Role of the intestinal microbiota in the pathogenesis of multiple sclerosis. Part 1. Clinical and experimental evidence for the involvement of the gut microbiota in the development of multiple sclerosis

Irina N. Abdurasulova

Medical academic journal ›› 2022, Vol. 22 ›› Issue (2) : 9 -36.

PDF
Medical academic journal ›› 2022, Vol. 22 ›› Issue (2) : 9 -36. DOI: 10.17816/MAJ108241
Analytical reviews
review-article

Role of the intestinal microbiota in the pathogenesis of multiple sclerosis. Part 1. Clinical and experimental evidence for the involvement of the gut microbiota in the development of multiple sclerosis

Author information +
History +
PDF

Abstract

The review discusses the complex role of the intestinal microbiota in the pathogenesis of multiple sclerosis, summarizes data from studies of changes in the composition of the intestinal microbiome in patients with multiple sclerosis, and provides evidence of the involvement of the intestinal microbiota in the development of experimental autoimmune encephalomyelitis in animals, a valid model of multiple sclerosis.

Keywords

gut microbiota/microbiome / demyelination / autoimmunity / multiple sclerosis

Cite this article

Download citation ▾
Irina N. Abdurasulova. Role of the intestinal microbiota in the pathogenesis of multiple sclerosis. Part 1. Clinical and experimental evidence for the involvement of the gut microbiota in the development of multiple sclerosis. Medical academic journal, 2022, 22(2): 9-36 DOI:10.17816/MAJ108241

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lassmann H, Brück W, Lucchinetti C. The immunopathology of multiple sclerosis: an overview. Brain Pathol. 2007;17(2):210–218. DOI: 10.1111/j.1750-3639.2007.00064.x

[2]

Lassmann H., Brück W., Lucchinetti C. The immunopathology of multiple sclerosis: an overview // Brain Pathol. 2007. Vol. 17, No. 2. P. 210–218. DOI: 10.1111/j.1750-3639.2007.00064.x

[3]

Kingwell E, Marriott JJ, Jette N, et al. Incidence and prevalence of multiple sclerosis in Europe: a systematic review. BMC Neurol. 2013;13:128. DOI: 10.1186/1471-2377-13-128

[4]

Kingwell E., Marriott J.J., Jette N. et al. Incidence and prevalence of multiple sclerosis in Europe: a systematic review // BMC Neurol. 2013. Vol. 13. P. 128. DOI: 10.1186/1471-2377-13-128

[5]

Stys PK, Zamponi GW, van Minnen J, Geurts JJ. Will the real multiple sclerosis please stand up? Nat Rev Neurosci. 2012;13(7):507–514. DOI: 10.1038/nrn3275

[6]

Stys P.K., Zamponi G.W., van Minnen J., Geurts J.J. Will the real multiple sclerosis please stand up? // Nat. Rev. Neurosci. 2012. Vol. 13, No. 7. P. 507–514. DOI: 10.1038/nrn3275

[7]

Koch-Henriksen N, Sorensen PS. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol. 2010;9(5):520–532. DOI: 10.1016/S1474-4422(10)70064-8

[8]

Koch-Henriksen N., Sorensen P.S. The changing demographic pattern of multiple sclerosis epidemiology // Lancet Neurol. 2010. Vol. 9, No. 5. P. 520–532. DOI: 10.1016/S1474-4422(10)70064-8

[9]

Filippi M, Bar-Or A, Piehl F, et al. Multiple sclerosis. Nat Rev Dis Primers. 2018;4(1):43. DOI: 10.1038/s41572-018-0041-4

[10]

Filippi M., Bar-Or A., Piehl F. et al. Multiple sclerosis // Nat. Rev. Dis. Primers. 2018. Vol. 4, No. 1. P. 43. DOI: 10.1038/s41572-018-0041-4

[11]

Dobson R. Giovannoni G. Multiple sclerosis — a review. Eur J Neurol. 2019;26(1):27–40. DOI: 10.1111/ene.13819

[12]

Dobson R., Giovannoni G. Multiple sclerosis — a review // Eur. J. Neurol. 2019. Vol. 26, No. 1. P. 27–40. DOI: 10.1111/ene.13819

[13]

Orton SM, Herrera BM, Yee IM, et al. Sex ratio of multiple sclerosis in Canada: a longitudinal study. Lancet Neurol. 2006;5(11):932–936. DOI: 10.1016/S1474-4422(06)70581-6

[14]

Orton S.M., Herrera B.M., Yee I.M. et al. Sex ratio of multiple sclerosis in Canada: a longitudinal study // Lancet Neurol. 2006. Vol. 5, No. 11. P. 932–936. DOI: 10.1016/S1474-4422(06)70581-6

[15]

Trojano M, Lucchese G, Graziano G, et al. Geographical variations in sex ratio trends over time in multiple sclerosis. PLoS One. 2012;7(10):e48078. DOI: 10.1371/journal.pone.0048078

[16]

Trojano M., Lucchese G., Graziano G. et al. Geographical variations in sex ratio trends over time in multiple sclerosis // PLoS One. 2012. Vol. 7, No. 10. P. e48078. DOI: 10.1371/journal.pone.0048078

[17]

Tomassini V, Pozzilli C. Sex hormone, brain damage and clinical course of multiple sclerosis. J Neurol Sci. 2009;286(1–2):35–39. DOI: 10.1016/j.jns.2009.04.014

[18]

Tomassini V., Pozzilli C. Sex hormone, brain damage and clinical course of multiple sclerosis // J. Neurol. Sci. 2009. Vol. 286, No. 1–2. P. 35–39. DOI: 10.1016/j.jns.2009.04.014

[19]

Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N Engl J Med. 2000;343(13):938–952. DOI: 10.1056/NEJM200009283431307

[20]

Noseworthy J.H., Lucchinetti C., Rodriguez M., Weinshenker B.G. Multiple sclerosis // N. Engl. J. Med. 2000. Vol. 343, No. 13. P. 938–952. DOI: 10.1056/NEJM200009283431307

[21]

Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372(9648):1502–1517. DOI: 10.1016/S0140-6736(08)61620-7

[22]

Compston A., Coles A. Multiple sclerosis // Lancet. 2008. Vol. 372, No. 9648. P. 1502–1517. DOI: 10.1016/S0140-6736(08)61620-7

[23]

Rovaris M, Confavreux C, Furlan R, et al. Secondary progressive multiple sclerosis: current knowledge and future challenges. Lancet Neurol. 2006;5(4):343–354. DOI: 10.1016/S1474-4422(06)70410-0

[24]

Rovaris M., Confavreux C., Furlan R. et al. Secondary progressive multiple sclerosis: current knowledge and future challenges // Lancet Neurol. 2006. Vol. 5, No. 4. P. 343–354. DOI: 10.1016/S1474-4422(06)70410-0

[25]

Peterson JW, Trapp BD. Neuropathobiology of multiple sclerosis. Neurol Clin. 2005;23(1):107–129, vi-vii. DOI: 10.1016/j.ncl.2004.09.008

[26]

Peterson J.W., Trapp B.D. Neuropathobiology of multiple sclerosis // Neurol. Clin. 2005. Vol. 23, No. 1. P. 107–129, vi-vii. DOI: 10.1016/j.ncl.2004.09.008

[27]

Levinthal DJ, Rahman F, Nusrat S, et al. Adding to the burden: gastrointestinal symptoms and syndromes in multiple sclerosis. Mult Scler Int. 2013;2013:319201. DOI: 10.1155/2013/319201

[28]

Levinthal D.J., Rahman F., Nusrat S. et al. Adding to the burden: gastrointestinal symptoms and syndromes in multiple sclerosis // Mult. Scler. Int. 2013. Vol. 2013. P. 319201. DOI: 10.1155/2013/319201

[29]

Ghasemi N, Razavi S, Nikzad E. Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy. Cell J. 2017;19(1):1–10. DOI: 10.22074/cellj.2016.4867

[30]

Ghasemi N., Razavi S., Nikzad E. Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy // Cell J. 2017. Vol. 19, No. 1. P. 1–10. DOI: 10.22074/cellj.2016.4867

[31]

Trapp BD, Peterson J, Ransohoff RM, et al. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998;338(5):278–285. DOI: 10.1056/NEJM199801293380502

[32]

Trapp B.D., Peterson J., Ransohoff R.M. et al. Axonal transection in the lesions of multiple sclerosis // N. Engl. J. Med. 1998. Vol. 338, No. 5. P. 278–285. DOI: 10.1056/NEJM199801293380502

[33]

Lucchinetti C, Brück W, Parisi J, et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47(6):707–717. DOI: 10.1002/1531-8249(200006)47:6<707::aid-ana3>3.0.co;2-q

[34]

Lucchinetti C., Brück W., Parisi J. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination // Ann. Neurol. 2000. Vol. 47, No. 6. P. 707–717. DOI: 10.1002/1531-8249(200006)47:6<707::aid-ana3>3.0.co;2-q

[35]

Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol. 2005;23:683–747. DOI: 10.1146/annurev.immunol.23.021704.115707

[36]

Sospedra M., Martin R. Immunology of multiple sclerosis // Annu. Rev. Immunol. 2005. Vol. 23. P. 683–747. DOI: 10.1146/annurev.immunol.23.021704.115707

[37]

Frohman EM, Racke MK, Raine CS. Multiple sclerosis — the plaque and its pathogenesis. N Engl J Med. 2006;354(9):942–955. DOI: 10.1056/NEJMra052130

[38]

Frohman E.M., Racke M.K., Raine C.S. Multiple sclerosis — the plaque and its pathogenesis // N. Engl. J. Med. 2006. Vol. 354, No. 9. P. 942–955. DOI: 10.1056/NEJMra052130

[39]

Frischer JM, Bramow S, Dal-Bianco A, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brain. Brain. 2009;132(Pt 5):1175–1189. DOI: 10.1093/brain/awp070

[40]

Frischer J.M., Bramow S., Dal-Bianco A. et al. The relation between inflammation and neurodegeneration in multiple sclerosis brain // Brain. 2009. Vol. 132, No. Pt 5. P. 1175–1189. DOI: 10.1093/brain/awp070

[41]

Weygandt M, Hackmack K, Pfüller C, et al. MRI pattern recognition in multiple sclerosis normal-appearing brain areas. PLoS One. 2011;6(6):e21138. DOI: 10.1371/journal.pone.0021138

[42]

Weygandt M., Hackmack K., Pfüller C. et al. MRI pattern recognition in multiple sclerosis normal-appearing brain areas // PLoS One. 2011. Vol. 6, No. 6. P. e21138. DOI: 10.1371/journal.pone.0021138

[43]

Venken K, Hellings N, Broekmans T, et al. Natural naive CD4+CD25+CD127low regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory Treg homeostasis during disease progression. J Immunol. 2008;180(9):6411–6420. DOI: 10.4049/jimmunol.180.9.6411

[44]

Venken K., Hellings N., Broekmans T. et al. Natural naive CD4+CD25+CD127low regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory Treg homeostasis during disease progression // J. Immunol. 2008. Vol. 180, No. 9. P. 6411–6420. DOI: 10.4049/jimmunol.180.9.6411

[45]

Nylander A, Hafler DA. Multiple sclerosis. J Clin Invest. 2012;122(4):1180–1188. DOI: 10.1172/JCI58649

[46]

Nylander A., Hafler D.A. Multiple sclerosis // J. Clin. Invest. 2012. Vol. 122, No. 4. P. 1180–1188. DOI: 10.1172/JCI58649

[47]

El Behi M, Dubucquoi S, Lefranc D, et al. New insights into cell responses involved in experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol Lett. 2005;96(1):11–26. DOI: 10.1016/j.imlet.2004.07.017

[48]

El Behi M., Dubucquoi S., Lefranc D. et al. New insights into cell responses involved in experimental autoimmune encephalomyelitis and multiple sclerosis // Immunol. Lett. 2005. Vol. 96, No. 1. P. 11–26. DOI: 10.1016/j.imlet.2004.07.017

[49]

Abdurasulova IN, Klimenko VM. The role of immune and glial cells in neurodegenerative processes. Medical Academic Journal. 2011;1:12–29. (In Russ.). DOI: 10.17816/MAJ11112-29

[50]

Абдурасулова И.Н., Клименко В.М. Роль иммунных и глиальных клеток в процессах нейродегенерации // Медицинский академический журнал. 2011. Т. 11, № 1. С. 12–29. DOI: 10.17816/MAJ11112-29

[51]

Abdurasulova IN, Klimenko VM. Heterogeneity of the mechanisms of nerve cell damage in demyelinating autoimmune diseases of the CNS. J Neurosci Behav Physiol. 2011;41(4):364–374. DOI: 10.1007/s11055-011-9424-7

[52]

Абдурасулова И.Н., Клименко В.М. Гетерогенность механизмов повреждения нервных клеток при демиелинизирующих аутоиммунных заболеваниях ЦНС // Российский физиологический журнал им. И.М. Сеченова. 2010. Т. 96, № 1. С. 50–68.

[53]

Miller E, Wachowicz B, Majsterek I. Advances in antioxidative therapy of multiple sclerosis. Curr Med Chem. 2013;20(37):4720–4730. DOI: 10.2174/09298673113209990156

[54]

Miller E., Wachowicz B., Majsterek I. Advances in antioxidative therapy of multiple sclerosis // Curr. Med. Chem. 2013. Vol. 20, No. 37. P. 4720–4730. DOI: 10.2174/09298673113209990156

[55]

Trapp BD, Nave KA. Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci. 2008;31:247–269. DOI: 10.1146/annurev.neuro.30.051606.094313

[56]

Trapp B.D., Nave K.A. Multiple sclerosis: an immune or neurodegenerative disorder? // Annu. Rev. Neurosci. 2008. Vol. 31. P. 247–269. DOI: 10.1146/annurev.neuro.30.051606.094313

[57]

Weng M, Walker WA. The role of gut microbiota in programming the immune phenotype. J Dev Orig Health Dis. 2013;4(3):203–214. DOI: 10.1017/S2040174412000712

[58]

Weng M., Walker W.A. The role of gut microbiota in programming the immune phenotype // J. Dev. Orig. Health Dis. 2013. Vol. 4, No. 3. P. 203–214. DOI: 10.1017/S2040174412000712

[59]

Wekerle H. Nature plus Nurture: the triggering of multiple sclerosis. Swiss Med Wkly. 2015;145:w14189. DOI: 10.4414/smw.2015.14189

[60]

Wekerle H. Nature plus Nurture: the triggering of multiple sclerosis // Swiss. Med. Wkly. 2015. Vol. 145. P. w14189. DOI: 10.4414/smw.2015.14189

[61]

Eftekharian MM, Sayad A, Omrani MD, et al. Single nucleotide polymorphism in the FOXP3 gene are associated with increased risk of relapsing-remitting multiple sclerosis. Hum Antibodies. 2016;24(3–4):85–90. DOI: 10.3233/HAB-160299

[62]

Eftekharian M.M., Sayad A., Omrani M.D. et al. Single nucleotide polymorphism in the FOXP3 gene are associated with increased risk of relapsing-remitting multiple sclerosis // Hum. Antibodies. 2016. Vol. 24, No. 3–4. P. 85–90. DOI: 10.3233/HAB-160299

[63]

Wawrusiewicz-Kurylonek N, Chorąży M, Posmyk R, et al. The FOXP3 rs3761547 gene polymorphism in multiple sclerosis as a male-specific risk factor. Neuromolecular Med. 2018;20(4):537–543. DOI: 10.1007/s12017-018-8512-z

[64]

Wawrusiewicz-Kurylonek N., Chorąży M., Posmyk R. et al. The FOXP3 rs3761547 gene polymorphism in multiple sclerosis as a male-specific risk factor // Neuromolecular Med. 2018. Vol. 20, No. 4. P. 537–543. DOI: 10.1007/s12017-018-8512-z

[65]

Bush WS, Sawcer SJ, de Jager PL, et al. Evidence for polygenic susceptibility to multiple sclerosis — the shape of things to come. Am J Hum Genet. 2010;86(4):621–625. DOI: 10.1016/j.ajhg.2010.02.027

[66]

Bush W.S., Sawcer S.J., de Jager P.L. et al. Evidence for polygenic susceptibility to multiple sclerosis — the shape of things to come // Am. J. Hum. Genet. 2010. Vol. 86, No. 4. P. 621–625. DOI: 10.1016/j.ajhg.2010.02.027

[67]

International Multiple Sclerosis Genetics Consortium; Wellcome Trust Case Control Consortium 2; Sawcer S, Hellenthal G, Pirinen M, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476(7359):214–219. DOI: 10.1038/nature10251

[68]

International Multiple Sclerosis Genetics Consortium; Wellcome Trust Case Control Consortium 2; Sawcer S., Hellenthal G., Pirinen M. et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis // Nature. 2011. Vol. 476, No. 7359. P. 214–219. DOI: 10.1038/nature10251

[69]

Beecham AH, Patsopoulos NA, Xifara DK, et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet. 2013;45(11):1353–1360. DOI: 10.1038/ng.2770

[70]

Beecham A.H., Patsopoulos N.A., Xifara D.K. et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis // Nat. Genet. 2013. Vol. 45, No. 11. P. 1353–1360. DOI: 10.1038/ng.2770

[71]

Lill CM, Luessi F, Alcina A, et al. Genome-wide significant association with seven novel multiple sclerosis risk loci. J Med Genet. 2015;52(12):848–855. DOI: 10.1136/jmedgenet-2015-103442

[72]

Lill C.M., Luessi F., Alcina A. et al. Genome-wide significant association with seven novel multiple sclerosis risk loci // J. Med. Genet. 2015. Vol. 52, No. 12. P. 848–855. DOI: 10.1136/jmedgenet-2015-103442

[73]

Wang JH, Pappas D, de Jager PL, et al. Modeling the cumulative genetic risk for multiple sclerosis from genome-wide association data. Genome Med. 2011;3(1):3. DOI: 10.1186/gm217

[74]

Wang J.H., Pappas D., de Jager P.L. et al. Modeling the cumulative genetic risk for multiple sclerosis from genome-wide association data // Genome Med. 2011. Vol. 3, No. 1. P. 3. DOI: 10.1186/gm217

[75]

Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene). Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat Genet. 2009;41(7):824–828. DOI: 10.1038/ng.396

[76]

Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene). Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20 // Nat. Genet. 2009. Vol. 41, No. 7. P. 824–828. DOI: 10.1038/ng.396

[77]

International Multiple Sclerosis Genetics Consortium: Patsopoulos NA, Baranzini SE, Santaniello A, et al. The multiple sclerosis genomic map: Role of peripheral immune cells and resident microglia in susceptibility. bioRxiv. 2017. DOI: 10.1101/143933

[78]

International Multiple Sclerosis Genetics Consortium: Patsopoulos N.A., Baranzini S.E., Santaniello A. et al. The multiple sclerosis genomic map: Role of peripheral immune cells and resident microglia in susceptibility // bioRxiv. 2017. DOI: 10.1101/143933

[79]

Lioudyno V, Abdurasulova I, Bisaga G, et al. Single nucleotide polymorphism rs948854 in human galanin gene and multiple sclerosis: a gender-specific risk factor. J Neurosci Res. 2017;95(1–2):644–651. DOI: 10.1002/jnr.23887

[80]

Lioudyno V., Abdurasulova I., Bisaga G. et al. Single nucleotide polymorphism rs948854 in human galanin gene and multiple sclerosis: a gender-specific risk factor // J. Neurosci. Res. 2017. Vol. 95, No. 1–2. P. 644–651. DOI: 10.1002/jnr.23887

[81]

Lioudyno V, Abdurasulova I, Tatarinov A, et al. The effect of galanin gene polymorphism RS948854 on the severity of multiple sclerosis course: a significant association with the age of onset. Mult Scler Relat Disord. 2020;37:101439. DOI: 10.1016/j.msard.2019.101439

[82]

Lioudyno V., Abdurasulova I., Tatarinov A. et al. The effect of galanin gene polymorphism RS948854 on the severity of multiple sclerosis course: a significant association with the age of onset // Mult. Scler. Relat. Disord. 2020. Vol. 37. P. 101439. DOI: 10.1016/j.msard.2019.101439

[83]

Lioudyno V, Abdurasulova I, Negoreeva I, et al. Common genetic variant rs2821557 in KCNA3 is linked to a severity of multiple sclerosis. J Neurosci Res. 2021;99(1):200–208. DOI: 10.1002/jnr.24596

[84]

Lioudyno V., Abdurasulova I., Negoreeva I. et al. Common genetic variant rs2821557 in KCNA3 is linked to a severity of multiple sclerosis // J. Neurosci. Res. 2021. Vol. 99, No. 1. P. 200–208. DOI: 10.1002/jnr.24596

[85]

Mumford CJ, Wood NW, Kellar-Wood H, et al. The British Isles survey of multiple sclerosis in twins. Neurology. 1994;44(1):11–15. DOI: 10.1212/wnl.44.1.11

[86]

Mumford C.J., Wood N.W., Kellar-Wood H. et al. The British Isles survey of multiple sclerosis in twins // Neurology. 1994. Vol. 44, No. 1. P. 11–15. DOI: 10.1212/wnl.44.1.11

[87]

Willer CJ, Dyment DA, Risch NJ, et al. Twin concordance and sibling recurrence rates in multiple sclerosis. Proc Natl Acad Sci USA. 2003;100(22):12877–12882. DOI: 10.1073/pnas.1932604100

[88]

Willer C.J., Dyment D.A., Risch N.J. et al. Twin concordance and sibling recurrence rates in multiple sclerosis // Proc. Natl. Acad. Sci. USA. 2003. Vol. 100, No. 22. P. 12877–12882. DOI: 10.1073/pnas.1932604100

[89]

Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol. 2017;13(1):25–36. DOI: 10.1038/nrneurol.2016.187

[90]

Olsson T., Barcellos L.F., Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis // Nat. Rev. Neurol. 2017. Vol. 13, No. 1. P. 25–36. DOI: 10.1038/nrneurol.2016.187

[91]

Leibowitz U, Antonovsky A, Medalie JM, et al. Epidemiological study of multiple sclerosis in Israel. II. Multiple sclerosis and level of sanitation. J Neurol Neurosurg Psychiatry. 1966;29(1):60–68. DOI: 10.1136/jnnp.29.1.60

[92]

Leibowitz U., Antonovsky A., Medalie J.M. et al. Epidemiological study of multiple sclerosis in Israel. II. Multiple sclerosis and level of sanitation // J. Neurol. Neurosurg. Psychiatry. 1966. Vol. 29, No. 1. P. 60–68. DOI: 10.1136/jnnp.29.1.60

[93]

Alotaibi S, Kennedy J, Tellier R, et al. Epstein-barr virus in pediatric multiple sclerosis. JAMA. 2004;291(15):1875–1879. DOI: 10.1001/jama.291.15.1875

[94]

Alotaibi S., Kennedy J., Tellier R. et al. Epstein-barr virus in pediatric multiple sclerosis // JAMA. 2004. Vol. 291, No. 15. P. 1875–1879. DOI: 10.1001/jama.291.15.1875

[95]

Munger KL, Levin LI, Hollis BW, et al. Serum 25-Hydroxyvitamin D levels and risk of multiple sclerosis. JAMA. 2006;296(23):2832–2838. DOI: 10.1001/jama.296.23.2832

[96]

Munger K.L., Levin L.I., Hollis B.W. et al. Serum 25-Hydroxyvitamin D levels and risk of multiple sclerosis // JAMA. 2006. Vol. 296, No. 23. P. 2832–2838. DOI: 10.1001/jama.296.23.2832

[97]

Spelman T, Gray O, Trojano M, et al. Seasonal variation of relapse rate in multiple sclerosis is latitude dependen. Ann Neurol. 2014;76(6):880–890. DOI: 10.1002/ana.24287

[98]

Spelman T., Gray O., Trojano M. et al. Seasonal variation of relapse rate in multiple sclerosis is latitude dependen // Ann. Neurol. 2014. Vol. 76, No. 6. P. 880–890. DOI: 10.1002/ana.24287

[99]

Ascherio A, Munger KL, White R, et al. Vitamin D as an early predictor of multiple sclerosis activity and progression. JAMA Neurol. 2014;71(3):306–314. DOI: 10.1001/jamaneurol.2013.5993

[100]

Ascherio A., Munger K.L., White R. et al. Vitamin D as an early predictor of multiple sclerosis activity and progression // JAMA Neurol. 2014. Vol. 71, No. 3. P. 306–314. DOI: 10.1001/jamaneurol.2013.5993

[101]

Farez MF, Fiol MP, Gaitán MI, et al. Sodium intake is associated with increased disease activity in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2015;86(1):26–31. DOI: 10.1136/jnnp-2014-307928

[102]

Farez M.F., Fiol M.P., Gaitán M.I. et al. Sodium intake is associated with increased disease activity in multiple sclerosis // J. Neurol. Neurosurg. Psychiatry. 2015. Vol. 86, No. 1. P. 26–31. DOI: 10.1136/jnnp-2014-307928

[103]

Bagur MJ, Murcia MA, Jimenez-Monreal AM, et al. Influence of diet in multiple sclerosis: a systematic review. Adv Nutr. 2017;8(3):463–472. DOI: 10.3945/an.116.014191

[104]

Bagur M.J., Murcia M.A., Jimenez-Monreal A.M. et al. Influence of diet in multiple sclerosis: a systematic review // Adv. Nutr. 2017. Vol. 8, No. 3. P. 463–472. DOI: 10.3945/an.116.014191

[105]

Hedström AK, Alfredsson L, Olsson T. Environmental factors and their interactions with risk genotypes in MS susceptibility. Curr Opin Neurol. 2016;29(3):293–298. DOI: 10.1097/WCO.0000000000000329

[106]

Hedström A.K., Alfredsson L., Olsson T. Environmental factors and their interactions with risk genotypes in MS susceptibility // Curr. Opin. Neurol. 2016. Vol. 29, No. 3. P. 293–298. DOI: 10.1097/WCO.0000000000000329

[107]

Mohr DC. Stress and multiple sclerosis. J Neurol. 2007;254 Suppl 2:II65–II68. DOI: 10.1007/s00415-007-2015-4

[108]

Mohr D.C. Stress and multiple sclerosis // J. Neurol. 2007. Vol. 254 Suppl 2. P. II65–II68. DOI: 10.1007/s00415-007-2015-4

[109]

Artemiadis AK, Anagnostouli MC, Alexopoulos EC. Stress as a risk factor for multiple sclerosis onset or relapse: a systematic review. Neuroepidemiology. 2011;36(2):109–120. DOI: 10.1159/000323953

[110]

Artemiadis A.K., Anagnostouli M.C., Alexopoulos E.C. Stress as a risk factor for multiple sclerosis onset or relapse: a systematic review // Neuroepidemiology. 2011. Vol. 36, No. 2. P. 109–120. DOI: 10.1159/000323953

[111]

Hawkes CH. Smoking is a risk factor for multiple sclerosis: a meta-analysis. Mult Scler. 2007;13(5):610–615. DOI: 10.1177/1352458506073501

[112]

Hawkes C.H. Smoking is a risk factor for multiple sclerosis: a meta-analysis // Mult. Scler. 2007. Vol. 13, No. 5. P. 610–615. DOI: 10.1177/1352458506073501

[113]

Jafari N, Hintzen RQ. The association between cigarette smoking and multiple sclerosis. J Neurol Sci. 2011;311(1–2):78–85. DOI: 10.1016/j.jns.2011.09.008

[114]

Jafari N., Hintzen R.Q. The association between cigarette smoking and multiple sclerosis // J. Neurol. Sci. 2011. Vol. 311, No. 1–2. P. 78–85. DOI: 10.1016/j.jns.2011.09.008

[115]

Munger KL. Childhood obesity is a risk factor for multiple sclerosis. Mult Scler. 2013;19(13):1800. DOI: 10.1177/1352458513507357

[116]

Munger K.L. Childhood obesity is a risk factor for multiple sclerosis // Mult. Scler. 2013. Vol. 19, No. 13. P. 1800. DOI: 10.1177/1352458513507357

[117]

Jahanfar S, Duggan T, Tkachuk S, Tremlett H. Factors associated with onset, relapses or progression in multiple sclerosis: a systematic review. Neurotoxicology. 2017;61:189–212. DOI: 10.1016/j.neuro.2016.03.020

[118]

Jahanfar S., Duggan T., Tkachuk S., Tremlett H. Factors associated with onset, relapses or progression in multiple sclerosis: a systematic review // Neurotoxicology. 2017. Vol. 61. P. 189–212. DOI: 10.1016/j.neuro.2016.03.020

[119]

Granieri E, Casetta I, Tola MR, Ferrante P. Multiple sclerosis: infectious hypothesis. Neurol Sci. 2001;22(2):179–185. DOI: 10.1007/s100720170021

[120]

Granieri E., Casetta I., Tola M.R., Ferrante P. Multiple sclerosis: infectious hypothesis // Neurol. Sci. 2001. Vol. 22, No. 2. P. 179–185. DOI: 10.1007/s100720170021

[121]

Haegert DG. The initiation of multiple sclerosis: a new infectious hypothesis. Med Hypotheses. 2003;60(2):165–170. DOI: 10.1016/s0306-9877(02)00349-3

[122]

Haegert D.G. The initiation of multiple sclerosis: a new infectious hypothesis // Med. Hypotheses. 2003. Vol. 60, No. 2. P. 165–170. DOI: 10.1016/s0306-9877(02)00349-3

[123]

Challoner PB, Smith KT, Parker JD, et al. Plaque associated expression of human herpesvirus 6 in multiple sclerosis. Proc Natl Acad Sci USA. 1995;92(16):7440–7444. DOI: 10.1073/pnas.92.16.7440

[124]

Challoner P.B., Smith K.T., Parker J.D. et al. Plaque associated expression of human herpesvirus 6 in multiple sclerosis // Proc. Natl. Acad. Sci. USA. 1995. Vol. 92, No. 16. P. 7440–7444. DOI: 10.1073/pnas.92.16.7440

[125]

Soldan SS, Berti R, Salem N, et al. Association of human herpes virus 6 (HHV-6) with multiple sclerosis: increased IgM response to HHV-6 early antigen and detection of serum HHV-6 DNA. Nat Med. 1997;3(12):1394–1397. DOI: 10.1038/nm1297-1394

[126]

Soldan S.S., Berti R., Salem N. et al. Association of human herpes virus 6 (HHV-6) with multiple sclerosis: increased IgM response to HHV-6 early antigen and detection of serum HHV-6 DNA // Nat. Med. 1997. Vol. 3, No. 12. P. 1394–1397. DOI: 10.1038/nm1297-1394

[127]

Ascherio A, Munch M. Epstein–Barr virus and multiple sclerosis. Epidemiology. 2000;11(2):220–224. DOI: 10.1097/00001648-2000030000-00023

[128]

Ascherio A., Munch M. Epstein–Barr virus and multiple sclerosis // Epidemiology. 2000. Vol. 11, No. 2. P. 220–224. DOI: 10.1097/00001648-2000030000-00023

[129]

Fierz W. Multiple sclerosis: an example of pathogenic viral interaction? Virol J. 2017;14(1):42. DOI: 10.1186/s12985-017-0719-3

[130]

Fierz W. Multiple sclerosis: an example of pathogenic viral interaction? // Virol. J. 2017. Vol. 14, No. 1. P. 42. DOI: 10.1186/s12985-017-0719-3

[131]

Antony JM, DesLauriers AM, Bhat RK, et al. Human endogenous retroviruses and multiple sclerosis: Innocent bystanders or disease determinants? Biochim Biophys Acta. 2011;1812(2):162–176. DOI: 10.1016/j.bbadis.2010.07.016

[132]

Antony J.M., DesLauriers A.M., Bhat R.K. et al. Human endogenous retroviruses and multiple sclerosis: Innocent bystanders or disease determinants? // Biochim. Biophys. Acta. 2011. Vol. 1812, No. 2. P. 162–176. DOI: 10.1016/j.bbadis.2010.07.016

[133]

Bahar M, Ashtari F, Aghaei M, et al. Mycoplasma pneumonia seroposivity in Iranian patients with relapsing-remitting multipl sclerosis: a randomized case-control study. J Pak Med Assoc. 2012;62(3 Suppl 2):S6–8.

[134]

Bahar M., Ashtari F., Aghaei M. et al. Mycoplasma pneumonia seroposivity in Iranian patients with relapsing-remitting multipl sclerosis: a randomized case-control study // J. Pak. Med. Assoc. 2012. Vol. 62, No. 3 Suppl 2. P. S6–8.

[135]

Munger KL, Peeling RW, Hernan MA. Infection with Chlamydia pneumoniae and risk of multiple sclerosis. Epidemiology. 2003;14(2):141–147. DOI: 10.1097/01.EDE.0000050699.23957.8E

[136]

Munger K.L., Peeling R.W., Hernan M.A. Infection with Chlamydia pneumoniae and risk of multiple sclerosis // Epidemiology. 2003. Vol. 14, No. 2. P. 141–147. DOI: 10.1097/01.EDE.0000050699.23957.8E

[137]

Buljevac D, Flach HZ, Hop WC, et al. Prospective study on the relationship between infections and multiple sclerosis exacerbations. Brain. 2002;125(Pt 5):952–960. DOI: 10.1093/brain/awf098

[138]

Buljevac D., Flach H.Z., Hop W.C. et al. Prospective study on the relationship between infections and multiple sclerosis exacerbations // Brain. 2002. Vol. 125, No. Pt 5. P. 952–960. DOI: 10.1093/brain/awf098

[139]

Steelman AJ. Infection as an environmental trigger of multiple sclerosis disease exacerbation. Front Immunol. 2015;6:520. DOI: 10.3389/fimmu.2015.00520

[140]

Steelman A.J. Infection as an environmental trigger of multiple sclerosis disease exacerbation // Front. Immunol. 2015. Vol. 6. P. 520. DOI: 10.3389/fimmu.2015.00520

[141]

Kurtzke JF. A reassessment of the distribution of multiple sclerosis. Part one. Acta Neurol Scand. 1975;51(2):110–136. DOI: 10.1111/j.1600-0404.1975.tb01364.x

[142]

Kurtzke J.F. A reassessment of the distribution of multiple sclerosis. Part one // Acta Neurol. Scand. 1975. Vol. 51, No. 2. P. 110–136. DOI: 10.1111/j.1600-0404.1975.tb01364.x

[143]

Browne P, Chandraratna D, Angood C, et al. Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity. Neurology. 2014;83(11):1022–1024. DOI: 10.1212/WNL.0000000000000768

[144]

Browne P., Chandraratna D., Angood C. et al. Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity // Neurology. 2014. Vol. 83, No. 11. P. 1022–1024. DOI: 10.1212/WNL.0000000000000768

[145]

Osoegawa M, Kira J, Fukazawa T, et al. Temporal changes and geographical differences in multiple sclerosis phenotypes in Japanese: nationwide survey results over 30 years. Mult Scler. 2009;15(2):159–173. DOI: 10.1177/1352458508098372

[146]

Osoegawa M., Kira J., Fukazawa T. et al. Temporal changes and geographical differences in multiple sclerosis phenotypes in Japanese: nationwide survey results over 30 years // Mult. Scler. 2009. Vol. 15, No. 2. P. 159–173. DOI: 10.1177/1352458508098372

[147]

Houzen H, Niino M, Hata D, et al. Increasing prevalence and incidence of multiple sclerosis in northern Japan. Mult Scler. 2008;14(7):887–892. DOI: 10.1177/1352458508090226

[148]

Houzen H., Niino M., Hata D. et al. Increasing prevalence and incidence of multiple sclerosis in northern Japan // Mult. Scler. 2008. Vol. 14, No. 7. P. 887–892. DOI: 10.1177/1352458508090226

[149]

Jancic J, Nikolic B, Ivancevic N, et al. Multiple sclerosis in pediatrics: current concepts and treatment options. Neurol Ther. 2016;5(2):131–143. DOI: 10.1007/s40120-016-0052-6

[150]

Jancic J., Nikolic B., Ivancevic N. et al. Multiple sclerosis in pediatrics: current concepts and treatment options // Neurol. Ther. 2016. Vol. 5, No. 2. P. 131–143. DOI: 10.1007/s40120-016-0052-6

[151]

Strachan DP. Hay fever, hygiene, and household size. BMJ. 1989;299(6710):1259–1260. DOI: 10.1136/bmj.299.6710.1259

[152]

Strachan D.P. Hay fever, hygiene, and household size // BMJ. 1989. Vol. 299, No. 6710. P. 1259–1260. DOI: 10.1136/bmj.299.6710.1259

[153]

Fleming J, Fabry Z. The hygiene hypothesis and multiple sclerosis. Ann Neurol. 2007;61(2):85–89. DOI: 10.1002/ana.21092

[154]

Fleming J., Fabry Z. The hygiene hypothesis and multiple sclerosis // Ann. Neurol. 2007. Vol. 61, No. 2. P. 85–89. DOI: 10.1002/ana.21092

[155]

Krone B, Grange JM. Paradigms in multiple sclerosis: time for a change, time for a unifying concept. Inflammopharmacol. 2011;19(4):187–195. DOI: 10.1007/s10787-011-0084-6

[156]

Krone B., Grange J.M. Paradigms in multiple sclerosis: time for a change, time for a unifying concept // Inflammopharmacol. 2011. Vol. 19, No. 4. P. 187–195. DOI: 10.1007/s10787-011-0084-6

[157]

Nielsen TR, Rostgaard K, Nielsen NM, et al. Multiple sclerosis after infectious mononucleosis. Arch Neurol. 2007;64(1):72–75. DOI: 10.1001/archneur.64.1.72

[158]

Nielsen T.R., Rostgaard K., Nielsen N.M. et al. Multiple sclerosis after infectious mononucleosis // Arch. Neurol. 2007. Vol. 64, No. 1. P. 72–75. DOI: 10.1001/archneur.64.1.72

[159]

Esposito S, Bonavita S, Sparaco M, et al. The role of diet in multiple sclerosis: a review. Nutr Neurosci. 2018;21(6):377–390. DOI: 10.1080/1028415X.2017.1303016

[160]

Esposito S., Bonavita S., Sparaco M. et al. The role of diet in multiple sclerosis: a review // Nutr. Neurosci. 2018. Vol. 21, No. 6. P. 377–390. DOI: 10.1080/1028415X.2017.1303016

[161]

Kira J, Yamasaki K, Horiuchi I, et al. Changes in the clinical phenotypes of multiple sclerosis during the past 50 years in Japan. J Neurol Sci. 1999;166(1):53–57. DOI: 10.1016/s0022-510x(99)00115-x

[162]

Kira J., Yamasaki K., Horiuchi I. et al. Changes in the clinical phenotypes of multiple sclerosis during the past 50 years in Japan // J. Neurol. Sci. 1999. Vol. 166, No. 1. P. 53–57. DOI: 10.1016/s0022-510x(99)00115-x

[163]

Gimeno D, Kivimäki M, Brunner EJ, et al. Associations of C-reactive protein and interleukin-6 with cognitive symptoms of depression: 12-year follow-up of the Whitehall II study. Psychol Med. 2009;39(3):413–423. DOI: 10.1017/S0033291708003723

[164]

Gimeno D., Kivimäki M., Brunner E.J. et al. Associations of C-reactive protein and interleukin-6 with cognitive symptoms of depression: 12-year follow-up of the Whitehall II study // Psychol. Med. 2009. Vol. 39, No. 3. P. 413–423. DOI: 10.1017/S0033291708003723

[165]

Berer K, Krishnamoorthy G. Commensal gut flora and brain autoimmunity: a love or hate affair? Acta Neuropathol. 2012;123(5):639–651. DOI: 10.1007/s00401-012-0949-9

[166]

Berer K., Krishnamoorthy G. Commensal gut flora and brain autoimmunity: a love or hate affair? // Acta Neuropathol. 2012. Vol. 123, No. 5. P. 639–651. DOI: 10.1007/s00401-012-0949-9

[167]

Brown J, Quattrochi B, Everett C, et al. Gut commensals, dysbiosis, and immune response imbalance in the pathogenesis of multiple sclerosis. Mult Scler. 2021;27(6):807–811. DOI: 10.1177/1352458520928301

[168]

Brown J., Quattrochi B., Everett C. et al. Gut commensals, dysbiosis, and immune response imbalance in the pathogenesis of multiple sclerosis // Mult. Scler. 2021. Vol. 27, No. 6. P. 807–811. DOI: 10.1177/1352458520928301

[169]

Barcellos LF, Oksenberg JR, Green AJ, et al. Genetic basic for clinical expression in multiple sclerosis. Brain. 2002;125(Pt 1):150–158. DOI: 10.1093/brain/awf009

[170]

Barcellos L.F., Oksenberg J.R., Green A.J. et al. Genetic basic for clinical expression in multiple sclerosis // Brain. 2002. Vol. 125, No. Pt 1. P. 150–158. DOI: 10.1093/brain/awf009

[171]

Imani D, Azimi A, Salehi Z, et al. Association of nod-like receptor protein-3 single nucleotide gene polymorphisms and expression with the susceptibility to relapsing–remitting multiple sclerosis. Int J Immunogenet. 2018;45(6):329–336. DOI: 10.1111/iji.12401

[172]

Imani D., Azimi A., Salehi Z. et al. Association of nod-like receptor protein-3 single nucleotide gene polymorphisms and expression with the susceptibility to relapsing–remitting multiple sclerosis // Int. J. Immunogenet. 2018. Vol. 45, No. 6. P. 329–336. DOI: 10.1111/iji.12401

[173]

Racke MK, Drew PD. Toll-like receptors in multiple sclerosis. Curr Top Microbiol Immunol. 2009;336:155–168. DOI: 10.1007/978-3-642-00549-7_9

[174]

Racke M.K., Drew P.D. Toll-like receptors in multiple sclerosis // Curr. Top. Microbiol. Immunol. 2009. Vol. 336. P. 155–168. DOI: 10.1007/978-3-642-00549-7_9

[175]

Gharagozloo M, Gris KV, Mahvelati T, et al. NLR-dependent regulation of inflammation in multiple sclerosis. Front Immunol. 2018;8:2012. DOI: 10.3389/fimmu.2017.02012

[176]

Gharagozloo M., Gris K.V., Mahvelati T. et al. NLR-dependent regulation of inflammation in multiple sclerosis // Front. Immunol. 2018. Vol. 8. P. 2012. DOI: 10.3389/fimmu.2017.02012

[177]

Maghzi A-H, Etemadifar M, Heshmat-Ghahdarijani K, et al. Cesarean delivery may increase the risk of multiple sclerosis. Mult Scler. 2012;18(4):468–471. DOI: 10.1177/1352458511424904

[178]

Maghzi A.-H., Etemadifar M., Heshmat-Ghahdarijani K. et al. Cesarean delivery may increase the risk of multiple sclerosis // Mult. Scler. 2012. Vol. 18, No. 4. P. 468–471. DOI: 10.1177/1352458511424904

[179]

Nielsen NM, Bager P, Stenager E, et al. Cesarean section and offspring’s risk of multiple sclerosis: a Danish nationwide cohort study. Mult Scler. 2013;19(11):1473–1477. DOI: 10.1177/1352458513480010

[180]

Nielsen N.M., Bager P., Stenager E. et al. Cesarean section and offspring’s risk of multiple sclerosis: a Danish nationwide cohort study // Mult. Scler. 2013. Vol. 19, No. 11. P. 1473–1477. DOI: 10.1177/1352458513480010

[181]

Conradi S, Malzahn U, Paul F, et al. Breastfeeding is associated with lower risk for multiple sclerosis. Mult Scler. 2013;19(5):553–558. DOI: 10.1177/1352458512459683

[182]

Conradi S., Malzahn U., Paul F. et al. Breastfeeding is associated with lower risk for multiple sclerosis // Mult. Scler. 2013. Vol. 19, No. 5. P. 553–558. DOI: 10.1177/1352458512459683

[183]

Ragnedda G, Leoni S, Parpinel M, et al. Reduced duration of breastfeeding is associated with a higher risk of multiple sclerosis in both Italian and Norwegian adult males: the EnvIMS study. J Neurol. 2015;262(5):1271–1277. DOI: 10.1007/s00415-015-7704

[184]

Ragnedda G., Leoni S., Parpinel M. et al. Reduced duration of breastfeeding is associated with a higher risk of multiple sclerosis in both Italian and Norwegian adult males: the EnvIMS study // J. Neurol. 2015. Vol. 262, No. 5. P. 1271–1277. DOI: 10.1007/s00415-015-7704

[185]

Kleinewietfeld M, Manzel A, Titze J, et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature. 2013;496(7446):518–522. DOI: 10.1038/nature11868

[186]

Kleinewietfeld M., Manzel A., Titze J. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells // Nature. 2013. Vol. 496, No. 7446. P. 518–522. DOI: 10.1038/nature11868

[187]

Sedaghat F, Jessri M, Behrooz M, et al. Mediterranean diet adherence and risk of multiple sclerosis: a case-control study. Asia Pac J Clin Nutr. 2016;25(2):377–384. DOI: 10.6133/apjcn.2016.25.2.12

[188]

Sedaghat F., Jessri M., Behrooz M. et al. Mediterranean diet adherence and risk of multiple sclerosis: a case-control study // Asia Pac. J. Clin. Nutr. 2016. Vol. 25, No. 2. P. 377–384. DOI: 10.6133/apjcn.2016.25.2.12

[189]

Andeweg SP, Keşmir C, Dutilh BE. Quantifying the impact of human leukocyte antigen on the human gut microbiota. mSphere. 2021;6(4):e00476–21. DOI: 10.1128/mSphere.00476-21

[190]

Andeweg S.P., Keşmir C., Dutilh B.E. Quantifying the impact of human leukocyte antigen on the human gut microbiota // mSphere. 2021. Vol. 6, No. 4. P. e00476–21. DOI: 10.1128/mSphere.00476-21

[191]

Carvalho FA, Koren O, Goodrich JK, et al. Transient inability to manage Proteobacteria promotes chronic gut inflammation in TLR5-deficient mice. Cell Host Microbe. 2012;12(2):139–152. DOI: 10.1016/j.chom.2012.07.004

[192]

Carvalho F.A., Koren O., Goodrich J.K. et al. Transient inability to manage Proteobacteria promotes chronic gut inflammation in TLR5-deficient mice // Cell Host Microbe. 2012. Vol. 12, No. 2. P. 139–152. DOI: 10.1016/j.chom.2012.07.004

[193]

Knights D, Silverberg MS, Weersma RK, et al. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med. 2014;6(12):107. DOI: 10.1186/s13073-014-0107-1

[194]

Knights D., Silverberg M.S., Weersma R.K. et al. Complex host genetics influence the microbiome in inflammatory bowel disease // Genome Med. 2014. Vol. 6, No. 12. P. 107. DOI: 10.1186/s13073-014-0107-1

[195]

Wang J, Thingholm LB, Skiecevičienė J, et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat Genet. 2016;48(11):1396–1406. DOI: 10.1038/ng.3695

[196]

Wang J., Thingholm L.B., Skiecevičienė J. et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota // Nat. Genet. 2016. Vol. 48, No. 11. P. 1396–1406. DOI: 10.1038/ng.3695

[197]

Bäckhed F, Roswall J, Peng Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(5):690–703. DOI: 10.1016/j.chom.2015.04.004

[198]

Bäckhed F., Roswall J., Peng Y. et al. Dynamics and stabilization of the human gut microbiome during the first year of life // Cell Host Microbe. 2015. Vol. 17, No. 5. P. 690–703. DOI: 10.1016/j.chom.2015.04.004

[199]

Ma J, Li Z, Zhang W, et al. Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants. Sci Rep. 2020;10(1):15792. DOI: 10.1038/s41598-020-72635-x

[200]

Ma J., Li Z., Zhang W. et al. Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants // Sci. Rep. 2020. Vol. 10, No. 1. P. 15792. DOI: 10.1038/s41598-020-72635-x

[201]

Mueller S, Saunier K, Hanisch C, et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol. 2006;72(2):1027–1033. DOI: 10.1128/AEM.72.2.1027-1033.2006

[202]

Mueller S., Saunier K., Hanisch C. et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study // Appl. Environ. Microbiol. 2006. Vol. 72, No. 2. P. 1027–1033. DOI: 10.1128/AEM.72.2.1027-1033.2006

[203]

Singh P, Manning SD. Impact of age and sex on the composition and abundance of the intestinal microbiota in individuals with and without enteric infections. Ann Epidemiol. 2016;26(5):380–385. DOI: 10.1016/j.annepidem.2016.03.007

[204]

Singh P., Manning S.D. Impact of age and sex on the composition and abundance of the intestinal microbiota in individuals with and without enteric infections // Ann. Epidemiol. 2016. Vol. 26, No. 5. P. 380–385. DOI: 10.1016/j.annepidem.2016.03.007

[205]

Sinha T, Vich Vila A, Garmaeva S, et al. Analysis of 1135 gut metagenomes identifies sex-specific resistome profiles. Gut Microbes. 2019;10(3):358–366. DOI: 10.1080/19490976.2018.1528822

[206]

Sinha T., Vich Vila A., Garmaeva S. et al. Analysis of 1135 gut metagenomes identifies sex-specific resistome profiles // Gut Microbes. 2019. Vol. 10, No. 3. P. 358–366. DOI: 10.1080/19490976.2018.1528822

[207]

Koliada A, Moseiko V, Romanenko M, et al. Sex differences in the phylum-level human gut microbiota composition. BMC Microbiol. 2021;21(1):131. DOI: 10.1186/s12866-021-02198-y

[208]

Koliada A., Moseiko V., Romanenko M. et al. Sex differences in the phylum-level human gut microbiota composition // BMC Microbiol. 2021. Vol. 21, No. 1. P. 131. DOI: 10.1186/s12866-021-02198-y

[209]

Carvalho-Queiroz С, Johansson MA, Persson J-O, et al. Associations between EBV and CMV seropositivity, early exposures, and gut microbiota in a prospective birth cohort: A 10-Year follow-up. Front Pediatr. 2016;4:93. DOI: 10.3389/fped.2016.00093

[210]

Carvalho-Queiroz С., Johansson M.A., Persson J.-O. et al. Associations between EBV and CMV seropositivity, early exposures, and gut microbiota in a prospective birth cohort: A 10-Year follow-up // Front. Pediatr. 2016. Vol. 4. P. 93. DOI: 10.3389/fped.2016.00093

[211]

Hollins SL, Hodgson DM. Stress, microbiota, and immunity. Curr Opin Behav Sci. 2019;28:66–71. DOI: 10.1016/j.cobeha.2019.01.015

[212]

Hollins S.L., Hodgson D.M. Stress, microbiota, and immunity // Curr. Opin. Behav. Sci. 2019. Vol. 28. P. 66–71. DOI: 10.1016/j.cobeha.2019.01.015

[213]

De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107(33):14691–14696. DOI: 10.1073/pnas.1005963107

[214]

De Filippo C., Cavalieri D., Di Paola M. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107, No. 33. P. 14691–14696. DOI: 10.1073/pnas.1005963107

[215]

Merra G, Noce A, Marrone G, et al. Influence of mediterranean diet on human gut microbiota. Nutrients. 2021;13(1):7. DOI: 10.3390/nu13010007

[216]

Merra G., Noce A., Marrone G. et al. Influence of mediterranean diet on human gut microbiota // Nutrients. 2021. Vol. 13, No. 1. P. 7. DOI: 10.3390/nu13010007

[217]

Lee SH, Yun Y, Kim SJ, et al. Association between cigarette smoking status and composition of gut microbiota: Population-based cross-sectional study. J Clin Med. 2018;7(9):282. DOI: 10.3390/jcm7090282

[218]

Lee S.H., Yun Y., Kim S.J. et al. Association between cigarette smoking status and composition of gut microbiota: Population-based cross-sectional study // J. Clin. Med. 2018. Vol. 7, No. 9. P. 282. DOI: 10.3390/jcm7090282

[219]

Bervoets L, Van Hoorenbeeck K, Kortleven I, et al. Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathog. 2013;5(1):10. DOI: 10.1186/1757-4749-5-10

[220]

Bervoets L., Van Hoorenbeeck K., Kortleven I. et al. Differences in gut microbiota composition between obese and lean children: a cross-sectional study // Gut Pathog. 2013. Vol. 5, No. 1. P. 10. DOI: 10.1186/1757-4749-5-10

[221]

Riva A, Borgo F, Lassandro C, et al. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. Environ Microbiol. 2017;19(1):95–105. DOI: 10.1111/1462-2920.13463

[222]

Riva A., Borgo F., Lassandro C. et al. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations // Environ. Microbiol. 2017. Vol. 19, No. 1. P. 95–105. DOI: 10.1111/1462-2920.13463

[223]

Bora SA, Kennett MJ, Smith PB, et al. The gut microbiota regulates endocrine vitamin D methabolism through fibroblast growth factor 23. Front Immunol. 2018;9:408. DOI: 10.3389/fimmu.2018.00408

[224]

Bora S.A., Kennett M.J., Smith P.B. et al. The gut microbiota regulates endocrine vitamin D methabolism through fibroblast growth factor 23 // Front. Immunol. 2018. Vol. 9. P. 408. DOI: 10.3389/fimmu.2018.00408

[225]

Tabatabaeizadeh SA, Tafazoli N, Ferns GA, et al. Vitamin D, the gut microbiome and inflammatory bowel disease. J Res Med Sci. 2018;23:75. DOI: 10.4103/jrms.JRMS_606_17

[226]

Tabatabaeizadeh S.A., Tafazoli N., Ferns G.A. et al. Vitamin D, the gut microbiome and inflammatory bowel disease // J. Res. Med. Sci. 2018. Vol. 23. P. 75. DOI: 10.4103/jrms.JRMS_606_17

[227]

Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project. Nature. 2007;449(7164):804–810. DOI: 10.1038/nature06244

[228]

Turnbaugh P.J., Ley R.E., Hamady M. et al. The human microbiome project // Nature. 2007. Vol. 449, No. 7164. P. 804–810. DOI: 10.1038/nature06244

[229]

Mai V, Draganov PV. Recent advances and remaining gaps in our knowledge of associations between gut microbiota and human health. World J Gastroenterol. 2009;15(1):81–85. DOI: 10.3748/wjg.15.81

[230]

Mai V., Draganov P.V. Recent advances and remaining gaps in our knowledge of associations between gut microbiota and human health // World J. Gastroenterol. 2009. Vol. 15, No. 1. P. 81–85. DOI: 10.3748/wjg.15.81

[231]

Lankelma JM, Nieuwdorp M, de Vos WM, Wiersinga WJ. The gut microbiota in internal medicine: implications for health and disease. Neth J Med. 2015;73(2):61–68.

[232]

Lankelma J.M., Nieuwdorp M., de Vos W.M., Wiersinga W.J. The gut microbiota in internal medicine: implications for health and disease // Neth. J. Med. 2015. Vol. 73, No. 2. P. 61–68.

[233]

Lozupone CA, Stombaugh JI, Gordon JI, et al. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220–230. DOI: 10.1038/nature11550

[234]

Lozupone C.A., Stombaugh J.I., Gordon J.I. et al. Diversity, stability and resilience of the human gut microbiota // Nature. 2012. Vol. 489, No. 7415. P. 220–230. DOI: 10.1038/nature11550

[235]

McDermott AJ, Huffnagle GB. The microbiome and regulation of mucosal immunity. Immunology. 2014;142(1):24–31. DOI: 10.1111/imm.12231

[236]

McDermott A.J., Huffnagle G.B. The microbiome and regulation of mucosal immunity // Immunology. 2014. Vol. 142, No. 1. P. 24–31. DOI: 10.1111/imm.12231

[237]

Bäckhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine. Science. 2005;307(5717):1915–1920. DOI: 10.1126/science.1104816

[238]

Bäckhed F., Ley R.E., Sonnenburg J.L. et al. Host-bacterial mutualism in the human intestine // Science. 2005. Vol. 307, No. 5717. P. 1915–1920. DOI: 10.1126/science.1104816

[239]

Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–1638. DOI: 10.1126/science.1110591

[240]

Eckburg P.B., Bik E.M., Bernstein C.N. et al. Diversity of the human intestinal microbial flora // Science. 2005. Vol. 308, No. 5728. P. 1635–1638. DOI: 10.1126/science.1110591

[241]

Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol. 2016;14(1):20–32. DOI: 10.1038/nrmicro3552

[242]

Donaldson G.P., Lee S.M., Mazmanian S.K. Gut biogeography of the bacterial microbiota // Nat. Rev. Microbiol. 2016. Vol. 14, No. 1. P. 20–32. DOI: 10.1038/nrmicro3552

[243]

Schippa S, Conte MP. Dysbiotic events in gut microbiota: impact on human health. Nutrients. 2014;6(12):5786–5805. DOI: 10.3390/nu6125786

[244]

Schippa S., Conte M.P. Dysbiotic events in gut microbiota: impact on human health // Nutrients. 2014. Vol. 6, No. 12. P. 5786–5805. DOI: 10.3390/nu6125786

[245]

Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124(4):837–848. DOI: 10.1016/j.cell.2006.02.017

[246]

Ley R.E., Peterson D.A., Gordon J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine // Cell. 2006. Vol. 124, No. 4. P. 837–848. DOI: 10.1016/j.cell.2006.02.017

[247]

Bianconi E, Piovesan A, Facchin F, et al. An estimation of the number of cells in the human body. Ann Hum Biol. 2013;40(6):463–471. DOI: 10.3109/03014460.2013.807878

[248]

Bianconi E., Piovesan A., Facchin F. et al. An estimation of the number of cells in the human body // Ann. Hum. Biol. 2013. Vol. 40, No. 6. P. 463–471. DOI: 10.3109/03014460.2013.807878

[249]

Khanna S, Tosh PK. A clinician’s primer on the microbiome in human health and disease. Mayo Clin Proc. 2014;89(1):107–114. DOI: 10.1016/j.mayocp.2013.10.011

[250]

Khanna S., Tosh P.K. A clinician’s primer on the microbiome in human health and disease // Mayo Clin. Proc. 2014. Vol. 89, No. 1. P. 107–114. DOI: 10.1016/j.mayocp.2013.10.011

[251]

Brestoff JR, Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol. 2013;14(7):676–684. DOI: 10.1038/ni.2640

[252]

Brestoff J.R., Artis D. Commensal bacteria at the interface of host metabolism and the immune system // Nat. Immunol. 2013. Vol. 14, No. 7. P. 676–684. DOI: 10.1038/ni.2640

[253]

Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312(5778):1355–1359. DOI: 10.1126/science.1124234

[254]

Gill S.R., Pop M., Deboy R.T. et al. Metagenomic analysis of the human distal gut microbiome // Science. 2006. Vol. 312, No. 5778. P. 1355–1359. DOI: 10.1126/science.1124234

[255]

Hollister EB, Gao C, Versalovic J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology. 2014;146(6):1449–1458. DOI: 10.1053/j.gastro.2014.01.052

[256]

Hollister E.B., Gao C., Versalovic J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health // Gastroenterology. 2014. Vol. 146, No. 6. P. 1449–1458. DOI: 10.1053/j.gastro.2014.01.052

[257]

Hood L. Tackling the microbiome. Science. 2012;336(6086):1209. DOI: 10.1126/science.1225475

[258]

Hood L. Tackling the microbiome // Science. 2012. Vol. 336, No. 6086. P. 1209. DOI: 10.1126/science.1225475

[259]

Strober W. Inside the microbial and immune labyrinth: gut microbes: friends or fiends? Nat Med. 2010;16(11):1195–1197. DOI: 10.1038/nm1110-1195

[260]

Strober W. Inside the microbial and immune labyrinth: gut microbes: friends or fiends? // Nat. Med. 2010. Vol. 16, No. 11. P. 1195–1197. DOI: 10.1038/nm1110-1195

[261]

Cerf-Bensussan N, Gaboriau-Routhiau V. The immune system and the gut microbiota: friends or foes? Nat Rev Immunol. 2010;10(10):735–744. DOI: 10.1038/nri2850

[262]

Cerf-Bensussan N., Gaboriau-Routhiau V. The immune system and the gut microbiota: friends or foes? // Nat. Rev. Immunol. 2010. Vol. 10, No. 10. P. 735–744. DOI: 10.1038/nri2850

[263]

Benson AK, Kelly SA, Legge R, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci USA. 2010;107(44):18933–18938. DOI: 10.1073/pnas.1007028107

[264]

Benson A.K., Kelly S.A., Legge R. et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107, No. 44. P. 18933–18938. DOI: 10.1073/pnas.1007028107

[265]

Xu J, Mahowald M, Ley R, et al. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol. 2007;5(7):e156. DOI: 10.1371/journal.pbio.0050156

[266]

Xu J., Mahowald M., Ley R. et al. Evolution of symbiotic bacteria in the distal human intestine // PLoS Biol. 2007. Vol. 5, No. 7. P. e156. DOI: 10.1371/journal.pbio.0050156

[267]

Quigley EMM. Gut bacteria in health and disease. Gastroenterol Hepatol (NY). 2013;9(9):560–569.

[268]

Quigley E.M.M. Gut bacteria in health and disease // Gastroenterol. Hepatol. (NY). 2013. Vol. 9, No. 9. P. 560–569.

[269]

Macfarlane S, Macfarlane GT. Composition and metabolic activities of bacterial biofilms colonizing food residues in the human gut. Appl Environ Microbiol. 2006;72(9):6204–6211. DOI: 10.1128/AEM.00754-06

[270]

Macfarlane S., Macfarlane G.T. Composition and metabolic activities of bacterial biofilms colonizing food residues in the human gut // Appl. Environ. Microbiol. 2006. Vol. 72, No. 9. P. 6204–6211. DOI: 10.1128/AEM.00754-06

[271]

Van der Waaij LA, Harmsen HJ, Madjipour M, et al. Bacterial population analysis of human colon and terminal ileum biopsies with 16S rRNA-based fluorescent probes: commensal bacteria live in suspension and have no direct contact with epithelial cells. Inflamm Bowel Dis. 2005;11(10):865–871. DOI: 10.1097/01.mib.0000179212.80778.d3

[272]

Van der Waaij L.A., Harmsen H.J., Madjipour M. et al. Bacterial population analysis of human colon and terminal ileum biopsies with 16S rRNA-based fluorescent probes: commensal bacteria live in suspension and have no direct contact with epithelial cells // Inflamm. Bowel Dis. 2005. Vol. 11, No. 10. P. 865–871. DOI: 10.1097/01.mib.0000179212.80778.d3

[273]

Swidsinski A, Loening-Baucke V, Theissig F, et al. Comparative study of the intestinal mucus barrier in normal and inflamed colon. Gut. 2007;56(3):343–350. DOI: 10.1136/gut.2006.098160

[274]

Swidsinski A., Loening-Baucke V., Theissig F. et al. Comparative study of the intestinal mucus barrier in normal and inflamed colon // Gut. 2007. Vol. 56, No. 3. P. 343–350. DOI: 10.1136/gut.2006.098160

[275]

Carroll IM, Ringel-Kulka T, Keku TO, et al. Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2011;301(5):G799–807. DOI: 10.1152/ajpgi.00154.2011

[276]

Carroll I.M., Ringel-Kulka T., Keku T.O. et al. Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome // Am. J. Physiol. Gastrointest. Liver Physiol. 2011. Vol. 301, No. 5. P. G799–807. DOI: 10.1152/ajpgi.00154.2011

[277]

Atuma C, Strugala V, Allen A, Holm L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol. 2001;280(5):G922–G929. DOI: 10.1152/ajpgi.2001.280.5.G922

[278]

Atuma C., Strugala V., Allen A., Holm L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo // Am. J. Physiol. Gastrointest. Liver Physiol. 2001. Vol. 280, No. 5. P. G922–G929. DOI: 10.1152/ajpgi.2001.280.5.G922

[279]

Johansson ME, Phillipson M, Petersson J, et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA. 2008;105(39):15064–15069. DOI: 10.1073/pnas.0803124105

[280]

Johansson M.E., Phillipson M., Petersson J. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria // Proc. Natl. Acad. Sci. USA. 2008. Vol. 105, No. 39. P. 15064–15069. DOI: 10.1073/pnas.0803124105

[281]

Gordon HA, Pesti L. The gnotobiotic animal as a tool in the study of host microbial relationship. Bacteriol Rev. 1971;35(4):390–429. DOI: 10.1128/br.35.4.390-429.1971

[282]

Gordon H.A., Pesti L. The gnotobiotic animal as a tool in the study of host microbial relationship // Bacteriol. Rev. 1971. Vol. 35, No. 4. P. 390–429. DOI: 10.1128/br.35.4.390-429.1971

[283]

Falk PG, Hooper LV, Midtverd T, Gordon JI. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev. 1998;62(4):1157–1170. DOI: 10.1128/MMBR.62.4.1157-1170.1998

[284]

Falk P.G., Hooper L.V., Midtverd T., Gordon J.I. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology // Microbiol. Mol. Biol. Rev. 1998. Vol. 62, No. 4. P. 1157–1170. DOI: 10.1128/MMBR.62.4.1157-1170.1998

[285]

Sjögren YM, Tomicic S, Lundberg A, et al. Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses. Clin Exp Allergy. 2009;9(12):1842–1851. DOI: 10.1111/j.1365-2222.2009.03326.x

[286]

Sjögren Y.M., Tomicic S., Lundberg A. et al. Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses // Clin. Exp. Allergy. 2009. Vol. 9, No. 12. P. 1842–1851. DOI: 10.1111/j.1365-2222.2009.03326.x

[287]

Martin R, Nauta AJ, Ben Amor K, et al. Early life: Gut microbiota and immune development in infancy. Benef Microbes. 2010;1(4):367–382. DOI: 10.3920/BM2010.0027

[288]

Martin R., Nauta A.J., Ben Amor K. et al. Early life: Gut microbiota and immune development in infancy // Benef. Microbes. 2010. Vol. 1, No. 4. P. 367–382. DOI: 10.3920/BM2010.0027

[289]

Hsiao EY, McBride SW, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–1463. DOI: 10.1016/j.cell.2013.11.024

[290]

Hsiao E.Y., McBride S.W., Hsien S. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders // Cell. 2013. Vol. 155, No. 7. P. 1451–1463. DOI: 10.1016/j.cell.2013.11.024

[291]

Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunoregulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122(1):107–118. DOI: 10.1016/j.cell.2005.05.007

[292]

Mazmanian S.K., Liu C.H., Tzianabos A.O., Kasper D.L. An immunoregulatory molecule of symbiotic bacteria directs maturation of the host immune system // Cell. 2005. Vol. 122, No. 1. P. 107–118. DOI: 10.1016/j.cell.2005.05.007

[293]

Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 2015;17(5):565–576. DOI: 10.1016/j.chom.2015.04.011

[294]

Sampson T.R., Mazmanian S.K. Control of brain development, function, and behavior by the microbiome // Cell Host Microbe. 2015. Vol. 17, No. 5. P. 565–576. DOI: 10.1016/j.chom.2015.04.011

[295]

Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158. DOI: 10.1126/scitranslmed.3009759

[296]

Braniste V., Al-Asmakh M., Kowal C. et al. The gut microbiota influences blood brain barrier permeability in mice // Sci. Transl. Med. 2014. Vol. 6, No. 263. P. 263ra158. DOI: 10.1126/scitranslmed.3009759

[297]

Hoban AE, Stilling RM, Ryan FJ, et al. Regulation of prefrontal cortex myelination by the microbiota. Transl Psychiatry. 2016;6(4):e774. DOI: 10.1038/tp.2016.42

[298]

Hoban A.E., Stilling R.M., Ryan F.J. et al. Regulation of prefrontal cortex myelination by the microbiota // Transl. Psychiatry. 2016. Vol. 6, No. 4. P. e774. DOI: 10.1038/tp.2016.42

[299]

Sassone-Corsi M, Raffatellu M. No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J Immunol. 2015;194(9):4081–4087. DOI: 10.4049/jimmunol.1403169

[300]

Sassone-Corsi M., Raffatellu M. No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens // J. Immunol. 2015. Vol. 194, No. 9. P. 4081–4087. DOI: 10.4049/jimmunol.1403169

[301]

Hansen NW, Sams A. The Microbiotic highway to health — new perspective on food structure, gut microbiota, and host inflammation. Nutrients. 2018;10(11):1590. DOI: 10.3390/nu10111590

[302]

Hansen N.W., Sams A. The Microbiotic highway to health — new perspective on food structure, gut microbiota, and host inflammation // Nutrients. 2018. Vol. 10, No. 11. P. 1590. DOI: 10.3390/nu10111590

[303]

Guarner F, Malagelada JR. Gut flora in health and disease. Lancet. 2003;361(9356):512–519. DOI: 10.1016/S0140-6736(03)12489-0

[304]

Guarner F., Malagelada J.R. Gut flora in health and disease // Lancet. 2003. Vol. 361, No. 9356. P. 512–519. DOI: 10.1016/S0140-6736(03)12489-0

[305]

Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90(3):859–904. DOI: 10.1152/physrev.00045.2009

[306]

Sekirov I., Russell S.L., Antunes L.C.M., Finlay B.B. Gut microbiota in health and disease // Physiol. Rev. 2010. Vol. 90, No. 3. P. 859–904. DOI: 10.1152/physrev.00045.2009

[307]

Sommer F, Bäckhed F. The gut microbiota — Masters of host development and physiology. Nat Rev Microbiol. 2013;11(4):227–238. DOI: 10.1038/nrmicro2974

[308]

Sommer F., Bäckhed F. The gut microbiota — Masters of host development and physiology // Nat. Rev. Microbiol. 2013. Vol. 11, No. 4. P. 227–238. DOI: 10.1038/nrmicro2974

[309]

Rojo D, Méndez-García C, Raczkowska BA, et al. Exploring the human microbiome from multiple perspectives: factors altering its composition and function. FEMS Microbiol Rev. 2017;41(4):453–478. DOI: 10.1093/femsre/fuw046

[310]

Rojo D., Méndez-García C., Raczkowska B.A. et al. Exploring the human microbiome from multiple perspectives: factors altering its composition and function // FEMS Microbiol. Rev. 2017. Vol. 41, No. 4. P. 453–478. DOI: 10.1093/femsre/fuw046

[311]

Cantarel BL, Waubant E, Chehoud C, et al. Gut microbiota in multiple sclerosis: possible influence of immunomodulators. J Investig Med. 2015;63(5):729–734. DOI: 10.1097/JIM.0000000000000192

[312]

Cantarel B.L., Waubant E., Chehoud C. et al. Gut microbiota in multiple sclerosis: possible influence of immunomodulators // J. Investig. Med. 2015. Vol. 63, No. 5. P. 729–734. DOI: 10.1097/JIM.0000000000000192

[313]

Miyake S, Kim S, Suda W, et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belondind to Clostridia XIVa and IV clusters. PLoS One. 2015;10(9):e0137429. DOI: 10.1371/journal.pone.0137429

[314]

Miyake S., Kim S., Suda W. et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belondind to Clostridia XIVa and IV clusters // PLoS One. 2015. Vol. 10, No. 9. P. e0137429. DOI: 10.1371/journal.pone.0137429

[315]

Chen J, Chia N, Kalari KR, et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep. 2016;6:28484. DOI: 10.1038/srep28484

[316]

Chen J., Chia N., Kalari K.R. et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls // Sci. Rep. 2016. Vol. 6. P. 28484. DOI: 10.1038/srep28484

[317]

Jangi S, Gandhi R, Cox LM, et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun. 2016;7:12015. DOI: 10.1038/ncomms12015

[318]

Jangi S., Gandhi R., Cox L.M. et al. Alterations of the human gut microbiome in multiple sclerosis // Nat. Commun. 2016. Vol. 7. P. 12015. DOI: 10.1038/ncomms12015

[319]

Tremlett H, Fadrosh DW, Faruqi AA, et al. Associations between the gut microbiota and host immune markers in pediatric multiple sclerosis and controls. BMC Neurol. 2016;16(1):182. DOI: 10.1186/s12883-016-0703-3

[320]

Tremlett H., Fadrosh D.W., Faruqi A.A. et al. Associations between the gut microbiota and host immune markers in pediatric multiple sclerosis and controls // BMC Neurol. 2016. Vol. 16, No. 1. P. 182. DOI: 10.1186/s12883-016-0703-3

[321]

Berer K, Gerdes LA, Cekanaviciute E, et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci USA. 2017;114(40):10719–10724. DOI: 10.1073/pnas.1711233114

[322]

Berer K., Gerdes L.A., Cekanaviciute E. et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice // Proc. Natl. Acad. Sci. USA. 2017. Vol. 114, No. 40. P. 10719–10724. DOI: 10.1073/pnas.1711233114

[323]

Cekanaviciute E, Yoo BB, Runia TF, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci USA. 2017;114(40):10713–10718. DOI: 10.1073/pnas.1711235114

[324]

Cekanaviciute E., Yoo B.B., Runia T.F. et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models // Proc. Natl. Acad. Sci. USA. 2017. Vol. 114, No. 40. P. 10713–10718. DOI: 10.1073/pnas.1711235114

[325]

Cosorich I, Dalla-Costa G, Sorini C, et al. High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis. Sci Adv. 2017;3(7):e1700492. DOI: 10.1126/sciadv.1700492

[326]

Cosorich I., Dalla-Costa G., Sorini C. et al. High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis // Sci. Adv. 2017. Vol. 3, No. 7. P. e1700492. DOI: 10.1126/sciadv.1700492

[327]

Cekanaviciute E, Pröbstel A-K, Thomann A, et al. Multiple sclerosis-associated changes in the composition and immune functions of spore-forming bacteria. mSystems. 2018;3(6):e00083–18. DOI: 10.1128/mSystems.00083-18

[328]

Cekanaviciute E., Pröbstel A.-K., Thomann A. et al. Multiple sclerosis-associated changes in the composition and immune functions of spore-forming bacteria // mSystems. 2018. Vol. 3, No. 6. P. e00083–18. DOI: 10.1128/mSystems.00083-18

[329]

Forbes JD, Chen C-Y, Knox NC, et al. A comparative study of the gut microbiota in immune-mediated inflammatory diseases — does a common dysbiosis exist? Microbiome. 2018;6(1):221. DOI: 10.1186/s40168-018-0603-4

[330]

Forbes J.D., Chen C.-Y., Knox N.C. et al. A comparative study of the gut microbiota in immune-mediated inflammatory diseases — does a common dysbiosis exist? // Microbiome. 2018. Vol. 6, No. 1. P. 221. DOI: 10.1186/s40168-018-0603-4

[331]

Abdurasulova IN, Matsulevich AV, Tarasova EA, et al. Changes of intestinal microbiome in multiple sclerosis are associated with immune shift and psychoemotional disorders. Medical Academic Journal. 2019;19(1S):51–54. DOI: 10.17816/MAJ191S151-54

[332]

Abdurasulova I.N., Matsulevich A.V., Tarasova E.A. et al. Changes of intestinal microbiome in multiple sclerosis are associated with immune shift and psychoemotional disorders // Medical Academic Journal. 2019. Vol. 19, No. 1S. P. 51–54. DOI: 10.17816/MAJ191S151-54

[333]

Kozhieva M, Naumova N, Alikina T, et al. Primary progressive multiple sclerosis in a Russian cohort: relationship with gut bacterial diversity. BMC Microbiol. 2019;19(1):309. DOI: 10.1186/s12866-019-1685-2

[334]

Kozhieva M., Naumova N., Alikina T. et al. Primary progressive multiple sclerosis in a Russian cohort: relationship with gut bacterial diversity // BMC Microbiol. 2019. Vol. 19, No. 1. P. 309. DOI: 10.1186/s12866-019-1685-2

[335]

Oezguen N, Yalcinkaya N, Kücükali CI, et al. Microbiota stratification identifies disease-specific alterations in neuro-Behçet’s disease and multiple sclerosis. Clin Exp Rheumatol. 2019;37 Suppl 121(6):58–66.

[336]

Oezguen N., Yalcinkaya N., Kücükali C.I. et al. Microbiota stratification identifies disease-specific alterations in neuro-Behçet’s disease and multiple sclerosis // Clin. Exp. Rheumatol. 2019. Vol. 37 Suppl 121, No. 6. P. 58–66.

[337]

Sand IK, Zhu Y, Ntranos A, et al. Disease-modifying therapies alter gut microbial composition in MS. Neurol Neuroimmunol Neuroinflamm. 2019;6(1):e517. DOI: 10.1212/NXI.0000000000000517

[338]

Sand I.K., Zhu Y., Ntranos A. et al. Disease-modifying therapies alter gut microbial composition in MS // Neurol. Neuroimmunol. Neuroinflamm. 2019. Vol. 6, No. 1. P. e517. DOI: 10.1212/NXI.0000000000000517

[339]

Storm-Larsen C, Myhr K-M, Farbu E, et al. Gut microbiota composition during a 12-week intervention with delayed-release dimethyl fumarate in multiple sclerosis — a pilot trial. Mult Scler J Exp Transl Clin. 2019;5(4):2055217319888767. DOI: 10.1177/2055217319888767

[340]

Storm-Larsen C., Myhr K.-M., Farbu E. et al. Gut microbiota composition during a 12-week intervention with delayed-release dimethyl fumarate in multiple sclerosis — a pilot trial // Mult. Scler. J. Exp. Transl. Clin. 2019. Vol. 5, No. 4. P. 2055217319888767. DOI: 10.1177/2055217319888767

[341]

Ventura RE, Iizumi1 T, Battaglia T, et al. Gut microbiome of treatment-naïve MS patients of different ethnicities early in disease course. Sci Rep. 2019;9(1):16396. DOI: 10.1038/s41598-019-52894-z

[342]

Ventura R.E., Iizumi1 T., Battaglia T. et al. Gut microbiome of treatment-naïve MS patients of different ethnicities early in disease course // Sci. Rep. 2019. Vol. 9, No. 1. P. 16396. DOI: 10.1038/s41598-019-52894-z

[343]

Zeng Q, Gong J, Liu X, et al. Gut dysbiosis and lack of short chain fatty acids in a Chinese cohort of patients with multiple sclerosis. Neurochem Int. 2019;129:104468. DOI: 10.1016/j.neuint.2019.104468

[344]

Zeng Q., Gong J., Liu X. et al. Gut dysbiosis and lack of short chain fatty acids in a Chinese cohort of patients with multiple sclerosis // Neurochem. Int. 2019. Vol. 129. P. 104468. DOI: 10.1016/j.neuint.2019.104468

[345]

Castillo-Álvarez F, Pérez-Matute P, Oteo JA, Marzo-Sola ME. The influence of interferon β-1b on gut microbiota composition in patients with multiple sclerosis. Neurologia (Engl Ed). 2021;36(7):495–503. DOI: 10.1016/j.nrleng.2020.05.006

[346]

Castillo-Álvarez F., Pérez-Matute P., Oteo J.A., Marzo-Sola M.E. The influence of interferon β-1b on gut microbiota composition in patients with multiple sclerosis // Neurologia (Engl Ed). 2021. Vol. 36, No. 7. P. 495–503. DOI: 10.1016/j.nrleng.2020.05.006

[347]

Kishikawa T, Ogawa K, Motooka D, et al. A Metagenome-wide association study of gut microbiome in patients with multiple sclerosis revealed novel disease pathology. Front Cell Infect Microbiol. 2020;10:585973. DOI: 10.3389/fcimb.2020.585973

[348]

Kishikawa T., Ogawa K., Motooka D. et al. A Metagenome-wide association study of gut microbiome in patients with multiple sclerosis revealed novel disease pathology // Front. Cell. Infect. Microbiol. 2020. Vol. 10. P. 585973. DOI: 10.3389/fcimb.2020.585973

[349]

Ling Z, Cheng Y, Yan X, et al. Alterations of the fecal microbiota in Chinese patients with multiple sclerosis. Front Immunol. 2020;11:590783. DOI: 10.3389/fimmu.2020.590783

[350]

Ling Z., Cheng Y., Yan X. et al. Alterations of the fecal microbiota in Chinese patients with multiple sclerosis // Front. Immunol. 2020. Vol. 11. P. 590783. DOI: 10.3389/fimmu.2020.590783

[351]

Reynders T, Devolder L, Valles-Colomer M, et al. Gut microbiome variation is associated to Multiple Sclerosis phenotypic subtypes. Ann Clin Transl Neurol. 2020;7(4):406–419. DOI: 10.1002/acn3.51004

[352]

Reynders T., Devolder L., Valles-Colomer M. et al. Gut microbiome variation is associated to Multiple Sclerosis phenotypic subtypes // Ann. Clin. Transl. Neurol. 2020. Vol. 7, No. 4. P. 406–419. DOI: 10.1002/acn3.51004

[353]

Takewaki D, Suda W, Sato W, et al. Alterations of the gut ecological and functional microenvironment in different stages of multiple sclerosis. PNAS. 2020;117(36):22402–22412. DOI: 10.1073/pnas.2011703117

[354]

Takewaki D., Suda W., Sato W. et al. Alterations of the gut ecological and functional microenvironment in different stages of multiple sclerosis // PNAS. 2020. Vol. 117, No. 36. P. 22402–22412. DOI: 10.1073/pnas.2011703117

[355]

Ní Choileáin S, Kleinewietfeld M, Raddassi K, et al. CXCR3+ T cells in multiple sclerosis correlate with reduced diversity of the gut microbiota. J Translat Autoimmun. 2020;3:100032. DOI: 10.1016/j.jtauto.2019.100032

[356]

Ní Choileáin S., Kleinewietfeld M., Raddassi K. et al. CXCR3+ T cells in multiple sclerosis correlate with reduced diversity of the gut microbiota // J. Translat. Autoimmun. 2020. Vol. 3. P. 100032. DOI: 10.1016/j.jtauto.2019.100032

[357]

Cox LM, Maghzi AH, Liu S, et al. The gut microbiome in progressive multiple sclerosis. Ann Neurol. 2021;89(6):1195–1211. DOI: 10.1002/ana.26084

[358]

Cox L.M., Maghzi A.H., Liu S. et al. The gut microbiome in progressive multiple sclerosis // Ann. Neurol. 2021. Vol. 89, No. 6. P. 1195–1211. DOI: 10.1002/ana.26084

[359]

Galluzzo P, Capri FC, Vecchioni L, et al. Comparison of the intestinal microbiome of Italian patients with multiple sclerosis and their household relatives. Life (Basel). 2021;11(7):620. DOI: 10.3390/life11070620

[360]

Galluzzo P., Capri F.C., Vecchioni L. et al. Comparison of the intestinal microbiome of Italian patients with multiple sclerosis and their household relatives // Life (Basel). 2021. Vol. 11, No. 7. P. 620. DOI: 10.3390/life11070620

[361]

Pellizoni FP, Leite AZ, de Campos Rodrigues N, et al. Detection of dysbiosis and increased intestinal permeability in Brazilian patients with relapsing-remitting multiple sclerosis. Int J Environ Res Public Health. 2021;18(9):4621. DOI: 10.3390/ijerph18094621

[362]

Pellizoni F.P., Leite A.Z., de Campos Rodrigues N. et al. Detection of dysbiosis and increased intestinal permeability in Brazilian patients with relapsing-remitting multiple sclerosis // Int. J. Environ. Res. Public Health. 2021. Vol. 18, No. 9. P. 4621. DOI: 10.3390/ijerph18094621

[363]

Tremlett H, Zhu F, Arnold D, et al. The gut microbiota in pediatric multiple sclerosis and demyelinating syndromes. Ann Clin Transl Neurol. 2021;8(12):2252–2269. DOI: 10.1002/acn3.51476

[364]

Tremlett H., Zhu F., Arnold D. et al. The gut microbiota in pediatric multiple sclerosis and demyelinating syndromes // Ann. Clin. Transl. Neurol. 2021. Vol. 8, No. 12. P. 2252–2269. DOI: 10.1002/acn3.51476

[365]

Yadav M, Ali S, Shrode RL, et al. Multiple sclerosis patients have an altered gut mycobiome and increased fungal to bacterial richness. bioRxiv. 2022;17(4):e0264556. DOI: 10.1101/2021.08.30.458212

[366]

Yadav M., Ali S., Shrode R.L. et al. Multiple sclerosis patients have an altered gut mycobiome and increased fungal to bacterial richness // bioRxiv. 2022. Vol. 17, No. 4. P. e0264556. DOI: 10.1101/2021.08.30.458212

[367]

Vallino A, Dos Santos A, Mathe CV, et al. Gut bacteria Akkermansia elicit a specific IgG response in CSF of patients with MS. Neurol Neuroimmunol Neuroinflamm. 2020;7(3):e688. DOI: 10.1212/NXI.0000000000000688

[368]

Vallino A., Dos Santos A., Mathe C.V. et al. Gut bacteria Akkermansia elicit a specific IgG response in CSF of patients with MS // Neurol. Neuroimmunol. Neuroinflamm. 2020. Vol. 7, No. 3. P. e688. DOI: 10.1212/NXI.0000000000000688

[369]

Hirano A, Umeno J, Okamoto Y, et al. Comparison of the microbial community structure between inflamed and non-inflamed sites in patients with ulcerative colitis. J Gastroenterol Hepatol. 2018;33(9):1590–1597. DOI: 10.1111/jgh.14129

[370]

Hirano A., Umeno J., Okamoto Y. et al. Comparison of the microbial community structure between inflamed and non-inflamed sites in patients with ulcerative colitis // J. Gastroenterol. Hepatol. 2018. Vol. 33, No. 9. P. 1590–1597. DOI: 10.1111/jgh.14129

[371]

Rumah KR, Linden J, Fischetti VA, Vartanian T. Isolation of clostridium perfringens type B in an individual at first clinical presentation of multiple sclerosis provides clues for environmental triggers of the disease. PLoS One. 2013;8(10):e76359. DOI: 10.1371/journal.pone.0076359

[372]

Rumah K.R., Linden J., Fischetti V.A., Vartanian T. Isolation of clostridium perfringens type B in an individual at first clinical presentation of multiple sclerosis provides clues for environmental triggers of the disease // PLoS One. 2013. Vol. 8, No. 10. P. e76359. DOI: 10.1371/journal.pone.0076359

[373]

Abdurasulova IN, Tarasova EA, Ermolenko EI, et al. Multiple sclerosis is associated with altered quantitative and qualitative composition of intestinal microbiota. Medical Academic Journal. 2015;15(3):55–67. (In Russ.)

[374]

Абдурасулова И.Н., Тарасова Е.А., Ермоленко Е.И. и др. При рассеянном склерозе изменяется качественный и количественный состав микробиоты кишечника // Медицинский академический журнал. 2015. Т. 15, № 3. С. 55–67.

[375]

Mete A, Garcia J, Ortega J, et al. Brain lesions associated with clostridium perfringens type D epsilon toxin in a Holstein heifer calf. Vet Pathol. 2013;50(5):765–768. DOI: 10.1177/0300985813476058

[376]

Mete A., Garcia J., Ortega J. et al. Brain lesions associated with clostridium perfringens type D epsilon toxin in a Holstein heifer calf // Vet. Pathol. 2013. Vol. 50, No. 5. P. 765–768. DOI: 10.1177/0300985813476058

[377]

Dorca-Arévalo J, Soler-Jover A, Gibert M, et al. Binding of epsilon-toxin from Clostridium perfringens in the nervous system. Vet Microbiol. 2008;131:14–25. DOI: 10.1371/journal.pone.0102417

[378]

Dorca-Arévalo J., Soler-Jover A., Gibert M. et al. Binding of epsilon-toxin from Clostridium perfringens in the nervous system // Vet. Microbiol. 2008. Vol. 131, No. 1–2. P. 14–25. DOI: 10.1371/journal.pone.0102417

[379]

Lonchamp E, Dupont J-L, Wioland L, et al. Clostridium perfringens epsilon toxin targets granule cells in the mouse cerebellum and stimulates glutamate release. PLoS One. 2010;5(9):e13046. DOI: 10.1371/journal.pone.0013046

[380]

Lonchamp E., Dupont J.-L., Wioland L. et al. Clostridium perfringens epsilon toxin targets granule cells in the mouse cerebellum and stimulates glutamate release // PLoS One. 2010. Vol. 5, No. 9. P. e13046. DOI: 10.1371/journal.pone.0013046

[381]

Finnie JW, Blumbergs PC, Manavis J. Neuronal damage produced in rat brains by Clostridium perfringens type D epsilon toxin. J Comp Pathol. 1999;120(4):415–420. DOI: 10.1053/jcpa.1998.0289

[382]

Finnie J.W., Blumbergs P.C., Manavis J. Neuronal damage produced in rat brains by Clostridium perfringens type D epsilon toxin // J. Comp. Pathol. 1999. Vol. 120, No. 4. P. 415–420. DOI: 10.1053/jcpa.1998.0289

[383]

Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–227. DOI: 10.1038/nature11053

[384]

Yatsunenko T., Rey F.E., Manary M.J. et al. Human gut microbiome viewed across age and geography // Nature. 2012. Vol. 486, No. 7402. P. 222–227. DOI: 10.1038/nature11053

[385]

Abdurasulova IN, Tarasova EA, Nikiforova IG, et al. The intestinal microbiota composition in patients with multiple sclerosis receiving different disease-modifying therapies (DMT). Korsakov Journal of Neurology and Psychiatry. 2018;118(8–2):62–69. (In Russ.). DOI: 10.17116/jnevro201811808262

[386]

Абдурасулова И.Н., Тарасова Е.А., Никифорова И.Г. и др. Особенности состава микробиоты кишечника у пациентов с рассеянным склерозом, получающих препараты, изменяющие течение рассеянного склероза // Журнал неврологии и психиатрии им. С.С. Корсакова. 2018. Т. 118, № 8–2. С. 62–69. DOI: 10.17116/jnevro201811808262

[387]

Tarasova EA, Lioudyno VI, Matsulevich AV, et al. Features of the intestinal microbiota composition in multiple sclerosis patients receiving oral disease-modifying therapy. Medical Academic Journal. 2021;21(4):47–56. DOI: 10.17816/MAJ88595

[388]

Tarasova E.A., Lioudyno V.I., Matsulevich A.V. et al. Features of the intestinal microbiota composition in multiple sclerosis patients receiving oral disease-modifying therapy // Medical Academic Journal. 2021. Vol. 21, No. 4. P. 47–56. DOI: 10.17816/MAJ88595

[389]

Buscarinu MC, Fornasiero A, Romano S, et al. The contribution of gut barrier changes to multiple sclerosis pathophysiology. Front Immunol. 2019;10:1916. DOI: 10.3389/fimmu.2019.01916

[390]

Buscarinu M.C., Fornasiero A., Romano S. et al. The contribution of gut barrier changes to multiple sclerosis pathophysiology // Front. Immunol. 2019. Vol. 10. P. 1916. DOI: 10.3389/fimmu.2019.01916

[391]

Hermann-Bank ML, Skovgaard K, Stockmarr A, et al. The Gut Microbiotassay: a high-throughput qPCR approach combinable with next generation sequencing to study gut microbial diversity. BMC Genomics. 2013;14:788. DOI: 10.1186/1471-2164-14-788

[392]

Hermann-Bank M.L., Skovgaard K., Stockmarr A. et al. The Gut Microbiotassay: a high-throughput qPCR approach combinable with next generation sequencing to study gut microbial diversity // BMC Genomics. 2013. Vol. 14. P. 788. DOI: 10.1186/1471-2164-14-788

[393]

Bang S, Yoo DA, Kim S-J, et al. Establishment and evaluation of prediction model for multiple disease classification based on gut microbial data. Sci Rep. 2019;9(1):10189. DOI: 10.1038/s41598-019-46249-x

[394]

Bang S., Yoo D.A., Kim S.-J. et al. Establishment and evaluation of prediction model for multiple disease classification based on gut microbial data // Sci. Rep. 2019. Vol. 9, No. 1. P. 10189. DOI: 10.1038/s41598-019-46249-x

[395]

Gold R, Linington C, Lassmann H. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain. 2006;129(Pt 8):1953–1971. DOI: 10.1093/brain/awl075

[396]

Gold R., Linington C., Lassmann H. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research // Brain. 2006. Vol. 129, No. Pt 8. P. 1953–1971. DOI: 10.1093/brain/awl075

[397]

Ben-Nun A, Kaushansky N, Kawakami N, et al. From classic to spontaneous and humanized models of multiple sclerosis: Impact on understanding pathogenesis and drug development. J Autoimmun. 2014;54:33–50. DOI: 10.1016/j.jaut.2014.06.004

[398]

Ben-Nun A., Kaushansky N., Kawakami N. et al. From classic to spontaneous and humanized models of multiple sclerosis: Impact on understanding pathogenesis and drug development // J. Autoimmun. 2014. Vol. 54. P. 33–50. DOI: 10.1016/j.jaut.2014.06.004

[399]

Krishnamoorthy G, Lassmann H, Wekerle H, Holz A. Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation. J Clin Invest. 2006;116(9):2385–2392. DOI: 10.1172/JCI28330

[400]

Krishnamoorthy G., Lassmann H., Wekerle H., Holz A. Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation // J. Clin. Invest. 2006. Vol. 116, No. 9. P. 2385–2392. DOI: 10.1172/JCI28330

[401]

Ochoa-Reparaz J, Mielcarz DW, Ditrio LE, et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol. 2009;183(10):6041–6050. DOI: 10.4049/jimmunol.0900747

[402]

Ochoa-Reparaz J., Mielcarz D.W., Ditrio L.E. et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis // J. Immunol. 2009. Vol. 183, No. 10. P. 6041–6050. DOI: 10.4049/jimmunol.0900747

[403]

Goverman J, Woods A, Larson L, et al. Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell. 1993;72(4):551–560. DOI: 10.1016/0092-8674(93)90074-z

[404]

Goverman J., Woods A., Larson L. et al. Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity // Cell. 1993. Vol. 72, No. 4. P. 551–560. DOI: 10.1016/0092-8674(93)90074-z

[405]

Berer K, Mues M, Koutrolos M, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011;479(7374):538–541. DOI: 10.1038/nature10554

[406]

Berer K., Mues M., Koutrolos M. et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination // Nature. 2011. Vol. 479, No. 7374. P. 538–541. DOI: 10.1038/nature10554

[407]

Ivanov II, Frutos Rde L, Manel N, et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008;4(4):337–349. DOI: 10.1016/j.chom.2008.09.009

[408]

Ivanov I.I., Frutos Rde L., Manel N. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine // Cell. Host. Microbe. 2008. Vol. 4, No. 4. P. 337–349. DOI: 10.1016/j.chom.2008.09.009

[409]

Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–498. DOI: 10.1016/j.cell.2009.09.033

[410]

Ivanov I.I., Atarashi K., Manel N. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria // Cell. 2009. Vol. 139, No. 3. P. 485–498. DOI: 10.1016/j.cell.2009.09.033

[411]

Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responces to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA. 2011;108 Suppl 1(Suppl 1):4615–4622. DOI: 10.1073/pnas.1000082107

[412]

Lee Y.K., Menezes J.S., Umesaki Y., Mazmanian S.K. Proinflammatory T-cell responces to gut microbiota promote experimental autoimmune encephalomyelitis // Proc. Natl. Acad. Sci. USA. 2011. Vol. 108 Suppl 1, No. Suppl 1. P. 4615–4622. DOI: 10.1073/pnas.1000082107

[413]

Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775–787. DOI: 10.1016/j.cell.2008.05.009

[414]

Sakaguchi S., Yamaguchi T., Nomura T., Ono M. Regulatory T cells and immune tolerance // Cell. 2008. Vol. 133, No. 5. P. 775–787. DOI: 10.1016/j.cell.2008.05.009

[415]

Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA. 2010;107(27):12204–12209. DOI: 10.1073/pnas.0909122107

[416]

Round J.L., Mazmanian S.K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107, No. 27. P. 12204–12209. DOI: 10.1073/pnas.0909122107

[417]

Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313–323. DOI: 10.1038/nri2515

[418]

Round J.L., Mazmanian S.K. The gut microbiota shapes intestinal immune responses during health and disease // Nat. Rev. Immunol. 2009. Vol. 9, No. 5. P. 313–323. DOI: 10.1038/nri2515

[419]

Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258–1270. DOI: 10.1016/j.cell.2012.01.035

[420]

Clemente J.C., Ursell L.K., Parfrey L.W., Knight R. The impact of the gut microbiota on human health: an integrative view // Cell. 2012. Vol. 148, No. 6. P. 1258–1270. DOI: 10.1016/j.cell.2012.01.035

[421]

Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol (Lausanne). 2020;11:25. DOI: 10.3389/fendo.2020.00025

[422]

Silva Y.P., Bernardi A., Frozza R.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication // Front. Endocrinol. (Lausanne). 2020. Vol. 11. P. 25. DOI: 10.3389/fendo.2020.00025

[423]

Gandy K, Zhang J, Nagarkatti P, Nagarkatti M. The role of gut microbiota in shaping the relapse-remitting and chronic-progressive forms of multiple sclerosis in mouse models. Sci Rep. 2019;9(1):6923. DOI: 10.1038/s41598-019-43356-7

[424]

Gandy K., Zhang J., Nagarkatti P., Nagarkatti M. The role of gut microbiota in shaping the relapse-remitting and chronic-progressive forms of multiple sclerosis in mouse models // Sci. Rep. 2019. Vol. 9, No. 1. P. 6923. DOI: 10.1038/s41598-019-43356-7

[425]

Boyko AN, Favorova OO, Kulakova OG, Gusev EI. Epidemiology and etiology of multiple sclerosis. In: Multiple sclerosis. Ed. by E.I. Gusev, I.A. Zavalishin, A.N. Boyko. Moscow: Real Time; 2011. (In Russ.)

[426]

Бойко А.Н., Фаворова О.О., Кулакова О.Г., Гусев Е.И. Эпидемиология и этиология рассеянного склероза // Рассеянный склероз / под ред. Е.И. Гусева, И.А. Завалишина, А.Н. Бойко. Москва: Реал Тайм, 2011.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

58

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/