MicroRNA-30a-5p as a target for pharmacological correction of pathological conditions of the nervous system

Marat I. Airapetov , Sergei O. Eresko , Sofiya A. Shamayeva , Andrei A. Lebedev , Evgenii R. Bychkov , Petr D. Shabanov

Psychopharmacology & biological narcology ›› 2024, Vol. 15 ›› Issue (3) : 237 -244.

PDF
Psychopharmacology & biological narcology ›› 2024, Vol. 15 ›› Issue (3) : 237 -244. DOI: 10.17816/phbn635852
Review
review-article

MicroRNA-30a-5p as a target for pharmacological correction of pathological conditions of the nervous system

Author information +
History +
PDF

Abstract

In the brain, the main inducers of neuroinflammation are proinflammatory cytokines, chemokines, reactive oxygen species and other mediators produced by microglia, astrocytes and endothelial cells. Chronic neuroinflammatory conditions are manifested by the infiltration of peripheral immune cells through the blood-brain barrier and cause tissue damage in the central nervous system, promoting glial activation and increasing the permeability of the blood-brain barrier. According to a number of studies, one of the regulators of these processes is small non-coding RNA, or microRNA, which can either contribute to disease progression or, conversely, reflect an attempt by the nervous system to prevent excessive damage and restore homeostasis. Studying the role of microRNA. miR-30a-5p among others, in these processes can shed light on the pathogenetic mechanisms underlying a number of neurological diseases and lead to the discovery of new therapeutic agents. In this review, we discuss the role of miR-30a-5p in the regulation of pro- and anti-inflammatory cytokine gene expression, possible mechanisms of its action, and the use of miR-30a-5p as a potential therapeutic target for pharmacological correction of neuroinflammation in pathological conditions of the nervous system.

Keywords

microRNA / miR-30a-5p / neuroinflammation / nervous system / brain

Cite this article

Download citation ▾
Marat I. Airapetov, Sergei O. Eresko, Sofiya A. Shamayeva, Andrei A. Lebedev, Evgenii R. Bychkov, Petr D. Shabanov. MicroRNA-30a-5p as a target for pharmacological correction of pathological conditions of the nervous system. Psychopharmacology & biological narcology, 2024, 15(3): 237-244 DOI:10.17816/phbn635852

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen S, Dong Z, Cheng M, et al. Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke. Neuroinflammation. 2017;14:187. doi: 10.1186/s12974-017-0963-x

[2]

Chen S., Dong Z., Cheng M., et al. Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke // Neuroinflammation. 2017. Vol. 14. ID 187. doi: 10.1186/s12974-017-0963-x

[3]

Xanthos DN, Sandkühler J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci. 2014;15:43–53. doi: 10.1038/nrn3617

[4]

Xanthos D.N., Sandkühler J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity // Nat Rev Neurosci. 2014. Vol. 15. P. 43–53. doi: 10.1038/nrn3617

[5]

Balistreri CR, Monastero R. Neuroinflammation and neurodegenerative diseases: How much do we still not know? Brain Sci. 2023;14(1):19. doi: 10.3390/brainsci14010019

[6]

Balistreri C.R., Monastero R. Neuroinflammation and neurodegenerative diseases: How much do we still not know? // Brain Sci. 2023. Vol. 14, N 1. ID 19. doi: 10.3390/brainsci14010019

[7]

Shabab T, Khanabdali R, Moghadamtousi SZ, et al. Neuroinflammation pathways: a general review. Int J Neurosci. 2017;127(7):624–633. doi: 10.1080/00207454.2016.1212854

[8]

Shabab T., Khanabdali R., Moghadamtousi S.Z., et al. Neuroinflammation pathways: a general review // Int J Neurosci. 2017. Vol. 127, N 7. P. 624–633. doi: 10.1080/00207454.2016.1212854

[9]

Airapetov MI, Eresko SO, Lebedev AA, et al. Involvement of TOLL-like receptors in the neuroimmunology of alcoholism. Biomeditsinskaya Khimiya. 2020;66(3):208–215. EDN: NHDJTU doi: 10.18097/PBMC20206603208

[10]

Айрапетов М.И., Ереско С.О., Лебедев А.А., и др. Участие TOLL-подобных рецепторов в нейроиммунологии алкоголизма // Биомедицинская химия. 2020. Т. 66, № 3. С. 208–215. EDN: NHDJTU doi: 10.18097/PBMC20206603208

[11]

Tandon PN. The enigma of neuroinflammation. Neurol India. 2017;65(4):703–705. doi: 10.4103/neuroindia.NI_517_17

[12]

Tandon P.N. The enigma of neuroinflammation // Neurol India. 2017. Vol. 65, N 4. P. 703–705. doi: 10.4103/neuroindia.NI_517_17

[13]

Brown CM, Mulcahey TA, Filipek NC, Wise PM. Production of proinflammatory cytokines and chemokines during neuroinflammation: novel roles for estrogen receptors α and β. Endocrinology. 2010;151(10):4916–4925. doi: 10.1210/en.2010- 0371

[14]

Brown C.M., Mulcahey T.A., Filipek N.C., Wise P.M. Production of proinflammatory cytokines and chemokines during neuroinflammation: novel roles for estrogen receptors α and β // Endocrinology. 2010. Vol. 151, N 10. P. 4916–4925. doi: 10.1210/en.2010-0371

[15]

Mittal M, Siddiqui MR, Tran K, et al. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126–1167. doi: 10.1089/ ars.2012.5149

[16]

Mittal M., Siddiqui M.R., Tran K., et al. Reactive oxygen species in inflammation and tissue injury // Antioxid Redox Signal. 2014. Vol. 20, N 7. P. 1126–1167. doi: 10.1089/ ars.2012.5149

[17]

Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science. 2016;353(6301):777–783. doi: 10.1126/science.aag2590

[18]

Ransohoff R.M. How neuroinflammation contributes to neurodegeneration // Science. 2016. Vol. 353, N 6301. P. 777–783. doi: 10. 1126/science.aag2590

[19]

Ferro A, Auguste YSS, Cheadle L. Microglia, cytokines, and neural activity: unexpected interactions in brain development and function. Front Immunol. 2021;12:703527. doi: 10.3389/fimmu.2021.703527

[20]

Ferro A., Auguste Y.S.S., Cheadle L. Microglia, cytokines, and neural activity: unexpected interactions in brain development and function // Front Immunol. 2021. Vol. 12. ID 703527. doi: 10.3389/fimmu.2021.703527

[21]

Chen O, Luo X, Ji R-R. Macrophages and microglia in inflammation and neuroinflammation underlying different pain states. Med Rev. 2023;3(5):381–407. doi: 10.1515/mr-2023-0034

[22]

Chen O., Luo X., Ji R.-R. Macrophages and microglia in inflammation and neuroinflammation underlying different pain states // Med Rev. 2023. Vol. 3, N 5. P. 381–407. doi: 10.1515/mr-2023-0034

[23]

DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016;139(S2):136–153. doi: 10.1111/jnc.13607

[24]

DiSabato D.J., Quan N., Godbout J.P. Neuroinflammation: the devil is in the details // J Neurochem. 2016. Vol. 139, N S2. P. 136–153. doi: 10.1111/jnc.13607

[25]

Kempuraj D, Thangavel R, Natteru PA, et al Neuroinflammation induces neurodegeneration. J Neurol Neurosurg Spine. 2016;1:1003.

[26]

Kempuraj D., Thangavel R., Natteru P.A., et al Neuroinflammation induces neurodegeneration // J Neurol Neurosurg Spine. 2016. Vol. 1. ID 1003.

[27]

Carthew RW, Sontheimer EJ. Origins and mechanisms of MiRNAs and SiRNAs. Cell. 2009;136(4):642–655. doi: 10.1016/j.cell.2009.01.035

[28]

Carthew R.W., Sontheimer E.J. Origins and mechanisms of MiRNAs and SiRNAs // Cell. 2009. Vol. 136, N 4. P. 642–655. doi: 10.1016/j.cell.2009.01.035

[29]

Ha M, Kim VN. Regulation of MicroRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15:509–524. doi: 10.1038/nrm3838

[30]

Ha M., Kim V.N. Regulation of MicroRNA biogenesis // Nat Rev Mol Cell Biol. 2014. Vol. 15. P. 509–524. doi: 10.1038/nrm3838

[31]

Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006;13:1097–1101. doi: 10.1038/nsmb1167

[32]

Borchert G.M., Lanier W., Davidson B.L. RNA polymerase III transcribes human microRNAs // Nat Struct Mol Biol. 2006. Vol. 13. P. 1097–1101. doi: 10.1038/nsmb1167

[33]

Benoit MPMH, Imbert L, Palencia A, et al. The RNA-binding region of human TRBP interacts with microRNA precursors through two independent domains. Nucleic Acids Res. 2013;41(7):4241–4252. doi: 10.1093/nar/gkt086

[34]

Benoit M.P.M.H., Imbert L., Palencia A., et al. The RNA-binding region of human TRBP interacts with microRNA precursors through two independent domains // Nucleic Acids Res. 2013. Vol. 41, N 7. P. 4241–4252. doi: 10.1093/nar/gkt086

[35]

Marinaro F, Marzi MJ, Hoffmann N, et al. MicroRNA-independent functions of DGCR8 are essential for neocortical development and TBR1 expression. EMBO Rep. 2017;18(4):603–618. doi: 10.15252/embr.201642800

[36]

Marinaro F., Marzi M.J., Hoffmann N., et al. MicroRNA-independent functions of DGCR8 are essential for neocortical development and TBR1 expression // EMBO Rep. 2017. Vol. 18, N 4. P. 603–618. doi: 10.15252/embr.201642800

[37]

Macias S, Cordiner RA, Cáceres JF. Cellular functions of the microprocessor. Biochem Soc Trans. 2013;41(4):838–843. doi: 10.1042/BST20130011

[38]

Macias S., Cordiner R.A., Cáceres J.F. Cellular functions of the microprocessor // Biochem Soc Trans. 2013. Vol. 41, N 4. P. 838–843. doi: 10.1042/BST20130011

[39]

Song M-S, Rossi JJ. Molecular mechanisms of Dicer: endonuclease and enzymatic activity. Biochem J. 2017;474(10):1603–1618. doi: 10.1042/BCJ20160759

[40]

Song M.-S., Rossi J.J. Molecular mechanisms of Dicer: endonuclease and enzymatic activity // Biochem J. 2017. Vol. 474, N 10. P. 1603–1618. doi: 10.1042/BCJ20160759

[41]

Meijer HA, Smith EM, Bushell M. Regulation of miRNA strand selection: follow the leader? Biochem Soc Trans. 2014;42(4):1135–1140. doi: 10.1042/BST20140142

[42]

Meijer H.A., Smith E.M., Bushell M. Regulation of miRNA strand selection: follow the leader? // Biochem Soc Trans. 2014. Vol. 42, N 4. P. 1135–1140. doi: 10.1042/BST20140142

[43]

Janas MM, Wang B, Harris AS, et al. Alternative RISC assembly: binding and repression of microRNA-mRNA duplexes by human Ago proteins. RNA. 2012;18(11):2041–2055. doi: 10.1261/rna.035675.112

[44]

Janas M.M., Wang B., Harris A.S., et al. Alternative RISC assembly: binding and repression of microRNA-mRNA duplexes by human Ago proteins // RNA. 2012. Vol. 18, N 11. P. 2041–2055. doi: 10.1261/rna.035675.112

[45]

Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Annu Rev Biophys. 2013;42:217–239. doi: 10.1146/annurev-biophys-083012-130404

[46]

Wilson R.C., Doudna J.A. Molecular mechanisms of RNA interference // Annu Rev Biophys. 2013. Vol. 42. P. 217–239. doi: 10.1146/annurev-biophys-083012-130404

[47]

Gorski SA, Vogel J, Doudna JA. RNA-based recognition and targeting: Sowing the seeds of specificity. Nat Rev Mol Cell Biol. 2017;18:215–228. doi: 10.1038/nrm.2016.174

[48]

Gorski S.A., Vogel J., Doudna J.A. RNA-based recognition and targeting: Sowing the seeds of specificity // Nat Rev Mol Cell Biol. 2017. Vol. 18. P. 215–228. doi: 10.1038/nrm.2016.174

[49]

Park JH, Shin C. MicroRNA-directed cleavage of targets: mechanism and experimental approaches. BMB Rep. 2014;47(8):417–423. doi: 10.5483/bmbrep.2014.47.8.109

[50]

Park J.H., Shin C. MicroRNA-directed cleavage of targets: mechanism and experimental approaches // BMB Rep. 2014. Vol. 47, N 8. P. 417–423. doi: 10.5483/bmbrep.2014.47.8.109

[51]

Zaporozhchenko IA, Rykova EY, Laktionov PP. The Fundamentals of miRNA Biology: Structure, Biogenesis, and Regulatory Functions. Russ J Bioorg Chem. 2020;46:1–13. doi: 10.1134/S106816202001015X

[52]

Zaporozhchenko I.A., Rykova E.Y., Laktionov P.P. The Fundamentals of miRNA Biology: Structure, Biogenesis, and Regulatory Functions // Russ J Bioorg Chem. 2020. Vol. 46. P. 1–13. doi: 10.1134/S106816202001015X

[53]

Fabian MR, Sonenberg N, Filipowicz W. Regulation of MRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351–379. doi: 10.1146/annurev-biochem-060308-103103

[54]

Fabian M.R., Sonenberg N., Filipowicz W. Regulation of MRNA translation and stability by microRNAs // Annu Rev Biochem. 2010. Vol. 79. P. 351–379. doi: 10.1146/annurev-biochem-060308-103103

[55]

Friedman RC, Farh KK-H, Burge CB, Bartel DP. Most mammalian MRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105. doi: 10.1101/gr.082701.108

[56]

Friedman R.C., Farh K.K.-H., Burge C.B., Bartel D.P. Most mammalian MRNAs are conserved targets of microRNAs // Genome Res. 2009. Vol. 19. P. 92–105. doi: 10.1101/gr.082701.108

[57]

Kozomara A, Birgaoanu M, Griffiths-Jones S. MiRBase: From microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):155–162. doi: 10.1093/nar/gky1141

[58]

Kozomara A., Birgaoanu M., Griffiths-Jones S. MiRBase: From microRNA sequences to function // Nucleic Acids Res. 2019. Vol. 47, N D1. P. 155–162. doi: 10.1093/nar/gky1141

[59]

Helwak A, Kudla G, Dudnakova T, Tollervey D. Mapping the human MiRNA interactome by CLASH reveals frequent noncanonical binding. Cell. 2013;153(3):654–665. doi: 10.1016/j.cell.2013.03.043

[60]

Helwak A., Kudla G., Dudnakova T., Tollervey D. Mapping the human MiRNA interactome by CLASH reveals frequent noncanonical binding // Cell. 2013. Vol. 153, N 3. P. 654–665. doi: 10.1016/j.cell.2013.03.043

[61]

Bayraktar R, Van Roosbroeck K, Calin GA. Cell-to-cell communication: MicroRNAs as hormones. Mol Oncol. 2017;11(12):1673–1686. doi: 10.1002/1878-0261.12144

[62]

Bayraktar R., Van Roosbroeck K., Calin G.A. Cell-to-cell communication: MicroRNAs as hormones // Mol Oncol. 2017. Vol. 11, N 12. P. 1673–1686. doi: 10.1002/1878-0261.12144

[63]

Vishnoi A, Rani S. MiRNA biogenesis and regulation of diseases: an overview. In: Rani S., editor. MicroRNA profiling. Methods in molecular biology. Vol. 2595. New York: Humana; P. 1–10. doi: 10.1007/978-1-0716-2823-2_1

[64]

Vishnoi A., Rani S. MiRNA biogenesis and regulation of diseases: an overview. В кн.: MicroRNA profiling. Methods in molecular biology. Vol. 2595 / Rani S., editor. New York: Humana. P. 1–10. doi: 10.1007/978-1-0716-2823-2_1

[65]

Tanigawa K, Misono S, Mizuno K, et al. MicroRNA signature of small-cell lung cancer after treatment failure: impact on oncogenic targets by miR-30a-3p control. Mol Oncol. 2023;17(2):328–343. doi: 10.1002/1878-0261.13339

[66]

Tanigawa K., Misono S., Mizuno K., et al. MicroRNA signature of small-cell lung cancer after treatment failure: impact on oncogenic targets by miR-30a-3p control // Mol Oncol. 2023. Vol. 17, N 2. P. 328–343. doi: 10.1002/1878-0261.13339

[67]

Wang X, Zhao H, Wang P, et al. MiR-30a-5p/CHD1 axis enhances cisplatin sensitivity of ovarian cancer cells via inactivating the Wnt/β-catenin pathway. Anticancer Drugs. 2022;33(10):989–998. doi: 10.1097/CAD.0000000000001397

[68]

Wang X., Zhao H., Wang P., et al. MiR-30a-5p/CHD1 axis enhances cisplatin sensitivity of ovarian cancer cells via inactivating the Wnt/β-catenin pathway // Anticancer Drugs. 2022. Vol. 33, N 10. P. 989–998. doi: 10.1097/CAD.0000000000001397

[69]

Du L, Wang B, Wu M, et al. LINC00926 promotes progression of renal cell carcinoma via regulating miR-30a-5p/SOX4 axis and activating IFNγ-JAK2-STAT1 pathway. Cancer Lett. 2023;578:216463. doi: 10.1016/j.canlet.2023.216463

[70]

Du L., Wang B., Wu M., et al. LINC00926 promotes progression of renal cell carcinoma via regulating miR-30a-5p/SOX4 axis and activating IFNγ-JAK2-STAT1 pathway // Cancer Lett. 2023. Vol. 578. ID 216463. doi: 10.1016/j.canlet.2023.216463

[71]

Xie L, Wei J, Gao Z, et al. Significance of a tumor microenvironment-mediated P65-miR-30a-5p-BCL2L11 amplification loop in multiple myeloma. Exp Cell Res. 2022;415(1):113113. doi: 10.1016/j.yexcr.2022.113113

[72]

Xie L., Wei J., Gao Z., et al. Significance of a tumor microenvironment-mediated P65-miR-30a-5p-BCL2L11 amplification loop in multiple myeloma // Exp Cell Res. 2022. Vol. 415, N 1. ID 113113. doi: 10.1016/j.yexcr.2022.113113

[73]

Outeiro-Pinho G, Barros-Silva D, Aznar E, et al. MicroRNA-30a-5pme: a novel diagnostic and prognostic biomarker for clear cell renal cell carcinoma in tissue and urine samples. Exp Clin Cancer Res. 2020;39:98. doi: 10.1186/s13046-020-01600-3

[74]

Outeiro-Pinho G., Barros-Silva D., Aznar E., et al. MicroRNA-30a-5pme: a novel diagnostic and prognostic biomarker for clear cell renal cell carcinoma in tissue and urine samples // Exp Clin Cancer Res. 2020. Vol. 39. ID 98. doi: 10.1186/s13046-020-01600-3

[75]

Jiang L-h, Zhang H-d, Tang J-h. MiR-30a: A novel biomarker and potential therapeutic target for cancer. J Oncol. 2018;5167829. doi: 10.1155/2018/5167829

[76]

Jiang L.-h., Zhang H.-d., Tang J.-h. MiR-30a: A novel biomarker and potential therapeutic target for cancer // J Oncol. 2018. ID 5167829. doi: 10.1155/2018/5167829

[77]

Ma Y, Lin H, Wang P, et al. A miRNA-based gene therapy nanodrug synergistically enhances pro-inflammatory antitumor immunity against melanoma. Acta Biomater. 2023;155:538–553. doi: 10.1016/j.actbio.2022.11.016

[78]

Ma Y., Lin H., Wang P., et al. A miRNA-based gene therapy nanodrug synergistically enhances pro-inflammatory antitumor immunity against melanoma // Acta Biomater. 2023. Vol. 155. P. 538–553. doi: 10.1016/j.actbio.2022.11.016

[79]

Wieghofer P, Prinz M. Genetic manipulation of microglia during brain development and disease. Biochim Biophys Acta Mol Basis Dis. 2016;1862(3):299–309. doi: 10.1016/j.bbadis.2015.09.019

[80]

Wieghofer P., Prinz M. Genetic manipulation of microglia during brain development and disease // Biochim Biophys Acta Mol Basis Dis. 2016. Vol. 1862, N 3. P. 299–309. doi: 10.1016/j.bbadis.2015.09.019

[81]

Kabba JA, Xu Y, Christian H, et al. Microglia: Housekeeper of the central nervous system. Cell Mol Neurobiol. 2018;38:53–71. doi: 10.1007/s10571-017-0504-2

[82]

Kabba J.A., Xu Y., Christian H., et al. Microglia: Housekeeper of the central nervous system // Cell Mol Neurobiol. 2018. Vol. 38. P. 53–71. doi: 10.1007/s10571-017-0504-2

[83]

Pettas S, Karagianni K, Kanata E, et al. Profiling microglia through single-cell RNA sequencing over the course of development, aging, and disease. Cells. 2022;11(15):2383. doi: 10.3390/cells11152383

[84]

Pettas S., Karagianni K., Kanata E., et al. Profiling microglia through single-cell RNA sequencing over the course of development, aging, and disease // Cells. 2022. Vol. 11, N 15. ID 2383. doi: 10.3390/cells11152383

[85]

Long Y, Li X-q, Deng J, et al. Modulating the polarization phenotype of microglia — A valuable strategy for central nervous system diseases. Ageing Res Rev. 2024;93:102160. doi: 10.1016/j.arr.2023.102160

[86]

Long Y., Li X.-q., Deng J., et al. Modulating the polarization phenotype of microglia — A valuable strategy for central nervous system diseases // Ageing Res Rev. 2024. Vol. 93. ID 102160. doi: 10.1016/j.arr.2023.102160

[87]

Choi H-R, Ha JS, Kim E-A, et al. MiR-30a-5p and miR-153-3p regulate LPS-induced neuroinflammatory response and neuronal apoptosis by targeting NeuroD1. BMB Rep. 2022;55(9):447–452. doi: 10.5483/BMBRep.2022.55.9.061

[88]

Choi H.-R., Ha J.S., Kim E.-A., et al. MiR-30a-5p and miR-153-3p regulate LPS-induced neuroinflammatory response and neuronal apoptosis by targeting NeuroD1 // BMB Rep. 2022. Vol. 55, N 9. P. 447–452. doi: 10.5483/BMBRep.2022.55.9.061

[89]

Fu X, Shen Y, Wang W, Li X. MiR-30a-5p ameliorates spinal cord injury-induced inflammatory responses and oxidative stress by targeting Neurod 1 through MAPK/ERK signaling. Clin Exp Pharmacol Physiol. 2018;45(1):68–74. doi: 10.1111/1440-1681.12856

[90]

Fu X., Shen Y., Wang W., Li X. MiR-30a-5p ameliorates spinal cord injury-induced inflammatory responses and oxidative stress by targeting Neurod 1 through MAPK/ERK signalling // Clin Exp Pharmacol Physiol. 2018. Vol. 45, N 1. P. 68–74. doi: 10.1111/1440-1681.12856

[91]

Hu W, Zhou J, Jiang Y, et al. Silencing of LINC00707 alleviates brain injury by targeting miR-30a-5p to regulate microglia inflammation and apoptosis. Neurochem Res. 2024;49(1):222–233. doi: 10.1007/s11064-023-04029-0

[92]

Hu W., Zhou J., Jiang Y., et al. Silencing of LINC00707 alleviates brain injury by targeting miR-30a-5p to regulate microglia inflammation and apoptosis // Neurochem Res. 2024. Vol. 49, N 1. P. 222–233. doi: 10.1007/s11064-023-04029-0

[93]

Zhao P, Wang M, An J, et al. A positive feedback loop of miR-30a-5p-WWP1-NF-κB in the regulation of glioma development. Biochem Cell Biol. 2019;112:39–49. doi: 10.1016/j.biocel.2019.04.003

[94]

Zhao P., Wang M., An J., et al. A positive feedback loop of miR-30a-5p-WWP1-NF-κB in the regulation of glioma development // Biochem Cell Biol. 2019. Vol. 112. P. 39–49. doi: 10.1016/j.biocel.2019.04.003

[95]

Barzegar Behrooz A, Latifi-Navid H, da Silva Rosa SC, et al. Integrating multi-omics analysis for enhanced diagnosis and treatment of glioblastoma: A comprehensive data-driven approach. Cancers (Basel). 2023;15(12):3158. doi: 10.3390/cancers15123158

[96]

Barzegar Behrooz A., Latifi-Navid H., da Silva Rosa S.C., et al. Integrating multi-omics analysis for enhanced diagnosis and treatment of glioblastoma: A comprehensive data-driven approach // Cancers (Basel). 2023. Vol. 15, N 12. ID 3158. doi: 10.3390/cancers15123158

[97]

Sun T, Zhao K, Liu M, et al. miR-30a-5p induces Aβ production via inhibiting the nonamyloidogenic pathway in Alzheimer’s disease. Pharmacol Res. 2022;178:106153. doi: 10.1016/j.phrs.2022.106153

[98]

Sun T., Zhao K., Liu M., et al. miR-30a-5p induces Aβ production via inhibiting the nonamyloidogenic pathway in Alzheimer’s disease // Pharmacol Res. 2022. Vol. 178. ID 106153. doi: 10.1016/j.phrs.2022.106153

[99]

Rivera J, Sharma B, Torres MM, Kumar S. Factors affecting the GABAergic synapse function in Alzheimer’s disease: Focus on microRNAs. Ageing Res Rev. 2023;92:102123. doi: 10.1016/j.arr.2023.102123

[100]

Rivera J., Sharma B., Torres M.M., Kumar S. Factors affecting the GABAergic synapse function in Alzheimer’s disease: Focus on microRNAs // Ageing Res Rev. 2023. Vol. 92. ID 102123. doi: 10.1016/j.arr.2023.102123

[101]

Murinello S, Usui Y, Sakimoto S, et al. miR-30a-5p inhibition promotes interaction of Fas+ endothelial cells and FasL+microglia to decrease pathological neovascularization and promote physiological angiogenesis. Glia. 2019;67(2):332–344. doi: 10.1002/glia.23543

[102]

Murinello S., Usui Y., Sakimoto S., et al. miR-30a-5p inhibition promotes interaction of Fas+ endothelial cells and FasL+microglia to decrease pathological neovascularization and promote physiological angiogenesis // Glia. 2019. Vol. 67, N 2. P. 332–344. doi: 10.1002/glia.23543

[103]

Mussa BM, Taneera J, Mohammed AK, et al. Potential role of hypothalamic microRNAs in regulation of FOS and FTO expression in response to hypoglycemia. Physiol Sci. 2019;69(6):981–991. doi: 10.1007/s12576-019-00718-0

[104]

Mussa B.M., Taneera J., Mohammed A.K., et al. Potential role of hypothalamic microRNAs in regulation of FOS and FTO expression in response to hypoglycemia // Physiol Sci. 2019. Vol. 69, N 6. P. 981–991. doi: 10.1007/s12576-019-00718-0

Funding

Министерство науки и высшего образования Российской Федерации (госзадание)Ministry of Science and Higher Education of the Russian Federation (state assignment)(FGWG-2023-0001)

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

82

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/