. 12, No. 1. P. 2145. DOI: 10.1038/s41598-022-06104-y |
| [97] |
Kandeel M, Kitade Y, Almubarak A. Repurposing FDA-approved phytomedicines, natural products, antivirals and cell protectives against SARS-CoV-2 (COVID-19) RNA-dependent RNA polymerase. Peer J. 2020;8:e10480. DOI: 10.7717/peerj.10480 |
| [98] |
Kandeel M., Kitade Y., Almubarak A. Repurposing FDA-approved phytomedicines, natural products, antivirals and cell protectives against SARS-CoV-2 (COVID-19) RNA-dependent RNA polymerase // Peer J. 2020. Vol. 8. P. e10480. DOI: 10.7717/peerj.10480 |
| [99] |
Yalçın S, Yalçınkaya S, Ercan F. Determination of potential drug candidate molecules of the hypericum perforatum for COVID-19 treatment. Cur Pharmacol Rep. 2021;7(2):42–48. DOI: 10.1007/s40495-021-00254-9 |
| [100] |
Yalçın S., Yalçınkaya S., Ercan F. Determination of potential drug candidate molecules of the hypericum perforatum for COVID-19 treatment // Curr. Pharmacol. Rep. 2021. Vol. 7, No. 2. P. 42–48. DOI: 10.1007/s40495-021-00254-9 |
| [101] |
Mohamed FF, Anhlan D, Schöfbänker M, et al. Hypericum perforatum and its ingredients hypericin and pseudohypericin demonstrate an antiviral activity against SARS-CoV-2. Pharmaceuticals (Basel). 2022;15(5):530. DOI: 10.3390/ph15050530 |
| [102] |
Mohamed F.F., Anhlan D., Schöfbänker M. et al. Hypericum perforatum and its ingredients hypericin and pseudohypericin demonstrate an antiviral activity against SARS-CoV-2 // Pharmaceuticals (Basel). 2022. Vol. 15, No. 5. P. 530. DOI: 10.3390/ph15050530 |
| [103] |
Khubber S, Hashemifesharaki R, Mohammadi M, et al. Garlic (Allium sativum L.): a potential unique therapeutic food rich in organosulfur and flavonoid compounds to fight with COVID-19. Nutr J. 2020;19(1):124. DOI: 10.1186/s12937-020-00643-8 |
| [104] |
Khubber S., Hashemifesharaki R., Mohammadi M. et al. Garlic (Allium sativum L.): a potential unique therapeutic food rich in organosulfur and flavonoid compounds to fight with COVID-19 // Nutr. J. 2020. Vol. 19, No. 1. P. 124. DOI: 10.1186/s12937-020-00643-8 |
| [105] |
Keflie TS, Biesalski HK. Micronutrients and bioactive substances: Their potential roles in combating COVID-19. Nutrition. 2021;84:111103. DOI: 10.1016/j.nut.2020.111103 |
| [106] |
Keflie T.S., Biesalski H.K. Micronutrients and bioactive substances: Their potential roles in combating COVID-19 // Nutrition. 2021. Vol. 84. P. 111103. DOI: 10.1016/j.nut.2020.111103 |
Eco-Vector
/
| 〈 |
|
〉 |