Reinforcing systems of the brain and quantification of their work

P. D. Shabanov , Ya. B. Likhtman , A. A. Lebedev

Psychopharmacology & biological narcology ›› 2024, Vol. 15 ›› Issue (2) : 141 -153.

PDF (953KB)
Psychopharmacology & biological narcology ›› 2024, Vol. 15 ›› Issue (2) : 141 -153. DOI: 10.17816/phbn629590
Biological narcology
research-article

Reinforcing systems of the brain and quantification of their work

Author information +
History +
PDF (953KB)

Abstract

BACKGROUND: The reinforcing systems of the brain are represented by the ventral forbrain dopaminergic bundle, which innervates the emotiogenic structures of the limbic system. Their study shows the reproduction of unconditioned (self-stimulation, self-administration) and conditioned reflex (preference for place, temperature, color) reactions. The quantitative assessment of the brain’s reinforcing systems remains unclear. For self-stimulation of brain structures, the change of the pedal presses in the Skinner chamber and some calculated coefficients are used, for example, the “mismatch coefficient”, which characterizes the temporal characteristics of the pedal pressings. AIM: To develop, test, and substantiate an additional objective quantitative method for assessing the reinforcing systems of the brain, called the “addiction coefficient”, based on an analysis of the effect of three psychoactive compounds (amphetamine, morphine and ethanol) in different doses on self-stimulation of the lateral hypothalamus in rats. MATERIALS AND METHODS: The main method for studying the reinforcing systems of the brain was the reaction of self-stimulation of the lateral hypothalamus in Wistar rats, which was modulated by the administration of psychoactive substances. The psychomotor stimulant amphetamine (phenamine) hydrochloride (0.5, 1, 2, and 4 mg/kg), narcotic analgesic morphine hydrochloride (1, 2, 4, and 8 mg/kg), and ethanol (0.5, 1, 2, and 4 g/kg) administered intraperitoneally were used as inductors of reinforcing. The control was the administration of of 0.9% NaCl solution (0.1, 0.2, 0.4, and 0.8 ml/rat). RESULTS: The use of different controls, characterized by an increase or decrease in the self-stimulation reaction in response to the introduction of 0.9% NaCl solution, showed that calculated coefficients, including the “mismatch coefficient”, can change in different directions and do not objectively reflect the reinforcing effects of pharmacological substances. The proposed “addiction coefficient”, which reflected the component of psychic dependence, changed unidirectionally toward an increase. The degree of this increase can be tens and hundreds of percent of the control and is significantly independent of the initial values of self-stimulation. As expected, the “addiction coefficient” increased most clearly after amphetamine administration and less significantly after morphine and ethanol injections. CONCLUSIONS: The “addiction coefficient” of a psychoactive substance, calculated as the ratio of the increase in pedal presses to the value of the “mismatch coefficient”, is a clear quantitative indicator when assessing the reinforcing properties of psychoactive substances in the self-stimulation reaction of the lateral hypothalamus. The “addiction coefficient” does not significantly depend on the initial level of self-stimulation and is recommended for a comparative assessment of the reinforcing properties of primarily related psychoactive compounds.

Keywords

reinforcing systems of the brain / structural and functional organization / self-stimulation of the lateral hypothalamus / quantitative indicators / addiction coefficient / amphetamine / morphine / ethanol / pharmacological analysis / rats

Cite this article

Download citation ▾
P. D. Shabanov, Ya. B. Likhtman, A. A. Lebedev. Reinforcing systems of the brain and quantification of their work. Psychopharmacology & biological narcology, 2024, 15(2): 141-153 DOI:10.17816/phbn629590

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Velley L. Effects of ibotenic acid lesion in the basal forebrain on electrical self-stimulation in the middle part of the lateral hypothalamus. Behav Brain Res. 1986;20(3):303–311. doi: 10.1016/0166-4328(86)90230-5

[2]

Velley L. Effects of ibotenic acid lesion in the basal forebrain on electrical self-stimulation in the middle part of the lateral hypothalamus // Behav Brain Res. 1986. Vol. 20, N 3. P. 303–311. doi: 10.1016/0166-4328(86)90230-5

[3]

Björklund A, Lindvall O. Dopamine-containing systems in the CNS. Classical neurotransmitters in the CNS. In: Björklund A, Hökfelt T, editors. Part I. Handbook of chemical neuroanatomy. Vol. 2. Amsterdam-New York-Oxford: Elsevier, 1984. P. 55–122.

[4]

Björklund A., Lindvall O. Dopamine-containing systems in the CNS. Classical neurotransmitters in the CNS. In: Björklund A., Hökfelt T., editors. Part I. Handbook of chemical neuroanatomy. Vol. 2. Amsterdam-New York-Oxford: Elsevier; 1984. P. 55–122.

[5]

Koob GF. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci. 1992;13(5):177–180. doi: 10.1016/0165-6147(92)90060-J

[6]

Koob G.F. Drugs of abuse: anatomy, pharmacology and function of reward pathways // Trends Pharmacol Sci. 1992. Vol. 13, N 5. P. 177–180. doi: 10.1016/0165-6147(92)90060-J

[7]

Shabanov PD, Lebedev AA. The extended amygdala system and self-stimulation of the lateral hypothalamus in rats: modulation with opiates and opioids. Russian journal of physiology. 2011;97(2):180–188. EDN: NUWRXT

[8]

Шабанов П.Д., Лебедев А.А. Угнетение самостимуляции латерального гипоталамуса опиатами и опиоидами, вводимыми в центральное ядро миндалины у крыс // Российский физиологический журнал им. И.М. Сеченова. 2011. Т. 97, № 2. С. 180–188. EDN: NUWRXT

[9]

Shabanov PD, Lebedev AA, Yaklashkin AV. Significance of the GABA and dopamine system in the bed nucleus of the terminal striatum for the reinforcing effects of opioid and non-opioid narcogens on lateral hypothalamic self-stimulation in rats. Narcology. 2011;10(1):36–43. EDN: WTIBKJ (In Russ.)

[10]

Шабанов П.Д., Лебедев А.А., Яклашкин А.В. Значение системы ГАМК и дофамина в ядре ложа конечной полоски для подкрепляющих эффектов наркогенов опиоидной и неопиоидной структуры на самостимуляцию латерального гипоталамуса у крыс // Наркология. 2011. Т. 10, № 1. С. 36–43. EDN: WTIBKJ

[11]

Roik RO, Lebedev AA, Shabanov PD. The value of extended amygdala structures in emotive effects of narcogenic with diverse chemical structure. Res Results Pharmacol. 2019;5(3):11–19. doi: 10.3897/rrpharmacology.5.38389

[12]

Roik R.O., Lebedev A.A., Shabanov P.D. The value of extended amygdala structures in emotive effects of narcogenic with diverse chemical structure // Res Results Pharmacol. 2019. Vol. 5, N 3. P. 11–19. doi: 10.3897/rrpharmacology.5.38389

[13]

Shabanov PD, Lebedev AA. Dopaminergic and serotonergic components of the self-stimulation response of the rat lateral hypothalamus with destruction of the medial prefrontal cortex. Russian journal of physiology. 1994;80(1):19–25. EDN: VLLIDZ (In Russ.)

[14]

Шабанов П.Д., Лебедев А.А. Дофаминергический и серотонинергический компоненты реакции самостимуляции латерального гипоталамуса крыс с разрушением медиальной префронтальной коры // Физиологический журнал им. И.М. Сеченова. 1994. Т. 80, № 1. С. 19–25. EDN: VLLIDZ

[15]

Shabanov PD, Lebedev AA, Sheveleva MV, et al. Participation of the contiguous nucleus in the mechanisms of conditioned reinforcement in rats. Narcology. 2014;13(7):52–59. EDN: SJXQFD (In Russ.)

[16]

Шабанов П.Д., Лебедев А.А., Шевелева М.В., и др. Участие прилежащего ядра в механизмах условного подкрепления у крыс // Наркология. 2014. Т. 13, № 7. С. 52–59. EDN: SJXQFD

[17]

Droblenkov AV, Fedorov AV, Shabanov PD. Structural features of midbrain dopaminergic nuclei. Narcology. 2018;17(3):41–45. EDN: XPLLBZ doi: 10.25557/1682-8313.2018.03.41-45

[18]

Дробленков А.В., Федоров А.В., Шабанов П.Д. Структурные особенности дофаминергических ядер вентральной покрышки среднего мозга // Наркология. 2018. Т. 17, № 3. С. 41–45. EDN: XPLLBZ doi: 10.25557/1682-8313.2018.03.41-45

[19]

Grigoryan GA. Study of avoidance mechanisms during self-stimulation in rats. Neuroscience and Behavioral Physiology. 1976;26(6):1180–1187. (In Russ.)

[20]

Григорьян Г.А. Исследование механизмов избегания при самостимуляции у крыс // Журнал высшей нервной деятельности им. И.П. Павлова. 1976. Т. 26, № 6. С. 1180–1187.

[21]

Shabanov PD, Lebedev AA, Mescherov ShK. Dopamine and reinforcing systems of the brain. Saint Petersburg: Lan; 2002. 268 p. (In Russ.)

[22]

Шабанов П.Д., Лебедев А.А., Мещеров Ш.К. Дофамин и подкрепляющие системы мозга. Санкт-Петербург: Лань, 2002. 268 с.

[23]

Bazyan AS, Grigoryan GA. Molecular and chemical basis of emotional states and reinforcement. Progress in physiological science. 2006;37(1):68–83. EDN: HSXTXJ (In Russ.)

[24]

Базян А.С., Григорьян Г.А. Молекулярно-химические основы эмоциональных состояний и подкрепления // Успехи физиологических наук. 2006. Т. 37, № 1. С. 68–83. EDN: HSXTXJ

[25]

Lebedev AA, Shabanov PD. Comparison of self-stimulation and conditioned place preference responses to phenamine administration in rats. Neuroscience and Behavioral Physiology. EDN: TOTBIX 1992;42(4):692–698. (In Russ.)

[26]

Лебедев А.А., Шабанов П.Д. Сопоставление реакции самостимуляции и условного предпочтения места при введении фенамина у крыс // Журнал высшей нервной деятельности им. И.П. Павлова. 1992. Т. 42, № 4. С. 692–698. EDN: TOTBIX

[27]

Tsikunov SG. Emotiogenic principle of reinforcement in the formation of behaviour. Bulletin of the Russian Military Medical Academy. 2000;(1):26–29. (In Russ.)

[28]

Цикунов С.Г. Эмоциогенный принцип подкрепления в формировании поведения // Вестник Российской военно-медицинской академии. 2000. № 1. С. 26–29.

[29]

Shabanov PD, Lebedev AA, Lyubimov AV, Kornilov VA. Dynamics of brain self-stimulation reaction in rats after forced administration of psychoactive substances. Psychopharmacology and biological narcology. 2009;9(1):2524–2529. (In Russ.)

[30]

Шабанов П.Д., Лебедев А.А., Любимов А.В., Корнилов В.А. Динамика реакции самостимуляции мозга у крыс после форсированного введения психоактивных веществ // Психофармакология и биологическая наркология. 2009. Т. 9, № 1. С. 2524–2529.

[31]

Zwartau EE. Methodology of the study of drug intoxication: a scientific review. Uspensky AE, editor. Moscow: VINITI, 1988. 166 p. (In Russ.)

[32]

Звартау Э.Э. Методология изучения наркотоксикомании: научный обзор / под ред. А.Е. Успенского. Москва: ВИНИТИ, 1988. 166 с.

[33]

König JFR, Klippel RA. The rat brain: a stereotaxic atlas of the forebrain and lower parts of the brain stem. Baltimore: Williams and Wilkins, 1963. 162 p.

[34]

König J.F.R., Klippel R.A. The rat brain: a stereotaxic atlas of the forebrain and lower parts of the brain stem. Baltimore: Williams and Wilkins; 1963. 162 p.

[35]

1Shabanov PD. Narcology: a manual for doctors. 2nd ed. Moscow: GEOTAR-Media, 2012. 829 p. (In Russ.)

[36]

Шабанов П.Д. Наркология: руководство для врачей. 2-е изд. Москва: ГЭОТАР-Медиа, 2012. 829 с.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (953KB)

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/