Effectiveness of ethylmethylhydroxypyridine succinate in alcohol withdrawal
Elena N. Yakusheva , Alexey V. Shchulkin , Yulia V. Abalenikhina
Psychopharmacology & biological narcology ›› 2024, Vol. 15 ›› Issue (1) : 61 -68.
Effectiveness of ethylmethylhydroxypyridine succinate in alcohol withdrawal
BACKGROUND: Alcohol (ethanol) use disorder is a destructive condition with alterations in impaired energy and metabolic processes and activation of free radical oxidation processes. Therefore, the use of antioxidants in the complex therapy of this pathology is pathogenetically justified, one of which is the original domestic drug ethylmethylhydroxypyridine succinate.
AIM: To examine the effectiveness of ethylmethylhydroxypyridine succinate in intravenous, intramuscular, and intragastric methods of administration to male ICR mice in modeling alcohol withdrawal.
MATERIALS AND METHODS: The study was performed on 9- to 10-week-old male specific pathogen-free mice of the ICR outflow with an average weight of 25.4 ± 0.2 g. Alcohol dependence in animals was modeled by a gradual increase in ethanol in the drinker from 1% to 3%, 6%, and 10% every 2 days. Upon reaching a concentration of 10%, the animals were given one bottle of alcohol and one bottle of water every other day and two bottles of alcohol on intermediate days. The position of the bottles (left/right) was changed between each alcohol access session. After 6 weeks, 10% alcohol was removed. The administration of ethylmethylhydroxypyridine succinate and saline solution (control group) was started twice a day for 7 days. Ethylmethylhydroxypyridine succinate was administered intravenously (50 and 100 mg/kg), intramuscularly (50 and 100 mg/kg), and intragastrically (100 and 150 mg/kg).
RESULTS: Ethylmethylhydroxypyridine succinate was administered intravenously (50 and 100 mg/kg), intramuscularly (50 and 100 mg/kg), and intragastrically (100 and 150 mg/kg) two times a day for 7 days resulted in the manifestations of alcohol withdrawal in ICR mice with alcohol dependence. It had pronounced pharmacological activity, which manifested in a decrease in alcohol consumption, improvement of horizontal and vertical activities, improvement of movement coordination, and a decrease in the severity of withdrawal syndrome detected in the nesting ability test.
CONCLUSION: When administered intravenously (50 and 100 mg/kg), intramuscularly (50 and 100 mg/kg), and intragastrically (100 and 150 mg/kg) to male mice, ICR had a pronounced therapeutic effect in modeling alcohol withdrawal.
ethylmethylhydroxypyridine succinate / chronic alcohol intoxication / ICR drain mouse SPF
| [1] |
Glantz MD, Bharat C, Degenhardt L, et al. The epidemiology of alcohol use disorders cross-nationally: Findings from the World Mental Health Surveys. Addict Behav. 2020;102:106128. doi: 10.1016/j.addbeh.2019.106128 |
| [2] |
Glantz M.D., Bharat C., Degenhardt L., et al. The epidemiology of alcohol use disorders cross-nationally: Findings from the World Mental Health Surveys // Addict Behav. 2020. Vol. 102. ID 106128. doi: 10.1016/j.addbeh.2019.106128 |
| [3] |
Brière FN, Rohde P, Seeley JR, et al. Comorbidity between major depression and alcohol use disorder from adolescence to adulthood. Compr Psychiatry. 2014;55(3):526–533. doi: 10.1016/j.comppsych.2013.10.007. |
| [4] |
Brière F.N., Rohde P., Seeley J.R., et al. Comorbidity between major depression and alcohol use disorder from adolescence to adulthood // Compr Psychiatry. 2014. Vol. 55, N. 3. Р. 526–533. doi: 10.1016/j.comppsych.2013.10.007. |
| [5] |
Farren CK, Hill KP, Weiss RD. Bipolar disorder and alcohol use disorder: A Review. Curr Psychiatry Rep. 2012;6(14):659–666. doi: 10.1007/s11920-012-0320-9 |
| [6] |
Farren C.K., Hill K.P., Weiss R.D. Bipolar disorder and alcohol use disorder: A Review // Curr Psychiatry Rep. 2012. Vol. 6, N. 14. Р. 659–666. doi: 10.1007/s11920-012-0320-9 |
| [7] |
Schneier FR, Foose TE, Hasin DS, et al. Social anxiety disorder and alcohol use disorder co-morbidity in the National Epidemiologic Survey on Alcohol and Related Conditions. Psychol Med. 2010;40(6):977–988. doi: 10.1017/S0033291709991231 |
| [8] |
Schneier F.R., Foose T.E., Hasin D.S., et al. Social anxiety disorder and alcohol use disorder co-morbidity in the National Epidemiologic Survey on Alcohol and Related Conditions // Psychol Med. 2010. Vol. 40, N. 6. Р. 977–988. doi: 10.1017/S0033291709991231 |
| [9] |
Prior K, Mills K, Ross J, Teesson M. Substance use disorders comorbid with mood and anxiety disorders in the Australian general population. Drug Alcohol Rev. 2017;36(3):317–324. doi: 10.1111/dar.12419 |
| [10] |
Prior K., Mills K., Ross J., Teesson M. Substance use disorders comorbid with mood and anxiety disorders in the Australian general population // Drug Alcohol Rev. 2017. Vol. 36, N. 3. Р. 317–324. doi: 10.1111/dar.12419 |
| [11] |
Beraha EM, Salemink E, Goudriaan AE, et al. Efficacy and safety of high-dose baclofen for the treatment of alcohol dependence: A multicentre, randomised, double-blind controlled trial. Eur Neuropsychopharmacol. 2016;26(12):1950–1959. doi: 10.1016/j.euroneuro.2016.10.006 |
| [12] |
Beraha E.M., Salemink E., Goudriaan A.E., et al. Efficacy and safety of high-dose baclofen for the treatment of alcohol dependence: A multicentre, randomised, double-blind controlled trial // Eur Neuropsychopharmacol. 2016. Vol. 26, N. 12. P. 1950–1959. doi: 10.1016/j.euroneuro.2016.10.006 |
| [13] |
Pereira RB, Andrade PB, Valentão P. A comprehensive view of the neurotoxicity mechanisms of cocaine and ethanol. Neurotox Res. 2015;28(3):253–267. doi: 10.1007/s12640-015-9536-x |
| [14] |
Pereira R.B., Andrade P.B., Valentão P. A comprehensive view of the neurotoxicity mechanisms of cocaine and ethanol // Neurotox Res. 2015. Vol. 28, N. 3. Р. 253–267. doi: 10.1007/s12640-015-9536-x |
| [15] |
Vranjkovic O, Winkler G, Winder DG. Ketamine administration during a critical period after forced ethanol abstinence inhibits the development of time-dependent affective disturbances. Neuropsychopharmacology. 2018;43(9):1915–1923. doi: 10.1038/s41386-018-0102-0 |
| [16] |
Vranjkovic O., Winkler G., Winder D.G. Ketamine administration during a critical period after forced ethanol abstinence inhibits the development of time-dependent affective disturbances // Neuropsychopharmacology. 2018. Vol. 43, N. 9. Р. 1915–1923. doi: 10.1038/s41386-018-0102-0 |
| [17] |
Holleran KM, Wilson HH, Fetterly TL, et al. Ketamine and MAG lipase inhibitor-dependent reversal of evolving depressive-like behavior during forced abstinence from alcohol drinking. Neuropsychopharmacology. 2016;41(8):2062–2071. doi: 10.1038/npp.2016.3 |
| [18] |
Holleran K.M., Wilson H.H., Fetterly T.L., et al. Ketamine and MAG lipase inhibitor-dependent reversal of evolving depressive-like behavior during forced abstinence from alcohol drinking // Neuropsychopharmacology. 2016. Vol. 41, N. 8. Р. 2062–2071. doi: 10.1038/npp.2016.3 |
| [19] |
Haorah J, Ramirez SH, Floreani N, et al. Mechanism of alcohol-induced oxidative stress and neuronal injury. Free Radic Biol Med. 2008;45(11):1542–1550. doi: 10.1016/j.freeradbiomed.2008.08.030 |
| [20] |
Haorah J., Ramirez S.H., Floreani N., et al. Mechanism of alcohol-induced oxidative stress and neuronal injury // Free Radic Biol Med. 2008. Vol. 45, N. 11. P. 1542–1550. doi: 10.1016/j.freeradbiomed.2008.08.030 |
| [21] |
Bailey SM, Cunningham CC. Acute and chronic ethanol increases reactive oxygen species generation and decreases viability in fresh, isolated rat hepatocytes. Hepatology. 1998;28(5):1318–1326. doi: 10.1002/hep.510280521 |
| [22] |
Bailey S.M., Cunningham C.C. Acute and chronic ethanol increases reactive oxygen species generation and decreases viability in fresh, isolated rat hepatocytes // Hepatology. 1998. Vol. 28, N. 5. Р. 1318–1326. doi: 10.1002/hep.510280521 |
| [23] |
Tsermpini EE, Plemenitaš IA, Dolžan V. Alcohol-induced oxidative stress and the role of antioxidants in alcohol use disorder: a systematic review. Antioxidants (Basel). 2022;11(7):1374. doi: 10.3390/antiox11071374 |
| [24] |
Tsermpini E.E., Plemenitaš I.A., Dolžan V. Alcohol-induced oxidative stress and the role of antioxidants in alcohol use disorder: a systematic review // Antioxidants (Basel). 2022. Vol. 11, N. 7. ID 1374. doi: 10.3390/antiox11071374 |
| [25] |
Hernández JA, López-Sánchez RC, Rendón-Ramírez A. Lipids and oxidative stress associated with ethanol-induced neurological damage. Oxid Med Cell Longev. 2016;2016:1543809. doi: 10.1155/2016/1543809 |
| [26] |
Hernández J.A., López-Sánchez R.C., Rendón-Ramírez A. Lipids and oxidative stress associated with ethanol-induced neurological damage // Oxid Med Cell Longev. 2016. Vol. 2016. ID 1543809. doi: 10.1155/2016/1543809 |
| [27] |
Sun M, Wu C, Liu L, et al. Interplay between the renin angiotensin system and oxidative stress contributes to alcohol addiction by stimulating dopamine accumulation in the mesolimbic pathway. Biochem Pharmacol. 2023;212:115578. doi: 10.1016/j.bcp.2023.115578 |
| [28] |
Sun M., Wu C., Liu L., et al. Interplay between the renin angiotensin system and oxidative stress contributes to alcohol addiction by stimulating dopamine accumulation in the mesolimbic pathway // Biochem Pharmacol. 2023. Vol. 212. ID 115578. doi: 10.1016/j.bcp.2023.115578 |
| [29] |
Shchulkin AV. A modern concept of antihypoxic and antioxidant effects of mexidol. S.S. Korsakov journal of neurology and psychiatry. 2018;118(12-2):87–93. EDN: PPTGEP doi: 10.17116/jnevro201811812287 |
| [30] |
Щулькин А.В. Современные представления об антигипоксическом и антиоксидантном эффектах мексидола // Журнал неврологии и психиатрии им. С.С. Корсакова. 2018. Т. 118, № 12-2. С. 87–93. EDN: PPTGEP doi: 10.17116/jnevro201811812287 |
| [31] |
Sanchez M, Hamel D, Bajon E, et al. The succinate receptor SUCNR1 resides at the endoplasmic reticulum and relocates to the plasma membrane in hypoxic conditions. Cells. 2022;11(14):2185. doi: 10.3390/cells11142185 |
| [32] |
Sanchez M., Hamel D., Bajon E., et al. The succinate receptor SUCNR1 resides at the endoplasmic reticulum and relocates to the plasma membrane in hypoxic conditions // Cells. 2022. Vol. 11, N. 14. ID 2185. doi: 10.3390/cells11142185 |
| [33] |
Voronina TA. Antioxidant mexidol. Main neuropsychotropic effects and mechanism of action. Psychopharmacology and biological narcology. 2001;1(1):2–12. (In Russ.) |
| [34] |
Воронина Т.А. Антиоксидант мексидол. Основные нейропсихотропные эффекты и механизм действия // Психофармакология и биологическая наркология. 2001. Т. 1, № 1. С. 2–12. |
| [35] |
Vostrikov VV. The use of cytoflavin in the post-withdrawal period in patients with alcohol dependence. Psychopharmacology and biological narcology. 2023;14(3):193–201. EDN: FNEBZH doi: 10.17816/phbn567969 |
| [36] |
Востриков В.В. Применение Цитофлавина в постабстинентном периоде у пациентов с алкогольной зависимостью // Психофармакология и биологическая наркология. 2023. Т. 14, № 3. С. 193–201. EDN: FNEBZH doi: 10.17816/phbn567969 |
Eco-Vector
/
| 〈 |
|
〉 |