γ-Secretase in the pathogenesis of Alzheimer’s disease and therapeutic potential of its modulators

Vladimir N. Vilyaninov , Vladimir I. Vashchenko , Petr D. Shabanov

Psychopharmacology & biological narcology ›› 2024, Vol. 15 ›› Issue (3) : 211 -236.

PDF
Psychopharmacology & biological narcology ›› 2024, Vol. 15 ›› Issue (3) : 211 -236. DOI: 10.17816/phbn635851
Review
review-article

γ-Secretase in the pathogenesis of Alzheimer’s disease and therapeutic potential of its modulators

Author information +
History +
PDF

Abstract

Alzheimer’s disease is caused by the loss of synaptic connections and neurons in the brain. One of the characteristic morphological features of Alzheimer’s disease is the formation of amyloid plaques containing β-amyloid peptide. The β-amyloid peptide is produced from the amyloid precursor protein (APP) through sequential proteolytic cleavages by α-secretase, β-secretase, and γ-secretase, resulting in β-amyloid peptide clustering into amyloid plaques, a key pathogenic event in Alzheimer’s disease. Since γ-secretase mediates the final cleavage that releases β-amyloid peptide, it has been widely studied as a potential drug target for the treatment of Alzheimer’s disease. γ-Secretase is a transmembrane protein complex consisting of four subunits: presenilin, nicastrin, Aph-1, and Pen-2, which are necessary for its function. γ-Secretase has been shown to cleave more than 140 substrates, including the APP and Notch. Clinical trials of γ-secretase inhibitors for Alzheimer’s disease have shown side effects due to inhibition of Notch signaling. It has been concluded that alternative compounds with more specific regulation or modulation of γ-secretase are needed. A number of γ-secretase modulators have now been developed. To modulate γ-secretase and better understand its complex biology, research focuses on identifying inhibitor and modulator binding sites within γ-secretase’s structure, as well as intermediate binding proteins that modulate γ-secretase. This article discusses recent advances over the past decade in studying the role of γ-secretase in the treatment of Alzheimer’s disease.

Keywords

Alzheimer’›s disease / γ-secretase / secretase modulators / presenilin / nicastrin / Aph-1 / Pen-2

Cite this article

Download citation ▾
Vladimir N. Vilyaninov, Vladimir I. Vashchenko, Petr D. Shabanov. γ-Secretase in the pathogenesis of Alzheimer’s disease and therapeutic potential of its modulators. Psychopharmacology & biological narcology, 2024, 15(3): 211-236 DOI:10.17816/phbn635851

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ll-Russian Public Organization “Russian Association of Gerontologists and Geriatrics”, Public Organization “Russian Society of Psychiatrists”. Cognitive disorders in elderly and senile persons. Clinical recommendations. Moscow: Ministry of Health of the Russian Federation, 2020. 317 p. (In Russ.)

[2]

Общероссийская общественная организация «Российская ассоциация геронтологов и гериатров», Общественная организация «Российское общество психиатров». Koгнитивные расстройства у лиц пожилого и старческого возраста. Клинические рекомендации. Mосква: МЗ РФ, 2020. 317 c.

[3]

Mezhekova DYu. Hypotheses of Alzheimer’s disease pathogenesis. Universum: medicine and pharmacology. 2022;(7):12–27. EDN: OHROUE

[4]

Меженкова Д.Е. Теории патогенеза болезни Альцгеймера // Universum: медицина и фармакология. 2022. № 7. С. 12–27. EDN: OHROUE

[5]

Odinak MM, Litvinenko IV, Emelin AYu, et al. Pathomorphological changes in dementia: a priority of domestic researchers. S.S. Korsakov journal of neurology and psychiatry. 2016;116(6-2):28–34. EDN: WMWLST doi: 10.17116/jnevro20161166228-34

[6]

Одинак М.М., Литвиненко И.В., Емелин А.Ю., и др. Патоморфологические изменения при деменции: приоритет отечественных исследователей // Журнал неврологии и психиатрии им. С.С. Корсакова. 2016. Т. 116, № 6-2. С. 28–34. EDN: WMWLST doi: 10.17116/jnevro20161166228-34

[7]

Ables JL, Breunig JJ, Eisch AJ, Rakic P. Not (ch) just development: Notch signalling in the adult brain. Nat Rev Neurosci. 2011;12(5):269–283. doi: 10.1038/nrn3024

[8]

Ables J.L., Breunig J.J., Eisch A.J., Rakic P. Not (ch) just development: Notch signalling in the adult brain // Nat Rev Neurosci. 2011. Vol. 12, N 5. P. 269–283. doi: 10.1038/nrn3024

[9]

Adolfsson R, Gottfries C-G, Oreland L, et al. Increased activity of brain and platelet monoamine oxidase in dementia of Alzheimer type. Life Sci. 1980;27(12):1029–1034. doi: 10.1016/0024-3205(80)90025-9

[10]

Adolfsson R., Gottfries C.-G., Oreland L., et al. Increased activity of brain and platelet monoamine oxidase in dementia of Alzheimer type // Life Sci. 1980. Vol. 27, N 12. P. 1029–1034. doi: 10.1016/0024-3205(80)90025-9

[11]

Ahn JE, Carrieri C, Dela F, et al. Pharmacokinetic and pharmacodynamic effects of a gamma-secretase modulator, PF-06648671, on CSF amyloid-beta peptides in randomized phase I studies. Clin Pharmacol Ther. 2020;107(1):211–220. doi: 10.1002/cpt.1570

[12]

Ahn J.E., Carrieri C., Dela F., et al. Pharmacokinetic and pharmacodynamic effects of a gamma-secretase modulator, PF-06648671, on CSF amyloid-beta peptides in randomized phase I studies // Clin Pharmacol Ther. 2020. Vol. 107, N 1. P. 211–220. doi: 10.1002/cpt.1570

[13]

Ahn K, Shelton CC, Tian Y, et al. Activation and intrinsic gamma-secretase activity of presenilin 1. PNAS USA. 2010;107(50):21435–21440. doi: 10.1073/pnas.101324610

[14]

Ahn K., Shelton C.C., Tian Y., et al. Activation and intrinsic gamma-secretase activity of presenilin 1 // PNAS USA. 2010. Vol. 107, N 50. P. 21435–21440. doi: 10.1073/pnas.101324610

[15]

Albright CF, Dockens RC, Meredith JE Jr, et al. Pharmacodynamics of selective inhibition of γ-secretase by avagacestat. J Pharmacol Exp Ther. 2013;344(3):686–695. doi: 10.1124/jpet.112.199356

[16]

Albright C.F., Dockens R.C., Meredith J.E. Jr, et al. Pharmacodynamics of selective inhibition of γ-secretase by avagacestat // J Pharmacol Exp Ther. 2013. Vol. 344, N 3. P. 686–695. doi: 10.1124/jpet.112.199356

[17]

Arawaka S, Hasegawa H, Tandon A, et al. The levels of mature glycosylated nicastrin are regulated and correlate with gamma-secretase processing of amyloid beta-precursor protein. J Neurochem. 2002;83(5):1065–1071. doi: 10.1046/j.1471-4159.2002.01207.x

[18]

Arawaka S., Hasegawa H., Tandon A., et al. The levels of mature glycosylated nicastrin are regulated and correlate with gamma-secretase processing of amyloid beta-precursor protein // J Neurochem. 2002. Vol. 83, N 5. P. 1065–1071. doi: 10.1046/j.1471-4159.2002.01207.x

[19]

Bai X-c, Yan C, Yang G, et al. An atomic structure of human gamma-secretase. Nature. 2015;525(7568):212–217. doi: 10.1038/nature14892

[20]

Bai X.-c., Yan C., Yang G., et al. An atomic structure of human gamma-secretase // Nature. 2015. Vol. 525, N 7568. P. 212–217. doi: 10.1038/nature14892

[21]

Bamford RA, Widagdo J, Takamura N, Eve M. The interaction between contactin and amyloid precursor protein and its role in Alzheimer’s disease. Neuroscience. 2020;424:184–202. doi: 10.1016/j.neuroscience.2019.10.006

[22]

Bamford R.A., Widagdo J., Takamura N., Eve M. The interaction between contactin and amyloid precursor protein and its role in Alzheimer’s disease // Neuroscience. 2020. Vol. 424. P. 184–202. doi: 10.1016/j.neuroscience.2019.10.006

[23]

Bateman RJ, Xiong C, Benzinger TLS, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367(9):795–804. doi: 10.1056/NEJMoa1202753

[24]

Bateman R.J., Xiong C., Benzinger T.L.S., et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease // N Engl J Med. 2012. Vol. 367, N 9. P. 795–804. doi: 10.1056/NEJMoa1202753

[25]

Beher D, Fricker M, Nadin A, et al. In vitro characterization of the presenilin-dependent gamma-secretase complex using a novel affinity ligand. Biochemistry. 2003;42(27):8133–8142. doi: 10.1021/bi034045z

[26]

Beher D., Fricker M., Nadin A., et al. In vitro characterization of the presenilin-dependent gamma-secretase complex using a novel affinity ligand // Biochemistry. 2003. Vol. 42, N 27. P. 8133–8142. doi: 10.1021/bi034045z

[27]

Beher D, Elle C, Underwood J, et al. Proteolytic fragments of Alzheimer’s disease-associated presenilin 1 are present in synaptic organelles and growth cone membranes of rat brain. J Neurochem. 1999;72(4):1564–1573. doi: 10.1046/j.1471-4159.1999.721564.x

[28]

Beher D., Elle C., Underwood J., et al. Proteolytic fragments of Alzheimer’s disease-associated presenilin 1 are present in synaptic organelles and growth cone membranes of rat brain // J Neurochem. 1999. Vol. 72, N 4. P. 1564–1573. doi: 10.1046/j.1471-4159.1999.721564.x

[29]

Bentahir M, Nyabi O, Verhamme J, et al. Presenilin clinical mutations can affect gamma-secretase activity by different mechanisms. J Neurochem. 2006;96(3):732–742. doi: 10.1111/j.1471-4159.2005.03578.x

[30]

Bentahir M., Nyabi O., Verhamme J., et al. Presenilin clinical mutations can affect gamma-secretase activity by different mechanisms // J Neurochem. 2006. Vol. 96, N 3. P. 732–742. doi: 10.1111/j.1471-4159.2005.03578.x

[31]

Bettens K, Sleegers K, Van Broeckhoven C. Current status on Alzheimer disease molecular genetics: from past, to present, to future. Hum Mol Genet. 2010;19(R1):R4–R11. doi: 10.1093/hmg/ddq142

[32]

Bettens K., Sleegers K., Van Broeckhoven C. Current status on Alzheimer disease molecular genetics: from past, to present, to future // Hum Mol Genet. 2010. Vol. 19, N R1. P. R4–R11. doi: 10.1093/hmg/ddq142

[33]

Bolduc DM, Montagna DR, Gu Y, et al. Nicastrin functions to sterically hinder gamma-secretase-substrate interactions driven by substrate transmembrane domain. PNAS USA. 2016;113(5):E509–E518. doi: 10.1073/pnas.151295211

[34]

Bolduc D.M., Montagna D.R., Gu Y., et al. Nicastrin functions to sterically hinder gamma-secretase-substrate interactions driven by substrate transmembrane domain // PNAS USA. 2016. Vol. 113, N 5. P. E509–E518. doi: 10.1073/pnas.151295211

[35]

Borgegard T, Juréus A, Olsson F, et al. First and second generation gamma-secretase modulators (GSMs) modulate amyloid-beta (Abeta) peptide production through different mechanisms. J Biol Chem. 2012;287(15):11810–11819. doi: 10.1074/jbc.M111.305227

[36]

Borgegard T., Juréus A., Olsson F., et al. First and second generation gamma-secretase modulators (GSMs) modulate amyloid-beta (Abeta) peptide production through different mechanisms // J Biol Chem. 2012. Vol. 287, N 15. P. 11810–11819. doi: 10.1074/jbc.M111.305227

[37]

Boy KM, Guernon JM, Zuev DS, et al. Identification and preclinical evaluation of the bicyclic pyrimidine gamma-secretase modulator BMS-932481. ACS Med Chem Lett. 2019;10(3):312–317. doi: 10.1021/acsmedchemlett.8b00541

[38]

Boy K.M., Guernon J.M., Zuev D.S., et al. Identification and preclinical evaluation of the bicyclic pyrimidine gamma-secretase modulator BMS-932481 // ACS Med Chem Lett. 2019. Vol. 10, N 3. P. 312–317. doi: 10.1021/acsmedchemlett.8b00541

[39]

Bursavich MG, Harrison BA, Blain J-F. Gamma secretase modulators: new Alzheimer’s drugs on the horizon? J Med Chem. 2016;59(16):7389–7409. doi: 10.1021/acs.jmedchem.5b01960

[40]

Bursavich M.G., Harrison B.A., Blain J.-F. Gamma secretase modulators: new Alzheimer’s drugs on the horizon? // J Med Chem. 2016. Vol. 59, N 16. P. 7389–7409. doi: 10.1021/acs.jmedchem.5b01960

[41]

Campbell WA, Yang H, Zetterberg H, et al. Zebrafish lacking Alzheimer presenilin enhancer 2 (Pen-2) demonstrate excessive p53-dependent apoptosis and neuronal loss. J Neurochem. 2006;96(5):1423–1440. doi: 10.1111/j.1471-4159.2006.03648.x

[42]

Campbell W.A., Yang H., Zetterberg H., et al. Zebrafish lacking Alzheimer presenilin enhancer 2 (Pen-2) demonstrate excessive p53-dependent apoptosis and neuronal loss // J Neurochem. 2006. Vol. 96, N 5. P. 1423–1440. doi: 10.1111/j.1471-4159.2006.03648.x

[43]

Capell A, Beher D, Prokop S, et al. Gamma-secretase complex assembly within the early secretory pathway. J Biol Chem. 2005;280(8):6471–6478. doi: 10.1074/jbc.M409106200

[44]

Capell A., Beher D., Prokop S., et al. Gamma-secretase complex assembly within the early secretory pathway // J Biol Chem. 2005. Vol. 280, N 8. P. 6471–6478. doi: 10.1074/jbc.M409106200

[45]

Cataldo AM, Petanceska S, Terio NB, et al. Abeta localization in abnormal endosomes: association with earliest Abeta elevations in AD and Down syndrome. Neurobiol Aging. 2004;25(10):1263–1272. doi: 10.1016/j.neurobiolaging.2004.02.027

[46]

Cataldo A.M., Petanceska S., Terio N.B., et al. Abeta localization in abnormal endosomes: association with earliest Abeta elevations in AD and Down syndrome // Neurobiol Aging. 2004. Vol. 25, N 10. P. 1263–1272. doi: 10.1016/j.neurobiolaging.2004.02.027

[47]

Chen AC, Kim S, Shepardson N, et al. Physical and functional interaction between the alpha- and gamma-secretases: a new model of regulated intramembrane proteolysis. J Cell Biol. 2015;211(6):1157–1176. doi: 10.1083/jcb.201502001

[48]

Chen A.C., Kim S., Shepardson N., et al. Physical and functional interaction between the alpha- and gamma-secretases: a new model of regulated intramembrane proteolysis // J Cell Biol. 2015. Vol. 211, N 6. P. 1157–1176. doi: 10.1083/jcb.201502001

[49]

Cohen P, Cross D, Jänne PA. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat Rev Drug Discov. 2021;20(7):551–569. doi: 10.1038/s41573-021-00195-4

[50]

Cohen P., Cross D., Jänne P.A. Kinase drug discovery 20 years after imatinib: progress and future directions // Nat Rev Drug Discov. 2021. Vol. 20, N 7. P. 551–569. doi: 10.1038/s41573-021-00195-4

[51]

Cheng H, Vetrivel KS, Gong P, et al. Mechanisms of disease: new therapeutic strategies for Alzheimer’s disease-targeting APP processing in lipid rafts. Nat Clin Pract Neurol. 2007;3(7):374–382. doi: 10.1038/ncpneuro0549

[52]

Cheng H., Vetrivel K.S., Gong P., et al. Mechanisms of disease: new therapeutic strategies for Alzheimer’s disease-targeting APP processing in lipid rafts // Nat Clin Pract Neurol. 2007. Vol. 3, N 7. P. 374–382. doi: 10.1038/ncpneuro0549

[53]

Chun J, Yin YI, Yang G, et al. Stereoselective synthesis of photoreactive peptidomimetic gamma-secretase inhibitors. J Org Chem. 2004;69(21):7344–7347. doi: 10.1021/jo0486948

[54]

Chun J., Yin Y.I., Yang G., et al. Stereoselective synthesis of photoreactive peptidomimetic gamma-secretase inhibitors // J Org Chem. 2004. Vol. 69, N 21. P. 7344–7347. doi: 10.1021/jo0486948

[55]

Chyung JH, Raper DM, Selkoe DJ. Gamma-secretase exists on the plasma membrane as an intact complex that accepts substrates and effects intramembrane cleavage. J Biol Chem. 2005;280(6):4383–4392. doi: 10.1074/jbc.M409272200

[56]

Chyung J.H., Raper D.M., Selkoe D.J. Gamma-secretase exists on the plasma membrane as an intact complex that accepts substrates and effects intramembrane cleavage // J Biol Chem. 2005. Vol. 280, N 6. P. 4383–4392. doi: 10.1074/jbc.M409272200

[57]

Coric V, van Dyck CH, Salloway S, et al. Safety and tolerability of the gamma-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease. Arch Neurol. 2012;69(11):1430–1440. doi: 10.1001/archneurol.2012.2194

[58]

Coric V., van Dyck C.H., Salloway S., et al. Safety and tolerability of the gamma-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease // Arch Neurol. 2012. Vol. 69, N 11. P. 1430–1440. doi: 10.1001/archneurol.2012.2194

[59]

Crump CJ, Castro SV, Wang F, et al. BMS-708,163 targets presenilin and lacks notch-sparing activity. Biochemistry. 2012;51(37):7209–7211. doi: 10.1021/bi301137h

[60]

Crump C.J., Castro S.V., Wang F., et al. BMS-708,163 targets presenilin and lacks notch-sparing activity // Biochemistry. 2012. Vol. 51, N 37. P. 7209–7211. doi: 10.1021/bi301137h

[61]

Crump CJ, Murrey HE, Ballard TE, et al. Development of sulfonamide photoaffinity inhibitors for probing cellular gamma-secretase. ACS Chem Neurosci. 2016;7(8):1166–1173. doi: 10.1021/acschemneuro.6b00127vity

[62]

Crump C.J., Murrey H.E., Ballard T.E., et al. Development of sulfonamide photoaffinity inhibitors for probing cellular gamma-secretase // ACS Chem Neurosci. 2016. Vol. 7, N 8. P. 1166–1173. doi: 10.1021/acschemneuro.6b00127vity

[63]

Dawkins E, Derks RJE, Schifferer M, et al. Membrane lipid remodeling modulates γ-secretase processivity. J Biol Chem. 2023;299(4):10302. doi: 10.1016/j.jbc.2023.103027

[64]

Dawkins E., Derks R.J.E., Schifferer M., et al. Membrane lipid remodeling modulates γ-secretase processivity // J Biol Chem. 2023. Vol. 299, N 4. ID 10302. doi: 10.1016/j.jbc.2023.103027

[65]

De Strooper B, Saftig P, Craessaerts K, et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature. 1998;391(6665):387–390. doi: 10.1038/34910

[66]

De Strooper B., Saftig P., Craessaerts K., et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein // Nature. 1998. Vol. 391, N 6665. P. 387–390. doi: 10.1038/34910

[67]

De Strooper B. Loss-of-function presenilin mutations in Alzheimer disease. Talking Point on the role of presenilin mutations in Alzheimer disease. EMBO Rep. 2007;8(2):141–146. doi: 10.1038/sj.embor.7400897

[68]

De Strooper B. Loss-of-function presenilin mutations in Alzheimer disease. Talking Point on the role of presenilin mutations in Alzheimer disease // EMBO Rep. 2007. Vol. 8, N 2. P. 141–146. doi: 10.1038/sj.embor.7400897

[69]

De Strooper B, Vassar R, Golde T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol. 2010;6(2):99–107. doi: 10.1038/nrneurol.2009.218

[70]

De Strooper B., Vassar R., Golde T. The secretases: enzymes with therapeutic potential in Alzheimer disease // Nat Rev Neurol. 2010. Vol. 6, N 2. P. 99–107. doi: 10.1038/nrneurol.2009.218

[71]

De Strooper B. Lessons from a failed gamma-secretase Alzheimer trial. Cell. 2014;159(4):721–726. doi: 10.1016/j.cell.2014.10.016

[72]

De Strooper B. Lessons from a failed gamma-secretase Alzheimer trial // Cell. 2014. Vol. 159, N 4. P. 721–726. doi: 10.1016/j.cell.2014.10.016

[73]

Do HN, Malvankar SR, Wolfe MS, Miao Y. Molecular dynamics activation of γ-secretase for cleavage of the Notch1 substrate. ACS Chem Neurosci. 2023;14(23):4216–4226. doi: 10.1021/acschemneuro.3c00594

[74]

Do H.N., Malvankar S.R., Wolfe M.S., Miao Y. Molecular dynamics activation of γ-secretase for cleavage of the Notch1 substrate // ACS Chem Neurosci. 2023. Vol. 14, N 23. P. 4216–4226. doi: 10.1021/acschemneuro.3c00594

[75]

Doody RS, Raman R, Farlow M, et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med. 2013;369(4):341–350. doi: 10.1056/NEJMoa121095

[76]

Doody R.S., Raman R., Farlow M., et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease // N Engl J Med. 2013. Vol. 369, N 4. P. 341–350. doi: 10.1056/NEJMoa121095

[77]

Dovey HF, John V, Anderson JP, et al. Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem. 2001;76(1):173–181. doi: 10.1046/j.1471-4159.2001.00012.x

[78]

Dovey H.F., John V., Anderson J.P., et al. Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain // J Neurochem. 2001. Vol. 76, N 1. P. 173–181. doi: 10.1046/j.1471-4159.2001.00012.x

[79]

Edbauer D, Winkler E, Regula JT, et al. Reconstitution of gamma-secretase activity. Nat Cell Biol. 2003;5(5):486–488. doi: 10.1038/ncb960

[80]

Edbauer D., Winkler E., Regula J.T., et al. Reconstitution of gamma-secretase activity // Nat Cell Biol. 2003. Vol. 5, N 5. P. 486–488. doi: 10.1038/ncb960

[81]

Edbauer D, Winkler E, Haass C, Steiner H. Presenilin and nicastrin regulate each other and determine amyloid beta-peptide production via complex formation. PNAS USA. 2002;99(13):8666–8671. doi: 10.1073/pnas.132277899

[82]

Edbauer D., Winkler E., Haass C., Steiner H. Presenilin and nicastrin regulate each other and determine amyloid beta-peptide production via complex formation // PNAS USA. 2002. Vol. 99, N 13. P. 8666–8671. doi: 10.1073/pnas.132277899

[83]

Efthimiopoulos S, Floor E, Georgakopoulos A, et al. Enrichment of presenilin 1 peptides in neuronal large dense-core and somatodendritic clathrin-coated vesicles. J Neurochem. 1998;71(6):2365–2372. doi: 10.1046/j.1471-4159.1998.71062365.x

[84]

Efthimiopoulos S., Floor E., Georgakopoulos A., et al. Enrichment of presenilin 1 peptides in neuronal large dense-core and somatodendritic clathrin-coated vesicles // J Neurochem. 1998. Vol. 71, N 6. P. 2365–2372. doi: 10.1046/j.1471-4159.1998.71062365.x

[85]

Ehehalt R, Keller P, Haass C, et al. Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol. 2003;160(1):113–123. doi: 10.1083/jcb.200207113

[86]

Ehehalt R., Keller P., Haass C., et al. Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts // J Cell Biol. 2003. Vol. 160, N 1. P. 113–123. doi: 10.1083/jcb.200207113

[87]

Escamilla-Ayala AA, Sannerud R, Mondin M, et al. Super-resolution microscopy reveals majorly mono- and dimeric presenilin1/gamma-secretase at the cell surface. elife. 2020;9:e56679. doi: 10.7554/eLife.56679

[88]

Escamilla-Ayala A.A., Sannerud R., Mondin M., et al. Super-resolution microscopy reveals majorly mono- and dimeric presenilin1/gamma-secretase at the cell surface // elife. 2020. Vol. 9. ID e56679. doi: 10.7554/eLife.56679

[89]

Esler WP, Kimberly WT, Ostaszewski BL, et al. Activity-dependent isolation of the presenilin-gamma-secretase complex reveals nicastrin and a gamma substrate. PNAS USA. 2002;99(5):2720–2725. doi: 10.1073/pnas.052436599

[90]

Esler W.P., Kimberly W.T., Ostaszewski B.L., et al. Activity-dependent isolation of the presenilin-gamma-secretase complex reveals nicastrin and a gamma substrate // PNAS USA. 2002. Vol. 99, N 5. P. 2720–2725. doi: 10.1073/pnas.052436599

[91]

Esler WP, Kimberly WT, Ostaszewski BL, et al. Transition-state analogue inhibitors of gamma-secretase bind directly to presenilin-1. Nat Cell Biol. 2000;2(9):428–434. doi: 10.1038/35017062

[92]

Esler W.P., Kimberly W.T., Ostaszewski B.L., et al. Transition-state analogue inhibitors of gamma-secretase bind directly to presenilin-1 // Nat Cell Biol. 2000. Vol. 2, N 9. P. 428–434. doi: 10.1038/35017062

[93]

Farmery MR, Tjernberg LO, Pursglove SE, et al. Partial purification and characterization of gamma-secretase from post-mortem human brain. J Biol Chem. 2003;278(27):24277–24284. doi: 10.1074/jbc.M211992200

[94]

Farmery M.R., Tjernberg L.O., Pursglove S.E., et al. Partial purification and characterization of gamma-secretase from post-mortem human brain // J Biol Chem. 2003. Vol. 278, N 27. P. 24277–24284. doi: 10.1074/jbc.M211992200

[95]

Fouladi M, Stewart CF, Olson J, et al. Phase I trial of MK-0752 in children with refractory CNS malignancies: a pediatric brain tumor consortium study. J Clin Oncol. 2011;29(26):3529–3534. doi: 10.1200/JCO.2011.35.7806

[96]

Fouladi M., Stewart C.F., Olson J., et al. Phase I trial of MK-0752 in children with refractory CNS malignancies: a pediatric brain tumor consortium study // J Clin Oncol. 2011. Vol. 29, N 26. P. 3529–3534. doi: 10.1200/JCO.2011.35.7806

[97]

Fraering PC. Structural and functional determinants of gamma-secretase, an intramembrane protease implicated in Alzheimer’s disease. Curr Genomics. 2007;8(8):531–549. doi: 10.2174/138920207783769521

[98]

Fraering P.C. Structural and functional determinants of gamma-secretase, an intramembrane protease implicated in Alzheimer’s disease // Curr Genomics. 2007. Vol. 8, N 8. P. 531–549. doi: 10.2174/138920207783769521

[99]

Francis R, McGrath G, Zhang J, et al. aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Dev Cell. 2002;3(1):85–97. doi: 10.1016/s1534-5807(02)00189-2

[100]

Francis R., McGrath G., Zhang J., et al. aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation // Dev Cell. 2002. Vol. 3, N 1. P. 85–97. doi: 10.1016/s1534-5807(02)00189-2

[101]

Frykman S, Teranishi Y, Hur J-Y, et al. Identification of two novel synaptic gamma-secretase associated proteins that affect amyloid beta-peptide levels without altering Notch processing. Neurochem Int. 2012;61(1):108–118. doi: 10.1016/j.neuint.2012.03.016

[102]

Frykman S., Teranishi Y., Hur J.-Y., et al. Identification of two novel synaptic gamma-secretase associated proteins that affect amyloid beta-peptide levels without altering Notch processing // Neurochem Int. 2012. Vol. 61, N 1. P. 108–118. doi: 10.1016/j.neuint.2012.03.016

[103]

Gaugler J, James B, Johnson T, et al. 2023 Alzheimer’s disease facts and figures. Alzheimers and Dementia. 2023;19(4):1598–1695. doi: 10.1002/alz.13016

[104]

Gaugler J., James B., Johnson T., et al. 2023 Alzheimer’s disease facts and figures // Alzheimers and Dementia. 2023. Vol. 19, N 4. P. 1598–1695. doi: 10.1002/alz.13016

[105]

Gillman KW, Starrett JE Jr, Parker FM, et al. Discovery and evaluation of BMS-708163, a potent, selective and orally bioavailable gamma-secretase inhibitor. ACS Med Chem Lett. 2010;1(3):120–124. doi: 10.1021/ml1000239

[106]

Gillman K.W., Starrett J.E. Jr, Parker F.M., et al. Discovery and evaluation of BMS-708163, a potent, selective and orally bioavailable gamma-secretase inhibitor // ACS Med Chem Lett. 2010. Vol. 1, N 3. P. 120–124. doi: 10.1021/ml1000239

[107]

Goutte C, Tsunozaki M, Hale VA, Priess JR. APH-1 is a multipass membrane protein essential for the Notch signaling pathway in Caenorhabditis elegans embryos. PNAS USA. 2002;99(2):775–779. doi: 10.1073/pnas.022523499

[108]

Goutte C., Tsunozaki M., Hale V.A., Priess J.R. APH-1 is a multipass membrane protein essential for the Notch signaling pathway in Caenorhabditis elegans embryos // PNAS USA. 2002. Vol. 99, N 2. P. 775–779. doi: 10.1073/pnas.022523499

[109]

Green RC, Schneider LS, Amato DA, et al. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: a randomized controlled trial. JAMA. 2009;302(23):2557–2564. doi: 10.1001/jama.2009.1866

[110]

Green R.C., Schneider L.S., Amato D.A., et al. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: a randomized controlled trial // JAMA. 2009. Vol. 302, N 23. P. 2557–2564. doi: 10.1001/jama.2009.1866

[111]

Greenfield JP, Tsai J, Gouras GK, et al. Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer beta-amyloid peptides. PNAS USA. 1999;96(2):742–747. doi: 10.1073/pnas.96.2.742

[112]

Greenfield J.P., Tsai J., Gouras G.K., et al. Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer beta-amyloid peptides // PNAS USA. 1999. Vol. 96, N 2. P. 742–747. doi: 10.1073/pnas.96.2.742

[113]

Griciuc A, Tanzi RE. The role of innate immune genes in Alzheimer’s disease. Curr Opin Neurol. 2021;34(2):228–236. doi: 10.1097/WCO.0000000000000911

[114]

Griciuc A., Tanzi R.E. The role of innate immune genes in Alzheimer’s disease // Curr Opin Neurol. 2021. Vol. 34, N 2. P. 228–236. doi: 10.1097/WCO.0000000000000911

[115]

Gu Y, Misonou H, Sato T, et al. Distinct intramembrane cleavage of the beta-amyloid precursor protein family resembling gamma-secretase-like cleavage of Notch. J Biol Chem. 2001;276(38):35235–35238. doi: 10.1074/jbc.C100357200

[116]

Gu Y., Misonou H., Sato T., et al. Distinct intramembrane cleavage of the beta-amyloid precursor protein family resembling gamma-secretase-like cleavage of Notch // J Biol Chem. 2001. Vol. 276, N 38. P. 35235–35238. doi: 10.1074/jbc.C100357200

[117]

Guner G, Lichtenthaler SF. The substrate repertoire of gamma-secretase/presenilin. Semin Cell Dev Biol. 2020;105:27–42. doi: 10.1016/j.semcdb.2020.05.019

[118]

Guner G., Lichtenthaler S.F. The substrate repertoire of gamma-secretase/presenilin // Semin Cell Dev Biol. 2020. Vol. 105. P. 27–42. doi: 10.1016/j.semcdb.2020.05.019

[119]

Hansson CA, Frykman S, Farmery MR, et al. Nicastrin, presenilin, APH-1, and PEN-2 form active gamma-secretase complexes in mitochondria. J Biol Chem. 2004;279(49):51654–51660. doi: 10.1074/jbc.M404500200

[120]

Hansson C.A., Frykman S., Farmery M.R., et al. Nicastrin, presenilin, APH-1, and PEN-2 form active gamma-secretase complexes in mitochondria // J Biol Chem. 2004. Vol. 279, N 49. P. 51654–51660. doi: 10.1074/jbc.M404500200

[121]

Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–356. doi: 10.1126/science.1072994

[122]

Hardy J., Selkoe D.J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics // Science. 2002. Vol. 297, N 5580. P. 353–356. doi: 10.1126/science.1072994

[123]

Hattori C, Asai M, Onishi H, et al. BACE1 interacts with lipid raft proteins. J Neurosci Res. 2006;84(4):912–917. doi: 10.1002/jnr.20981

[124]

Hattori C., Asai M., Onishi H., et al. BACE1 interacts with lipid raft proteins // J Neurosci Res. 2006. Vol. 84, N 4. P. 912–917. doi: 10.1002/jnr.20981

[125]

Hawkins J, Harrison DC, Ahmed S, et al. Dynamics of Abeta42 reduction in plasma, CSF and brain of rats treated with the gamma-secretase modulator, GSM-10h. Neurodegener Dis. 2011;8(6):455–464. doi: 10.1159/000324511

[126]

Hawkins J., Harrison D.C., Ahmed S., et al. Dynamics of Abeta42 reduction in plasma, CSF and brain of rats treated with the gamma-secretase modulator, GSM-10h // Neurodegener Dis. 2011. Vol. 8, N 6. P. 455–464. doi: 10.1159/000324511

[127]

Hayashi I, Urano Y, Fukuda R, et al. Selective reconstitution and recovery of functional gamma-secretase complex on budded baculovirus particles. J Biol Chem. 2004;279(36):38040–38046. doi: 10.1074/jbc.M405597200

[128]

Hayashi I., Urano Y., Fukuda R., et al. Selective reconstitution and recovery of functional gamma-secretase complex on budded baculovirus particles // J Biol Chem. 2004. Vol. 279, N 36. P. 38040–38046. doi: 10.1074/jbc.M405597200

[129]

He G, Luo W, Li P, et al. Gamma-secretase activating protein is a therapeutic target for Alzheimer’s disease. Nature. 2010;467(7311):95–98. doi: 10.1038/nature09325

[130]

He G., Luo W., Li P., et al. Gamma-secretase activating protein is a therapeutic target for Alzheimer’s disease // Nature. 2010. Vol. 467, N 7311. P. 95–98. doi: 10.1038/nature09325

[131]

Hebert SS, Serneels L, Dejaegere T, et al. Coordinated and widespread expression of gamma-secretase in vivo: evidence for size and molecular heterogeneity. Neurobiol Dis. 2004;17(2):260–272. doi: 10.1016/j.nbd.2004.08.002

[132]

Hebert S.S., Serneels L., Dejaegere T., et al. Coordinated and widespread expression of gamma-secretase in vivo: evidence for size and molecular heterogeneity // Neurobiol Dis. 2004. Vol. 17, N 2. P. 260–272. doi: 10.1016/j.nbd.2004.08.002

[133]

Herreman A, Hartmann D, Annaert W, et al. Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. PNAS USA. 1999;96(21):11872–11877. doi: 10.1073/pnas.96.21.11872

[134]

Herreman A., Hartmann D., Annaert W., et al. Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency // PNAS USA. 1999. Vol. 96, N 21. P. 11872–11877. doi: 10.1073/pnas.96.21.11872

[135]

Hitzenberger M, Götz A, Menig S, et al. The dynamics of gamma-secretase and its substrates. Semin Cell Dev Biol. 2020;105:86–101. doi: 10.1016/j.semcdb.2020.04.008

[136]

Hitzenberger M., Götz A., Menig S., et al. The dynamics of gamma-secretase and its substrates // Semin Cell Dev Biol. 2020. Vol. 105. P. 86–101. doi: 10.1016/j.semcdb.2020.04.008

[137]

Hou P, Zielonka M, Serneels L, et al. The gamma-secretase substrate proteome and its role in cell signaling regulation. Mol Cell. 2023;83(22):4106–4122.e10. doi: 10.1016/j.molcel.2023.10.029

[138]

Hou P., Zielonka M., Serneels L., et al. The gamma-secretase substrate proteome and its role in cell signaling regulation // Mol Cell. 2023. Vol. 83, N 22. P. 4106–4122.e10. doi: 10.1016/j.molcel.2023.10.029

[139]

Hopkins CR. ACS chemical neuroscience molecule spotlight on Begacestat (GSI-953) Affiliations expand. ACS Chem Neurosci. 2012;3(1):3–4. doi: 10.1021/cn200124u

[140]

Hopkins C.R. ACS chemical neuroscience molecule spotlight on Begacestat (GSI-953) Affiliations expand // ACS Chem Neurosci. 2012. Vol. 3, N 1. P. 3–4. doi: 10.1021/cn200124u

[141]

Hur J-Y, Frost GR, Wu X, et al. The innate immunity protein IFITM3 modulates gamma-secretase in Alzheimer’s disease. Nature. 2020;586(7831):735–740. doi: 10.1038/s41586-020-2681-2

[142]

Hur J.-Y., Frost G.R., Wu X., et al. The innate immunity protein IFITM3 modulates gamma-secretase in Alzheimer’s disease // Nature. 2020. Vol. 586, N 7831. P. 735–740. doi: 10.1038/s41586-020-2681-2

[143]

Hurley EM, Mozolewski P, Dobrowolski R, Hsieh J. Familial Alzheimer’s disease-associated PSEN1 mutations affect neurodevelopment through increased Notch signaling. Stem Cell Reports. 2023;18(7):1516–1533. doi: 10.1016/j.stemcr.2023.05.018

[144]

Hurley E.M., Mozolewski P., Dobrowolski R., Hsieh J. Familial Alzheimer’s disease-associated PSEN1 mutations affect neurodevelopment through increased Notch signaling // Stem Cell Reports. 2023. Vol. 18, N 7. P. 1516–1533. doi: 10.1016/j.stemcr.2023.05.018

[145]

Hussain I, Fabrègue J, Anderes L, et al. The role of gamma-secretase activating protein (GSAP) and imatinib in the regulation of gamma-secretase activity and amyloid-beta generation. J Biol Chem. 2013;288(4):2521–2533. doi: 10.1074/jbc.M.112.3709

[146]

Hussain I., Fabrègue J., Anderes L., et al. The role of gamma-secretase activating protein (GSAP) and imatinib in the regulation of gamma-secretase activity and amyloid-beta generation // J Biol Chem. 2013. Vol. 288, N 4. P. 2521–2533. doi: 10.1074/jbc.M.112.3709

[147]

Iwatsubo T, Odaka A, Suzuki N, et al. Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron. 1994;13(1):45–53. doi: 10.1016/0896-6273(94)90458-8

[148]

Iwatsubo T., Odaka A., Suzuki N., et al. Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43) // Neuron. 1994. Vol. 13, N 1. P. 45–53. doi: 10.1016/0896-6273(94)90458-8

[149]

Jutras I, Laplante A, Boulais J, et al. Gamma-secretase is a functional component of phagosomes. J Biol Chem. 2005;280(43):36310–36317. doi: 10.1074/jbc.M504069200

[150]

Jutras I., Laplante A., Boulais J., et al. Gamma-secretase is a functional component of phagosomes // J Biol Chem. 2005. Vol. 280, N 43. P. 36310–36317. doi: 10.1074/jbc.M504069200

[151]

Kimberly WT, Wolfe MS. Identity and function of gamma-secretase. J Neurosci Res. 2003;74(3):353–360. doi: 10.1002/jnr.10736

[152]

Kimberly W.T., Wolfe M.S. Identity and function of gamma-secretase // J Neurosci Res. 2003. Vol. 74, N 3. P. 353–360. doi: 10.1002/jnr.10736

[153]

Kimberly WT, LaVoie MJ, Ostaszewski BL, et al. Complex N-linked glycosylated nicastrin associates with active gamma-secretase and undergoes tight cellular regulation. J Biol Chem. 2002;277(38):35113–35117. doi: 10.1074/jbc.M204446200

[154]

Kimberly W.T., LaVoie M.J., Ostaszewski B.L., et al. Complex N-linked glycosylated nicastrin associates with active gamma-secretase and undergoes tight cellular regulation // J Biol Chem. 2002. Vol. 277, N 38. P. 35113–35117. doi: 10.1074/jbc.M204446200

[155]

Kimberly WT, LaVoie MJ, Ostaszewski BL, et al. Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. PNAS USA. 2003;100(11):6382–6387. doi: 10.1073/pnas.1037392100

[156]

Kimberly W.T., LaVoie M.J., Ostaszewski B.L., et al. Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2 // PNAS USA. 2003. Vol. 100, N 11. P. 6382–6387. doi: 10.1073/pnas.1037392100

[157]

Koo EH, Squazzo SL. Evidence that production and release of amyloid beta-protein involves the endocytic pathway. J Biol Chem. 1994;269(26):17386–17389. doi: 10.1016/S0021-9258(17)32449-3

[158]

Koo E.H., Squazzo S.L. Evidence that production and release of amyloid beta-protein involves the endocytic pathway // J Biol Chem. 1994. Vol. 269, N 26. P. 17386–17389. doi: 10.1016/S0021-9258(17)32449-3

[159]

Kopan R, Ilagan MXG. Gamma-secretase: proteasome of the membrane? Nat Rev Mol Cell Biol. 2004;5(6):499–504. doi: 10.1038/nrm1406

[160]

Kopan R., Ilagan M.X.G. Gamma-secretase: proteasome of the membrane? // Nat Rev Mol Cell Biol. 2004. Vol. 5, N 6. P. 499–504. doi: 10.1038/nrm1406

[161]

Kretner B, Fukumori A, Gutsmiedl A, et al. Attenuated Abeta42 responses to low potency gamma-secretase modulators can be overcome for many pathogenic presenilin mutants by second-generation compounds. J Biol Chem. 2011;286(17):15240–15251. doi: 10.1074/jbc.M110.213587

[162]

Kretner B., Fukumori A., Gutsmiedl A., et al. Attenuated Abeta42 responses to low potency gamma-secretase modulators can be overcome for many pathogenic presenilin mutants by second-generation compounds // J Biol Chem. 2011. Vol. 286, N 17. P. 15240–15251. doi: 10.1074/jbc.M110.213587

[163]

Lah JJ, Levey AI. Endogenous presenilin-1 targets to endocytic rather than biosynthetic compartments. Mol Cell Neurosci. 2000;16(2):111–126. doi: 10.1006/mcne.2000.0861

[164]

Lah J.J., Levey A.I. Endogenous presenilin-1 targets to endocytic rather than biosynthetic compartments // Mol Cell Neurosci. 2000. Vol. 16, N 2. P. 111–126. doi: 10.1006/mcne.2000.0861

[165]

Lah JJ, Heilman CJ, Nash NR, et al. Light and electron microscopic localization of presenilin-1 in primate brain. J Neurosci. 1997;17(6):1971–1980. doi: 10.1523/JNEUROSCI.17-06-01971.1997

[166]

Lah J.J., Heilman C.J., Nash N.R., et al. Light and electron microscopic localization of presenilin-1 in primate brain // J Neurosci. 1997. Vol. 17, N 6. P. 1971–1980. doi: 10.1523/JNEUROSCI.17-06-01971.1997

[167]

Lai M-T, Chen E, Crouthamel M-C, et al. Presenilin-1 and presenilin-2 exhibit distinct yet overlapping gamma-secretase activities. J Biol Chem. 2003;278(25):22475–22481. doi: 10.1074/jbc.M300974200

[168]

Lai M.-T., Chen E., Crouthamel M.-C., et al. Presenilin-1 and presenilin-2 exhibit distinct yet overlapping gamma-secretase activities // J Biol Chem. 2003. Vol. 278, N 25. P. 22475–22481. doi: 10.1074/jbc.M300974200

[169]

Lanz TA, Karmilowicz MJ, Wood KM, et al. Concentration-dependent modulation of amyloid-beta in vivo and in vitro using the gamma-secretase inhibitor, LY-450139. J Pharmacol Exp Ther. 2006;319(2):924–933. doi: 10.1124/jpet.106.110700

[170]

Lanz T.A., Karmilowicz M.J., Wood K.M., et al. Concentration-dependent modulation of amyloid-beta in vivo and in vitro using the gamma-secretase inhibitor, LY-450139 // J Pharmacol Exp Ther. 2006. Vol. 319, N 2. P. 924–933. doi: 10.1124/jpet.106.110700

[171]

Lanz TA, Himes CS, Pallante G, et al. The gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester reduces A beta levels in vivo in plasma and cerebrospinal fluid in young (plaque-free) and aged (plaque-bearing) Tg2576 mice. J Pharmacol Exp Ther. 2003;305(3):864–871. doi: 10.1124/jpet.102.048280

[172]

Lanz T.A., Himes C.S., Pallante G., et al. The gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester reduces A beta levels in vivo in plasma and cerebrospinal fluid in young (plaque-free) and aged (plaque-bearing) Tg2576 mice // J Pharmacol Exp Ther. 2003. Vol. 305, N 3. P. 864–871. doi: 10.1124/jpet.102.048280

[173]

Lanz TA, Hosley JD, Adams WJ, Merchant KM. Studies of Abeta pharmacodynamics in the brain, cerebrospinal fluid, and plasma in young (plaque-free) Tg2576 mice using the gamma secretase inhibitor N2-[(2S)-2-(3,5-difluorophenyl)-2-hydroxyethanoyl]-N1-[(7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl]-L-alaninamide (LY-411575). J Pharmacol Exp Ther. 2004;309(1):49–55. doi: 10.1124/jpet.103.060715

[174]

Lanz T.A., Hosley J.D., Adams W.J., Merchant K.M. Studies of Abeta pharmacodynamics in the brain, cerebrospinal fluid, and plasma in young (plaque-free) Tg2576 mice using the gamma secretase inhibitor N2-[(2S)-2-(3,5-difluorophenyl)-2-hydroxyethanoyl]-N1-[(7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl]-L-alaninamide (LY-411575) // J Pharmacol Exp Ther. 2004. Vol. 309, N 1. P. 49–55. doi: 10.1124/jpet.103.060715

[175]

Lanz TA, Wood KM, Richter KEG, et al. Pharmacodynamics and pharmacokinetics of the gamma-secretase inhibitor PF-3084014. J Pharmacol Exp Ther. 2010;334(1):269–277. doi: 10.1124/jpet.110.167379

[176]

Lanz T.A., Wood K.M., Richter K.E.G., et al. Pharmacodynamics and pharmacokinetics of the gamma-secretase inhibitor PF-3084014 // J Pharmacol Exp Ther. 2010. Vol. 334, N 1. P. 269–277. doi: 10.1124/jpet.110.167379

[177]

Laudon H, Hansson EM, Melén K, et al. A nine-transmembrane domain topology for presenilin 1. J Biol Chem. 2005;280(42):35352–35360. doi: 10.1074/jbc.M507217200

[178]

Laudon H., Hansson E.M., Melén K., et al. A nine-transmembrane domain topology for presenilin 1 // J Biol Chem. 2005. Vol. 280, N 42. P. 35352–35360. doi: 10.1074/jbc.M507217200

[179]

Lazarov VK, Fraering PC, Ye W, et al. Electron microscopic structure of purified, active gamma-secretase reveals an aqueous intramembrane chamber and two pores. PNAS USA. 2006;103(18):6889–6894. doi: 10.1073/pnas.060232110

[180]

Lazarov V.K., Fraering P.C., Ye W., et al. Electron microscopic structure of purified, active gamma-secretase reveals an aqueous intramembrane chamber and two pores // PNAS USA. 2006. Vol. 103, N 18. P. 6889–6894. doi: 10.1073/pnas.060232110

[181]

Lee SH, Kang J, Ho A, et al. APP family regulates neuronal excitability and synaptic plasticity but not neuronal survival. Neuron. 2020;108(4):676–690. doi: 10.1016/j.neuron.2020.08.011

[182]

Lee S.H., Kang J., Ho A., et al. APP family regulates neuronal excitability and synaptic plasticity but not neuronal survival // Neuron. 2020. Vol. 108, N 4. P. 676–690. doi: 10.1016/j.neuron.2020.08.011

[183]

Leem JY, Vijayan S, Han P, et al. Presenilin 1 is required for maturation and cell surface accumulation of nicastrin. J Biol Chem. 2002;277(21):19236–19240. doi: 10.1074/jbc.C200148200

[184]

Leem J.Y., Vijayan S., Han P., et al. Presenilin 1 is required for maturation and cell surface accumulation of nicastrin // J Biol Chem. 2002. Vol. 277, N 21. P. 19236–19240. doi: 10.1074/jbc.C200148200

[185]

Levy-Lahad E, Wijsman EM, Nemens E, et al. A familial Alzheimer’s disease locus on chromosome 1. Science. 1995;269(5226):970–973. doi: 10.1126/science.76386

[186]

Levy-Lahad E., Wijsman E.M., Nemens E., et al. A familial Alzheimer’s disease locus on chromosome 1 // Science. 1995. Vol. 269, N 5226. P. 970–973. doi: 10.1126/science.76386

[187]

Li T, Huang Y, Jin S, et al. Gamma-secretase modulators do not induce Abeta-rebound and accumulation of beta-C-terminal fragment. J Neurochem. 2012;121:277–286. doi: 10.1111/j.1471-4159.2011.07560.x

[188]

Li T., Huang Y., Jin S., et al. Gamma-secretase modulators do not induce Abeta-rebound and accumulation of beta-C-terminal fragment // J Neurochem. 2012. Vol. 121. P. 277–286. doi: 10.1111/j.1471-4159.2011.07560.x

[189]

Li Y-M, Xu M, Lai M-T, et al. Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1. Nature. 2000;405(6787):689–694. doi: 10.1038/35015085

[190]

Li Y.-M., Xu M., Lai M.-T., et al. Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1 // Nature. 2000. Vol. 405, N 6787. P. 689–694. doi: 10.1038/35015085

[191]

Liu L, Lauro BM, Wolfe MS, Selkoe DJ. Hydrophilic loop 1 of Presenilin-1 and the APP GxxxG transmembrane motif regulate gamma-secretase function in generating Alzheimer-causing Abeta peptides. J Biol Chem. 2021;296:100393. doi: 10.1016/j.jbc.2021.10039

[192]

Liu L., Lauro B.M., Wolfe M.S., Selkoe D.J. Hydrophilic loop 1 of Presenilin-1 and the APP GxxxG transmembrane motif regulate gamma-secretase function in generating Alzheimer-causing Abeta peptides // J Biol Chem. 2021. Vol. 296. ID100393. doi: 10.1016/j.jbc.2021.10039

[193]

Luo JE, Li Y-M. Turning the tide on Alzheimer’s disease: modulation of γ-secretase. Cell Biosci. 2022;12(1):2. doi: 10.1186/s13578-021-00738-7

[194]

Luo J.E., Li Y.-M. Turning the tide on Alzheimer’s disease: modulation of γ-secretase // Cell Biosci. 2022. Vol. 12, N 1. ID 2. doi: 10.1186/s13578-021-00738-7

[195]

Maltsev AV, Santockyte R, Bystryak S, Galzitskaya OV. Activation of neuronal defense mechanisms in response to pathogenic factors triggering induction of amyloidosis in Alzheimer’s disease. J Alzheimers Dis. 2014;40(1):19–32. doi: 10.3233/JAD-131562

[196]

Maltsev A.V., Santockyte R., Bystryak S., Galzitskaya O.V. Activation of neuronal defense mechanisms in response to pathogenic factors triggering induction of amyloidosis in Alzheimer’s disease // J Alzheimers Dis. 2014. Vol. 40, N 1. P. 19–32. doi: 10.3233/JAD-131562

[197]

Martone RL, Zhou H, Atchison K, et al. Begacestat (GSI-953): a novel, selective thiophene sulfonamide inhibitor of amyloid precursor protein gamma-secretase for the treatment of Alzheimer’s disease. J Pharmacol Exp Ther. 2009;331(2):598–608. doi: 10.1124/jpet.109.152975

[198]

Martone R.L., Zhou H., Atchison K., et al. Begacestat (GSI-953): a novel, selective thiophene sulfonamide inhibitor of amyloid precursor protein gamma-secretase for the treatment of Alzheimer’s disease // J Pharmacol Exp Ther. 2009. Vol. 331, N 2. P. 598–608. doi: 10.1124/jpet.109.152975

[199]

Matsumura N, Takami M, Okochi M, et al. gamma-Secretase associated with lipid rafts: multiple interactive pathways in the stepwise processing of beta-carboxyl-terminal fragment. J Biol Chem. 2014;289(8):5109–5121. doi: 10.1074/jbc.M113.510131

[200]

Matsumura N., Takami M., Okochi M., et al. gamma-Secretase associated with lipid rafts: multiple interactive pathways in the stepwise processing of beta-carboxyl-terminal fragment // J Biol Chem. 2014. Vol. 289, N 8. P. 5109–5121. doi: 10.1074/jbc.M113.510131

[201]

Mekala S, Nelson G, Li Y-M. Recent developments of small molecule gamma-secretase modulators for Alzheimer’s disease. RSC Med Chem. 2020;11(9):1003–1022. doi: 10.1039/d0md00196a

[202]

Mekala S., Nelson G., Li Y.-M. Recent developments of small molecule gamma-secretase modulators for Alzheimer’s disease // RSC Med Chem. 2020. Vol. 11, N 9. P. 1003–1022. doi: 10.1039/d0md00196a

[203]

Mitani Y, Yarimizu J, Saita K, et al. Differential effects between gamma-secretase inhibitors and modulators on cognitive function in amyloid precursor protein-transgenic and nontransgenic mice. J Neurosci. 2012;32(6):2037–2050. doi: 10.1523/JNEUROSCI.4264-11.2012

[204]

Mitani Y., Yarimizu J., Saita K., et al. Differential effects between gamma-secretase inhibitors and modulators on cognitive function in amyloid precursor protein-transgenic and nontransgenic mice // J Neurosci. 2012. Vol. 32, N 6. P. 2037–2050. doi: 10.1523/JNEUROSCI.4264-11.2012

[205]

Nakano-Ito K, Fujikawa Y, Hihara T, et al. E2012-induced cataract and its predictive biomarkers. Toxicol Sci. 2014;137(2):249–258. doi: 10.1093/toxsci/kft224

[206]

Nakano-Ito K., Fujikawa Y., Hihara T., et al. E2012-induced cataract and its predictive biomarkers // Toxicol Sci. 2014. Vol. 137, N 2. P. 249–258. doi: 10.1093/toxsci/kft224

[207]

Narlawar R, Serneels L, Gaffric C, et al. Discovery of brain permeable 2-azabicyclo[2.2.2]octane sulfonamides as a novel class of presenilin-1 selective gamma-secretase inhibitors. Eur J Med Chem. 2023;260:115725. doi: 10.1016/j.ejmech.2023.115725

[208]

Narlawar R., Serneels L., Gaffric C., et al. Discovery of brain permeable 2-azabicyclo[2.2.2]octane sulfonamides as a novel class of presenilin-1 selective gamma-secretase inhibitors // Eur J Med Chem. 2023. Vol. 260. ID 115725. doi: 10.1016/j.ejmech.2023.115725

[209]

Nguyen V, Hawkins C, Bergeron C, et al. Loss of nicastrin elicits an apoptotic phenotype in mouse embryos. Brain Res. 2006;1086(1):76–84. doi: 10.1016/j.brainres.2006.02.122

[210]

Nguyen V., Hawkins C., Bergeron C., et al. Loss of nicastrin elicits an apoptotic phenotype in mouse embryos // Brain Res. 2006. Vol. 1086, N 1. P. 76–84. doi: 10.1016/j.brainres.2006.02.122

[211]

Nicolas M, Wolfer A, Raj K, et al. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet. 2003;33(3):416–421. doi: 10.1038/ng1099

[212]

Nicolas M., Wolfer A., Raj K., et al. Notch1 functions as a tumor suppressor in mouse skin // Nat Genet. 2003. Vol. 33, N 3. P. 416–421. doi: 10.1038/ng1099

[213]

Nie P, Kalidindi T, Nagle VL, et al. Imaging of cancer gamma-secretase activity using an inhibitor-based PET probe. Clin Cancer Res. 2021;27(22):6145–6155. doi: 10.1158/1078-0432.CCR-21-0940

[214]

Nie P., Kalidindi T., Nagle V.L., et al. Imaging of cancer gamma-secretase activity using an inhibitor-based PET probe // Clin Cancer Res. 2021. Vol. 27, N 22. P. 6145–6155. doi: 10.1158/1078-0432.CCR-21-0940

[215]

Nordvall G, Lunkvist J, Sandin J. Gamma-secretase modulators: a promising route for the treatment of Alzheimer’s disease. Front Mol Neurosci. 2023;16:1279740. doi: 10.3389/fnmol.2023.1279740

[216]

Nordvall G., Lunkvist J., Sandin J. Gamma-secretase modulators: a promising route for the treatment of Alzheimer’s disease // Front Mol Neurosci. 2023. Vol. 16. ID 1279740. doi: 10.3389/fnmol.2023.1279740

[217]

Olsson F, Schmidt S, Althoff V, et al. Characterization of intermediate steps in amyloid beta (Abeta) production under near-native conditions. J Biol Chem. 2014;289(3):1540–1550. doi: 10.1074/jbc.M113.498246

[218]

Olsson F., Schmidt S., Althoff V., et al. Characterization of intermediate steps in amyloid beta (Abeta) production under near-native conditions // J Biol Chem. 2014. Vol. 289, N 3. P. 1540–1550. doi: 10.1074/jbc.M113.498246

[219]

Osenkowski P, Ye W, Wang R, et al. Direct and potent regulation of gamma-secretase by its lipid microenvironment. J Biol Chem. 2008;283(33):22529–22540. doi: 10.1074/jbc.M80192520

[220]

Osenkowski P., Ye W., Wang R., et al. Direct and potent regulation of gamma-secretase by its lipid microenvironment // J Biol Chem. 2008. Vol. 283, N 33. P. 22529–22540. doi: 10.1074/jbc.M80192520

[221]

Page RM, Baumann K, Tomioka M, et al. Generation of Abeta38 and Abeta42 is independently and differentially affected by familial Alzheimer disease-associated presenilin mutations and gamma-secretase modulation. J Biol Chem. 2008;283(2):677–683. doi: 10.1074/jbc.M708754200

[222]

Page R.M., Baumann K., Tomioka M., et al. Generation of Abeta38 and Abeta42 is independently and differentially affected by familial Alzheimer disease-associated presenilin mutations and gamma-secretase modulation // J Biol Chem. 2008. Vol. 283, N 2. P. 677–683. doi: 10.1074/jbc.M708754200

[223]

Pasternak SH, Bagshaw RD, Guiral M, et al. Presenilin-1, nicastrin, amyloid precursor protein, and gamma-secretase activity are co-localized in the lysosomal membrane. J Biol Chem. 2003;278(29):26687–26694. doi: 10.1074/jbc.M30400920

[224]

Pasternak S.H., Bagshaw R.D., Guiral M., et al. Presenilin-1, nicastrin, amyloid precursor protein, and gamma-secretase activity are co-localized in the lysosomal membrane // J Biol Chem. 2003. Vol. 278, N 29. P. 26687–26694. doi: 10.1074/jbc.M30400920

[225]

Perl DP. Neuropathology of Alzheimer’s disease. Mt Sinai J Med. 2010;77(1):32–42. doi: 10.1002/msj.20157

[226]

Perl D.P. Neuropathology of Alzheimer’s disease // Mt Sinai J Med. 2010. Vol. 77, N 1. P. 32–42. doi: 10.1002/msj.20157

[227]

Portelius E, Andreasson U, Ringman JM, et al. Distinct cerebrospinal fluid amyloid beta peptide signatures in sporadic and PSEN1 A431E-associated familial Alzheimer’s disease. Mol Neurodegener. 2010;5:2. doi: 10.1186/1750-1326-5-2

[228]

Portelius E., Andreasson U., Ringman J.M., et al. Distinct cerebrospinal fluid amyloid beta peptide signatures in sporadic and PSEN1 A431E-associated familial Alzheimer’s disease // Mol Neurodegener. 2010. Vol. 5. ID 2. doi: 10.1186/1750-1326-5-2

[229]

Portelius E, Bogdanovic N, Gustavsson MK, et al. Mass spectrometric characterization of brain amyloid beta isoform signatures in familial and sporadic Alzheimer’s disease. Acta Neuropathol. 2010;120(2):185–193. doi: 10.1007/s00401-010-0690-1

[230]

Portelius E., Bogdanovic N., Gustavsson M.K., et al. Mass spectrometric characterization of brain amyloid beta isoform signatures in familial and sporadic Alzheimer’s disease // Acta Neuropathol. 2010. Vol. 120, N 2. P. 185–193. doi: 10.1007/s00401-010-0690-1

[231]

Pozdnyakov N, Murrey HE, Crump CJ , et al. gamma-Secretase modulator (GSM) photoaffinity probes reveal distinct allosteric binding sites on presenilin. J Biol Chem. 2013;288(14):9710–9720. doi: 10.1074/jbc.M112.398602

[232]

Pozdnyakov N., Murrey H.E., Crump C.J ., et al. gamma-Secretase modulator (GSM) photoaffinity probes reveal distinct allosteric binding sites on presenilin // J Biol Chem. 2013. Vol. 288, N 14. P. 9710–9720. doi: 10.1074/jbc.M112.398602.

[233]

Qi-Takahara Y, Моrisimа-Kаwаsimа M, Таnimurа J, et al. Longer forms of amyloid beta protein: implications for the mechanism of intramembrane cleavage by gamma-secretase. J Neurosci. 2005;25(2):436–445. doi: 10.1523/JNEUROSCI.1575-04.2005

[234]

Qi-Takahara Y., Моrisimа-Kаwаsimа M., Таnimurа J., et al. Longer forms of amyloid beta protein: implications for the mechanism of intramembrane cleavage by gamma-secretase // J Neurosci. 2005. Vol. 25, N 2. P. 436–445. doi: 10.1523/JNEUROSCI.1575-04.2005

[235]

Rajendran L, Schneider A, Schlechtingen G, et al. Efficient inhibition of the Alzheimer’s disease beta-secretase by membrane targeting. Science. 2008;320(5875):520–523. doi: 10.1126/science.115660

[236]

Rajendran L., Schneider A., Schlechtingen G., et al. Efficient inhibition of the Alzheimer’s disease beta-secretase by membrane targeting // Science. 2008. Vol. 320, N 5875. P. 520–523. doi: 10.1126/science.115660

[237]

Rajendran L, Knolker H-J, Simons K. Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discov. 2010;9(1):29–42. doi: 10.1038/nrd2897

[238]

Rajendran L., Knolker H.-J., Simons K. Subcellular targeting strategies for drug design and delivery // Nat Rev Drug Discov. 2010. Vol. 9, N 1. P. 29–42. doi: 10.1038/nrd2897

[239]

Ratan Y, Rajput A, Maleysm S, et al. An insight into cellular and molecular mechanisms underlying the pathogenesis of neurodegeneration in Alzheimer’s disease. Biomedicines. 2023;11(5):1398. doi: 10.3390/biomedicines11051398

[240]

Ratan Y., Rajput A., Maleysm S., et al. An insight into cellular and molecular mechanisms underlying the pathogenesis of neurodegeneration in Alzheimer’s disease // Biomedicines. 2023. Vol. 11, N 5. ID 1398. doi: 10.3390/biomedicines11051398

[241]

Ribaut-Barassin C, Dupont J-L, Haeberlé A-M, et al. Alzheimer’s disease proteins in cerebellar and hippocampal synapses during postnatal development and aging of the rat. Neuroscience. 2003;120(2):405–423. doi: 10.1016/s0306-4522(03)00332-4

[242]

Ribaut-Barassin C., Dupont J.-L., Haeberlé A.-M., et al. Alzheimer’s disease proteins in cerebellar and hippocampal synapses during postnatal development and aging of the rat // Neuroscience. 2003. Vol. 120, N 2. P. 405–423. doi: 10.1016/s0306-4522(03)00332-4

[243]

Roher AE, Lowenson JD, Clarke S, et al. beta-Amyloid-(1-42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. PNAS USA. 1993;90(22):10836–10840. doi: 10.1073/pnas.90.22.108

[244]

Roher A.E., Lowenson J.D., Clarke S., et al. beta-Amyloid-(1-42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease // PNAS USA. 1993. Vol. 90, N 22. P. 10836–10840. doi: 10.1073/pnas.90.22.108

[245]

Roher AE, Palmer KC, Yurewicz EC, et al. Morphological and biochemical analyses of amyloid plaque core proteins purified from Alzheimer disease brain tissue. J Neurochem. 1993;61(5):1916–1926. doi: 10.1111/j.1471-4159.1993.tb09834.x

[246]

Roher A.E., Palmer K.C., Yurewicz E.C., et al. Morphological and biochemical analyses of amyloid plaque core proteins purified from Alzheimer disease brain tissue // J Neurochem. 1993. Vol. 61, N 5. P. 1916–1926. doi: 10.1111/j.1471-4159.1993.tb09834.x

[247]

Rynearson KD, Ponnusamy M, Prikhodko O, et al. Preclinical validation of a potent gamma-secretase modulator for Alzheimer’s disease prevention. J Exp Med. 2021;218(4):e20202560. doi: 10.1084/jem.20202560

[248]

Rynearson K.D., Ponnusamy M., Prikhodko O., et al. Preclinical validation of a potent gamma-secretase modulator for Alzheimer’s disease prevention // J Exp Med. 2021. Vol. 218, N 4. ID e20202560. doi: 10.1084/jem.20202560

[249]

Sastre M, Steiner H, Fuchs K, et al. Presenilin-dependent gamma-secretase processing of beta-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep. 2001;2(9):835–841. doi: 10.1093/embo-reports/kve180

[250]

Sastre M., Steiner H., Fuchs K., et al. Presenilin-dependent gamma-secretase processing of beta-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch // EMBO Rep. 2001. Vol. 2, N 9. P. 835–841. doi: 10.1093/embo-reports/kve180

[251]

Sato T, Diehl TS, Narayanan S, et al. Active gamma-secretase complexes contain only one of each component. J Biol Chem. 2007;282(47):33985–33993. doi: 10.1074/jbc.M705248200

[252]

Sato T., Diehl T.S., Narayanan S., et al. Active gamma-secretase complexes contain only one of each component // J Biol Chem. 2007. Vol. 282, N 47. P. 33985–33993. doi: 10.1074/jbc.M705248200

[253]

Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8(6):595–608. doi: 10.15252/emmm.201606210

[254]

Selkoe D.J., Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years // EMBO Mol Med. 2016. Vol. 8, N 6. P. 595–608. doi: 10.15252/emmm.201606210

[255]

Serneels L, Dejaegere T, Craessaerts K, et al. Differential contribution of the three Aph1 genes to gamma-secretase activity in vivo. PNAS USA. 2005;102(5):1719–1724. doi: 10.1073/pnas.0408901102

[256]

Serneels L., Dejaegere T., Craessaerts K., et al. Differential contribution of the three Aph1 genes to gamma-secretase activity in vivo // PNAS USA. 2005. Vol. 102, N 5. P. 1719–1724. doi: 10.1073/pnas.0408901102

[257]

Serneels L, Narlawar R, Perez-Benito L, et al. Selective inhibitors of the PSEN1-gamma-secretase complex. J Biol Chem. 2023;299(6):104794. doi: 10.1016/j.jbc.2023.104794

[258]

Serneels L., Narlawar R., Perez-Benito L., et al. Selective inhibitors of the PSEN1-gamma-secretase complex // J Biol Chem. 2023. Vol. 299, N 6. ID 104794. doi: 10.1016/j.jbc.2023.104794

[259]

Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature. 2016;537(7618):50–56. doi: 10.1038/nature19323

[260]

Sevigny J., Chiao P., Bussière T., et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease // Nature. 2016. Vol. 537, N 7618. P. 50–56. doi: 10.1038/nature19323

[261]

Siemers ER, Quinn JF, Kaye J, et al. Effects of a gamma-secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology. 2006;66(4):602–604. doi: 10.1212/01.WNL.0000198762.41312

[262]

Siemers E.R., Quinn J.F., Kaye J., et al. Effects of a gamma-secretase inhibitor in a randomized study of patients with Alzheimer disease // Neurology. 2006. Vol. 66, N 4. P. 602–604. doi: 10.1212/01.WNL.0000198762.41312

[263]

Sisodia SS. Beta-amyloid precursor protein cleavage by a membrane-bound protease. PNAS USA. 1992;89(13):6075–6079. doi: 10.1073/pnas.89.13.607

[264]

Sisodia S.S. Beta-amyloid precursor protein cleavage by a membrane-bound protease // PNAS USA. 1992. Vol. 89, N 13. P. 6075–6079. doi: 10.1073/pnas.89.13.607

[265]

Small SA, Gandy S. Sorting through the cell biology of Alzheimer’s disease: intracellular pathways to pathogenesis. Neuron. 2006;52(1):15–31. doi: 10.1016/j.neuron.2006.09.001

[266]

Small S.A., Gandy S. Sorting through the cell biology of Alzheimer’s disease: intracellular pathways to pathogenesis // Neuron. 2006. Vol. 52, N 1. P. 15–31. doi: 10.1016/j.neuron.2006.09.001

[267]

Steiner H, Winkler E, Edbauer D, et al. PEN-2 is an integral component of the gamma-secretase complex required for coordinated expression of presenilin and nicastrin. J Biol Chem. 2002;277(42):39062–39065. doi: 10.1074/jbc.C200469200

[268]

Steiner H., Winkler E., Edbauer D., et al. PEN-2 is an integral component of the gamma-secretase complex required for coordinated expression of presenilin and nicastrin // J Biol Chem. 2002. Vol. 277, N 42. P. 39062–39065. doi: 10.1074/jbc.C200469200

[269]

Soares HD, Gasior M, Toyn JH, et al. The gamma-secretase modulator, BMS-932481, modulates abeta peptides in the plasma and cerebrospinal fluid of healthy volunteers. J Pharmacol Exp Ther. 2016;358(1):138–150. doi: 10.1124/jpet.116.232256

[270]

Soares H.D., Gasior M., Toyn J.H., et al. The gamma-secretase modulator, BMS-932481, modulates abeta peptides in the plasma and cerebrospinal fluid of healthy volunteers // J Pharmacol Exp Ther. 2016. Vol. 358, N 1. P. 138–150. doi: 10.1124/jpet.116.232256

[271]

Söderberg L, Johannesson M, Nygren P, et al. Lecanemab, aducanumab, and gantenerumab — binding profiles to different forms of amyloid-beta might explain efficacy and side effects in clinical trials for Alzheimer’s disease. Neurotherapeutics. 2023;20(1):195–206. doi: 10.1007/s13311-022-01308-6

[272]

Söderberg L., Johannesson M., Nygren P., et al. Lecanemab, aducanumab, and gantenerumab — binding profiles to different forms of amyloid-beta might explain efficacy and side effects in clinical trials for Alzheimer’s disease // Neurotherapeutics. 2023. Vol. 20, N 1. P. 195–206. doi: 10.1007/s13311-022-01308-6

[273]

Struhl G, Adachi A. Requirements for presenilin-dependent cleavage of notch and other transmembrane proteins. Mol Cell. 2000;6(3):625–636. doi: 10.1016/S1097-2765(00)0006

[274]

Struhl G., Adachi A. Requirements for presenilin-dependent cleavage of notch and other transmembrane proteins // Mol Cell. 2000. Vol. 6, N 3. P. 625–636. doi: 10.1016/S1097-2765(00)0006

[275]

Strosberg JR, Yeatman T, Weber J, et al. A phase II study of RO4929097 in metastatic colorectal cancer. Eur J Cancer. 2012;48(7):997–1003. doi: 10.1016/j.ejca.2012.02.056

[276]

Strosberg J.R., Yeatman T., Weber J., et al. A phase II study of RO4929097 in metastatic colorectal cancer // Eur J Cancer. 2012. Vol. 48, N 7. P. 997–1003. doi: 10.1016/j.ejca.2012.02.056

[277]

Sun L, Zhou R, Yang G, Shi Y. Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Abeta42 and Abeta40 peptides by gamma-secretase. PNAS USA. 2017;114(4):E476–E485. doi: 10.1073/pnas.161865711

[278]

Sun L., Zhou R., Yang G., Shi Y. Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Abeta42 and Abeta40 peptides by gamma-secretase // PNAS USA. 2017. Vol. 114, N 4. P. E476–E485. doi: 10.1073/pnas.161865711

[279]

Takahashi RH, Milner TA, Li F, et al. Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am J Pathol. 2002;161(5):1869–1879. doi: 10.1016/s0002-9440(10)64463-x

[280]

Takahashi R.H., Milner T.A., Li F., et al. Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology // Am J Pathol. 2002. Vol. 161, N 5. P. 1869–1879. doi: 10.1016/s0002-9440(10)64463-x

[281]

Takami M, Nagashima Y, Sano Y, et al. gamma-Secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of beta-carboxyl terminal fragment. J Neurosci. 2009;29(41):13042–13052. doi: 10.1523/JNEUROSCI.2362-09.2009

[282]

Takami M., Nagashima Y., Sano Y., et al. gamma-Secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of beta-carboxyl terminal fragment // J Neurosci. 2009. Vol. 29, N 41. P. 13042–13052. doi: 10.1523/JNEUROSCI.2362-09.2009

[283]

Thakkar N, Martis PB, Kutikuppala LVS, et al. Lecanemab: A hope in the management of Alzheimer’s disease. Brain Circ. 2023;9(3):194–195. doi: 10.4103/bc.bc_10_23

[284]

Thakkar N., Martis P.B., Kutikuppala L.V.S., et al. Lecanemab: A hope in the management of Alzheimer’s disease // Brain Circ. 2023. Vol. 9, N 3. P. 194-195. doi: 10.4103/bc.bc_10_23

[285]

Thathiah A, Spittaels K, Hoffmann M, et al. The orphan G protein-coupled receptor 3 modulates amyloid-beta peptide generation in neurons. Science. 2009;323(5916):946–951. doi: 10.1126/science.116064

[286]

Thathiah A., Spittaels K., Hoffmann M., et al. The orphan G protein-coupled receptor 3 modulates amyloid-beta peptide generation in neurons// Science. 2009. Vol. 323, N 5916. P. 946–951. doi: 10.1126/science.116064

[287]

Thinakaran G, Borchelt DR, Lee MK, et al. Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron. 1996;17(1):181–190. doi: 10.1016/S0896-6273(00)80291-3

[288]

Thinakaran G., Borchelt D.R., Lee M.K., et al. Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo // Neuron. 1996. Vol. 17, N 1. P. 181–190. doi: 10.1016/S0896-6273(00)80291-3

[289]

Urano Y, Hayashi I, Isoo N, et al. Association of active gamma-secretase complex with lipid rafts. J Lipid Res. 2005;46(5):904–912. doi: 10.1194/ilr.M400333-JLR200

[290]

Urano Y., Hayashi I., Isoo N., et al. Association of active gamma-secretase complex with lipid rafts // J Lipid Res. 2005. Vol. 46, N 5. P. 904–912. doi: 10.1194/ilr.M400333-JLR200

[291]

van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388(1):9–21. doi: 10.1056/NEJMoa2212948

[292]

van Dyck C.H., Swanson C.J., Aisen P., et al. Lecanemab in early Alzheimer’s disease // N Engl J Med. 2023. Vol. 388, N 1. P. 9–21. doi: 10.1056/NEJMoa2212948

[293]

Volloch V, Rits-Volloch S. The amyloid cascade hypothesis 2.0 for Alzheimer’s disease and aging-associated cognitive decline: from molecular basis to effective therapy. Int J Mol Sci. 2023;24(15):12246. doi: 10.3390/ijms241512246

[294]

Volloch V., Rits-Volloch S. The amyloid cascade hypothesis 2.0 for Alzheimer’s disease and aging-associated cognitive decline: from molecular basis to effective therapy // Int J Mol Sci. 2023. Vol. 24, N 15. ID 12246. doi: 10.3390/ijms241512246

[295]

Wahrle S, Das P, Nybor AC, et al. Cholesterol-dependent gamma-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol Dis. 2002;9(1):11–23. doi: 10.1006/nbdi.2001.0470

[296]

Wahrle S., Das P., Nybor A.C., et al. Cholesterol-dependent gamma-secretase activity in buoyant cholesterol-rich membrane microdomains // Neurobiol Dis. 2002. Vol. 9, N 1. P. 11–23. doi: 10.1006/nbdi.2001.0470

[297]

Wang X. A bridge between the innate immunity system and amyloid-beta production in Alzheimer’s disease. Neurosci Bull. 2021;37(6):898–901. doi: 10.1007/s12264-021-00691-y

[298]

Wang X. A bridge between the innate immunity system and amyloid-beta production in Alzheimer’s disease // Neurosci Bull. 2021. Vol. 37, N 6. P. 898–901. doi: 10.1007/s12264-021-00691-y

[299]

Weber TA, Lundkvist J, Wanngren J, et al. γ-Secretase modulators show selectivity for γ-secretase–mediated amyloid precursor protein intramembrane processing. J Cell Mol Med. 2022;26(3):880-892. doi: 10.1111/jcmm.17146

[300]

Weber T.A., Lundkvist J., Wanngren J., et al. γ-Secretase modulators show selectivity for γ-secretase–mediated amyloid precursor protein intramembrane processing // J Cell Mol Med. 2022. Vol. 26, N 3. P. 880-892. doi: 10.1111/jcmm.17146

[301]

Weggen S, Rogers M, Eriksen J. NSAIDs: small molecules for prevention of Alzheimer’s disease or precursors for future drug development? Trends Pharmacol Sci. 2007;28(10):536–543. doi: 10.1016/j.tips.2007.09.004

[302]

Weggen S., Rogers M., Eriksen J. NSAIDs: small molecules for prevention of Alzheimer’s disease or precursors for future drug development? // Trends Pharmacol Sci. 2007. Vol. 28, N 10. P. 536–543. doi: 10.1016/j.tips.2007.09.004

[303]

Welander H, Frånberg J, Graff C, et al. Abeta43 is more frequent than Abeta40 in amyloid plaque cores from Alzheimer disease brains. J Neurochem. 2009;110(2):697–706. doi: 10.1111/j.1471-4159.2009.06170.x

[304]

Welander H., Frånberg J., Graff C., et al. Abeta43 is more frequent than Abeta40 in amyloid plaque cores from Alzheimer disease brains // J Neurochem. 2009. Vol. 110, N 2. P. 697–706. doi: 10.1111/j.1471-4159.2009.06170.x

[305]

Winkler E, Hobson S, Fukumori A, et al. Purification, pharmacological modulation, and biochemical characterization of interactors of endogenous human gamma-secretase. Biochemistry. 2009;48(6):1183–1197. doi: 10.1021/bi801204g

[306]

Winkler E., Hobson S., Fukumori A., et al. Purification, pharmacological modulation, and biochemical characterization of interactors of endogenous human gamma-secretase // Biochemistry. 2009. Vol. 48, N 6. P. 1183–1197. doi: 10.1021/bi801204g

[307]

Wolfe MS, Kopan R. Intramembrane proteolysis: theme and variations. Science. 2004;305(5687):1119–1123. doi: 10.1126/science.10961

[308]

Wolfe M.S., Kopan R. Intramembrane proteolysis: theme and variations // Science. 2004. Vol. 305, N 5687. P. 1119–1123. doi: 10.1126/science.10961

[309]

Wolfe MS. gamma-Secretase as a drug target for familial Alzheimer’s disease: the road less traveled. Future Med Chem. 2022;14(19):1341–1343. doi: 10.4155/fmc-2022-0178

[310]

Wolfe M.S. gamma-Secretase as a drug target for familial Alzheimer’s disease: the road less traveled // Future Med Chem. 2022. Vol. 14, N 19. P. 1341–1343. doi: 10.4155/fmc-2022-0178

[311]

Wolfe MS. Substrate recognition and processing by gamma-secretase. Biochim Biophys Acta Biomembr. 2020;1862(1):183016. doi: 10.1016/j.bbamem.2019.07.004

[312]

Wolfe M.S. Substrate recognition and processing by gamma-secretase // Biochim Biophys Acta Biomembr. 2020. Vol. 1862, N 1. ID 183016. doi: 10.1016/j.bbamem.2019.07.004

[313]

Wong GT, Manfra D, Poulet FM, et al. Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem. 2004;279(13):12876–12882. doi: 10.1074/jbc.M311652200

[314]

Wong G.T., Manfra D., Poulet F.M., et al. Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation // J Biol Chem. 2004. Vol. 279, N 13. P. 12876–12882. doi: 10.1074/jbc.M311652200

[315]

Wunderlich P, Glebov K, Kemmerling N, et al. Sequential proteolytic processing of the triggering receptor expressed on myeloid cells-2 (TREM2) protein by ectodomain shedding and gamma-secretase-dependent intramembranous cleavage. J Biol Chem. 2013;288(46):33027–33036. doi: 10.1074/jbc.M113.517540

[316]

Wunderlich P., Glebov K., Kemmerling N., et al. Sequential proteolytic processing of the triggering receptor expressed on myeloid cells-2 (TREM2) protein by ectodomain shedding and gamma-secretase-dependent intramembranous cleavage // J Biol Chem. 2013. Vol. 288, N 46. P. 33027–33036. doi: 10.1074/jbc.M113.517540

[317]

Xu X. Gamma-secretase catalyzes sequential cleavages of the AbetaPP transmembrane domain. J Alzheimers Dis. 2009;16(2):211–224. doi: 10.3233/JAD-2009-0957

[318]

Xu X. Gamma-secretase catalyzes sequential cleavages of the AbetaPP transmembrane domain // J Alzheimers Dis. 2009. Vol. 16, N 2. P. 211–224. doi: 10.3233/JAD-2009-0957

[319]

Xu Y, Wang C, Wey H-Y, et al. Molecular imaging of Alzheimer’s disease-related gamma-secretase in mice and nonhuman primates. J Exp Med. 2020;217(12):e20182266. doi: 10.1084/jem.20182266

[320]

Xu Y., Wang C., Wey H.-Y., et al. Molecular imaging of Alzheimer’s disease-related gamma-secretase in mice and nonhuman primates // J Exp Med. 2020. Vol. 217, N 12. ID e20182266. doi: 10.1084/jem.20182266

[321]

Yang G, Zhou R, Guo X, et al. Structural basis of gamma-secretase inhibition and modulation by small molecule drugs. Cell. 2021;184(2):521–533. doi: 10.1016/j.cell.2020.11.049

[322]

Yang G., Zhou R., Guo X., et al. Structural basis of gamma-secretase inhibition and modulation by small molecule drugs // Cell. 2021. Vol. 184, N 2. P. 521–533. doi: 10.1016/j.cell.2020.11.049

[323]

Yao AY, Yan R. Activity of Alzheimer’s gamma-secretase is linked to changes of interferon-induced transmembrane proteins (IFITM) in innate immunity. Mol Neurodegener. 2020;15(1):69. doi: 10.1186/s13024-020-00417-0

[324]

Yao A.Y., Yan R. Activity of Alzheimer’s gamma-secretase is linked to changes of interferon-induced transmembrane proteins (IFITM) in innate immunity // Mol Neurodegener. 2020. Vol. 15, N 1. ID 69. doi: 10.1186/s13024-020-00417-0

[325]

Yu C, Kim S-H, Ikeuchi T, et al. Characterization of a presenilin-mediated amyloid precursor protein carboxyl-terminal fragment gamma. Evidence for distinct mechanisms involved in gamma-secretase processing of the APP and Notch1 transmembrane domains. J Biol Chem. 2001;276(47):43756–43760. doi: 10.1074/jbc.C1004.10200

[326]

Yu C., Kim S.-H., Ikeuchi T., et al. Characterization of a presenilin-mediated amyloid precursor protein carboxyl-terminal fragment gamma. Evidence for distinct mechanisms involved in gamma -secretase processing of the APP and Notch1 transmembrane domains // J Biol Chem. 2001. Vol. 276, N 47. P. 43756–43760. doi: 10.1074/jbc.C1004.10200

[327]

Yu G, Nishimura M, Arawaka S, et al. Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature. 2000;407(6800):48–54. doi: 10.1038/35024009

[328]

Yu G., Nishimura M., Arawaka S., et al. Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing // Nature. 2000. Vol. 407, N 6800. P. 48–54. doi: 10.1038/35024009

[329]

Zhang L, Lee J, Song L, et al. Characterization of the reconstituted gamma-secretase complex from Sf9 cells co-expressing presenilin 1, nicastrin [correction of nacastrin], aph-1a, and pen-2. Biochemistry. 2005;44(11):4450–4457. doi: 10.1021/bi0481500

[330]

Zhang L., Lee J., Song L., et al. Characterization of the reconstituted gamma-secretase complex from Sf9 cells co-expressing presenilin 1, nicastrin [correction of nacastrin], aph-1a, and pen-2 // Biochemistry. 2005. Vol. 44, N 11. P. 4450–4457. doi: 10.1021/bi0481500

[331]

Zhang Y, Boy KM, Wu Y-J, et al. Synthesis of functionalized derivatives of the gamma-secretase modulator BMS-932481 and identification of its major metabolite. Bioorg Med Chem Lett. 2020;30(22):127530. doi: 10.1016/j.bmcl.2020.127530

[332]

Zhang Y., Boy K.M., Wu Y.-J., et al. Synthesis of functionalized derivatives of the gamma-secretase modulator BMS-932481 and identification of its major metabolite // Bioorg Med Chem Lett. 2020. Vol. 30, N 22. ID 127530. doi: 10.1016/j.bmcl.2020.127530

[333]

Zhao G, Mao G, Tan J, et al. Identification of a new presenilin-dependent zeta-cleavage site within the transmembrane domain of amyloid precursor protein. J Biol Chem. 2004;279(49):50647–50650. doi: 10.1074/jbc.C400473200

[334]

Zhao G., Mao G., Tan J., et al. Identification of a new presenilin-dependent zeta-cleavage site within the transmembrane domain of amyloid precursor protein // J Biol Chem. 2004. Vol. 279, N 49. P. 50647–50650. doi: 10.1074/jbc.C400473200

[335]

Zhao J, Liu X, Xia W, et al. Targeting amyloidogenic processing of APP in Alzheimer’s disease. Front Mol Neurosci. 2020;13:137. doi: 10.3389/fnmol.2020.00137

[336]

Zhao J., Liu X., Xia W., et al. Targeting amyloidogenic processing of APP in Alzheimer’s disease // Front Mol Neurosci. 2020. Vol. 13. ID 137. doi: 10.3389/fnmol.2020.00137

[337]

Zhou R, Yang G, Guo X, et al. Recognition of the amyloid precursor protein by human gamma-secretase. Science. 2019;363(6428):eaaw0930. doi: 10.1126/science.aaw09

[338]

Zhou R., Yang G., Guo X., et al. Recognition of the amyloid precursor protein by human gamma-secretase // Science. 2019. Vol. 363, N 6428. ID eaaw0930. doi: 10.1126/science.aaw09

[339]

Zhou R, Yang G, Shi Y. Macromolecular complex in recognition and proteolysis of amyloid precursor protein in Alzheimer’s disease. Curr Opin Struct Biol. 2020;61:1–8. doi: 10.1016/j.sbi.2019.09.004

[340]

Zhou R., Yang G., Shi Y. Macromolecular complex in recognition and proteolysis of amyloid precursor protein in Alzheimer’s disease // Curr Opin Struct Biol. 2020. Vol. 61. P. 1–8. doi: 10.1016/j.sbi.2019.09.004

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/