Acid-base composition of mice blood during the progression of toxic pulmonary edema
Pavel A. Torkunov , Aleksandr V. Zemlyanoy , Sergei V. Chepur , Olga V. Torkunova , Petr D. Shabanov
Psychopharmacology & biological narcology ›› 2024, Vol. 15 ›› Issue (4) : 269 -274.
Acid-base composition of mice blood during the progression of toxic pulmonary edema
BACKGROUND: Modeling toxic pulmonary edema for the purpose of studying the effectiveness of drugs is associated with difficulties in model validation and objectification of drug effectiveness criteria. To confirm the significance of changes in pulmonary coefficients and visual changes in lung tissue, acid-base balance and blood gas analysis are often used to objectify emerging gas exchange disorders.
AIM: To investigate the acid-base composition and blood gases in mice during the progression of toxic pulmonary edema caused by inhalational phosgene exposure.
MATERIAL AND METHODS: Toxic pulmonary edema was induced by exposing mice to phosgene at a dose corresponding to LCt50 in an inhalation chamber. Blood samples were analyzed for acid-base balance and gas parameters, including partial oxygen pressure (pO2), partial carbon dioxide pressure (pCO2), total hemoglobin (tHb), oxyhemoglobin (O2Hb), carboxyhemoglobin (COHb), methemoglobin (MetHb), reduced hemoglobin (RHb), oxygen saturation (sO2), oxygen concentration (O2ct), oxygen capacity (O2cap), partial oxygen pressure at 50 % saturation (P50), total carbon dioxide (tCO2), true and standard bicarbonate (HCO3–, SBC), actual and standard base excess (BEb, BEecf), anion gap, lactate, and concentrations of sodium, potassium, chloride, and ionized calcium. Measurements were performed using a gas analyzer at 30 minutes, 3 hours, and 24 hours after exposure initiation.
RESULTS: Significant shifts in blood gas composition and acid-base balance were observed 3 hours after pulmonary edema initiation. These included decreased acid-base balance, reduced oxyhemoglobin levels, lowered oxygen saturation, and elevated partial carbon dioxide pressure, indicating respiratory insufficiency and compensated respiratory acidosis. Major changes in acid-base parameters were observed after 24 hours, with normalization of pH accompanied by increases in true and standard bicarbonate levels, as well as total carbon dioxide content. Changes in actual and standard base excess were observed, reflecting a reduction in base deficit. Electrolyte levels remained unchanged in all experimental groups throughout all observation periods.
CONCLUSIONS: The study elucidated the progression of respiratory hypoxia during toxic pulmonary edema and confirmed that respiratory hypoxia serves as a key pathogenic link, leading to significant disruptions in energy metabolism during the progression of pulmonary edema.
pulmonary edema / phosgene / poisoning / acid-base composition / blood gases
| [1] |
Ryabov GA. Syndromes of critical states. Moscow: Medicine; 1994. 368 p. (In Russ.) |
| [2] |
Рябов Г.А. Синдромы критических состояний. Москва: Медицина, 1994. 368 с. |
| [3] |
Tomchin AB, Kropotov AV. Derivatives of thiourea and thiosemicarbazide. Structure and pharmacological activity. Protective effect of 1,2,4-thiazinoindole derivatives in pulmonary oedema. Chemical and Pharmaceutical Journal. 1998;(1):22–26. (In Russ.) |
| [4] |
Томчин А.Б., Кропотов А.В. Производные тиомочевины и тиосемикарбазида. Строение и фармакологическая активность. Защитное действие производных 1,2,4-тиазиноиндола при отеке легких // Химико-фармацевтический журнал. 1998. № 1. С. 22–26. |
| [5] |
Shanin VY. Clinical pathophysiology. Textbook for medical universities. Saint Petersburg: SpetsLit; 1998. 569 p. (In Russ.) |
| [6] |
Шанин В.Ю. Клиническая патофизиология. Учебник для медицинских вузов. Санкт-Петербург: СпецЛит, 1998. 569 с. |
| [7] |
Motavkin PA, Gelzer BI. Clinical and experimental pathophysiology of lungs. Moscow: Nauka; 1998. 366 p. EDN: ISDGCB |
| [8] |
Мотавкин П.А., Гельцер Б.И. Клиническая и экспериментальная патофизиология легких. Москва: Наука, 1998. 366 c. EDN: ISDGCB |
| [9] |
Litvitsky PF. Hypoxia. Issues of Modern Paediatrics. 2016;15(1):45–58. EDN: VLMFMX doi: 10.15690/vsp.v15i1.1499 |
| [10] |
Литвицкий П.Ф. Гипоксия // Вопросы современной педиатрии. 2016. Т. 15, № 1. С. 45–58. EDN: VLMFMX doi: 10.15690/vsp.v15i1.1499 |
| [11] |
Lundstrom KE. The Blood Gas Handbook. Bronshoj; 1997. |
| [12] |
Lundstrom K.E. The Blood Gas Handbook. Bronshoj, 1997. |
| [13] |
Komarov FI, Korovkin BF, Menshikov VV. Biochemical studies in the clinic. Leningrad: Medicine; 1981. 407 p. (In Russ.) EDN: ZRNZSB |
| [14] |
Комаров Ф.И., Коровкин Б.Ф., Меньшиков В.В. Биохимические исследования в клинике. Ленинград: Медицина, 1981. 407 с. EDN: ZRNZSB |
| [15] |
Torkunov PA, Shabanov PD. Toxic pulmonary oedema: pathogenesis, modelling, methodology of study. Reviews on Clinical Pharmacology and Drug Therapy. 2008;6(2):3–54. (In Russ.) EDN: JQQBRZ |
| [16] |
Торкунов П.А., Шабанов П.Д. Токсический отек легких: патогенез, моделирование, методология изучения // Обзоры по клинической фармакологии и лекарственной терапии. 2008. Т. 6, № 2. С. 3–54. EDN: JQQBRZ |
| [17] |
Torkunov PA, Shabanov PD. Pharmacological correction of toxic pulmonary oedema: monograph. Saint Petersburg: ELBI-SPb; 2007. 175 p. (In Russ.) EDN: QLRALJ |
| [18] |
Торкунов П.А., Шабанов П.Д. Фармакологическая коррекция токсического отека легких: монография. Санкт-Петербург: ЭЛБИ-СПб., 2007. 175 c. EDN: QLRALJ |
| [19] |
Muzdubaeva BT. Correction of glycaemia in intensive care and anaesthesiology: Methodological recommendations. Almaty; 2015. 67 p. (In Russ.) |
| [20] |
Муздубаева Б.Т. Коррекция гликемии в интенсивной терапии и анестезиологии: Методические рекомендации. Алматы, 2015. 67 c. |
| [21] |
Slepneva LV, Khmylova GA. Failure mechanism of energy metabolism during hypoxia and possible ways to correction of fumaratecontaining solutions. Transfusiology. 2013;14(2):49–65. EDN: SGHPTT |
| [22] |
Слепнева Л.В., Хмылова Г.А. Механизм повреждения энергетического обмена при гипоксии и возможные пути его коррекции фумаратсодержащими растворами // Трансфузиология; 2013. Т. 14, № 2. С. 49–65. EDN: SGHPTT |
| [23] |
Krutikova MS, Chernukha SM, Ostanina TV, Seitadzhieva SB. Some features of glucose metabolism in erythrocytes in hypoxic syndrome in patients with liver cirrhosis. Crimean Therapeutic Journal. 2009;(1):68–70. (In Russ.) EDN: RTHAAL |
| [24] |
Крутикова М.С., Чернуха С.М., Останина Т.В., Сейтаджиева С.Б. Некоторые особенности метаболизма глюкозы в эритроцитах при гипоксическом синдроме у больных циррозом печени // Крымский терапевтический журнал. 2009. № 1. С. 68–70. EDN: RTHAAL |
| [25] |
Titova ON, Kuzubova NA, Lebedeva ES. The role of the hypoxia signaling pathway in cellular adaptation to hypoxia. RMZ. Medical Review. 2020;4(4):207–213. EDN: EQPBIM doi: 10.32364/2587-6821-2020-4-4-4-207-213 |
| [26] |
Титова О.Н., Кузубова Н.А., Лебедева Е.С. Роль гипоксийного сигнального пути в адаптации клеток к гипоксии // РМЖ. Медицинское обозрение. 2020. Т. 4, № 4. С. 207–213. EDN: EQPBIM doi: 10.32364/2587-6821-2020-4-4-207-213 |
| [27] |
Lukyanova LD. Signal mechanisms of hypoxia. Moscow; 2019. 215 p. EDN: ZXWRHB |
| [28] |
Лукьянова Л.Д. Сигнальные механизмы гипоксии. Москва, 2019. 215 c. EDN: ZXWRHB |
| [29] |
Nikolaeva AG. Use of adaptation to hypoxia in medicine and sports. Vitebsk; 2015. 150 p. (In Russ.) EDN: YJNEJA |
| [30] |
Николаева А.Г. Использование адаптации к гипоксии в медицине и спорте. Витебск, 2015. 150 c. EDN: YJNEJA |
| [31] |
Semenov DG, Belyakov AV, Rybnikova EA. Experimental modeling of damaging and protective hypoxia of the mammalian brain. Russian Journal of Physiology. 2022;108(12):1592–1609. EDN: IUTJFZ doi: 10.31857/S08698139221212010X |
| [32] |
Семенов Д.Г., Беляков А.В., Рыбникова Е.А. Экспериментальное моделирование повреждающей и протективной гипоксии мозга млекопитающих // Российский физиологический журнал им. И.М. Сеченова. 2022. Т. 108, № 12. С. 1592–1609. EDN: IUTJFZ doi: 10.31857/S086981392212010X |
| [33] |
Prikhodko VA, Selizarova NO, Okovitiy SV. Molecular mechanisms for hypoxia development and adaptation to it. part I. Russian Journal of Archive of Patology. 2021;83(2):52–61. EDN: REJNHM doi: 10.17116/patol20218302152 |
| [34] |
Приходько В.А., Селизарова Н.О., Оковитый С.В. Молекулярные механизмы развития гипоксии и адаптации к ней. Часть I // Архив патологии. 2021. Т. 83, № 2. С. 52–61. EDN: REJNHM doi: 10.17116/patol20218302152 |
| [35] |
Titova ON, Kuzubova NA, Lebedeva ES, et al. Anti-inflammatory and regenerative effects of hypoxic signaling inhibition in a model of copd. Pulmonology. 2018;28(2):169–176. EDN: USNNNXP doi: 10.18093/0869-0189-2018-28-2-2-169-176 |
| [36] |
Титова О.Н., Кузубова Н.А., Лебедева Е.С. и др. Противовоспалительный и регенеративный эффект подавления гипоксийного сигналинга на модели хронической обструктивной болезни легких // Пульмонология. 2018. Т. 28, № 2. С. 169–176. EDN: USNNXP doi: 10.18093/0869-0189-2018-28-2-169-176 |
Eco-Vector
/
| 〈 |
|
〉 |