Why does a warm-blooded organism rapidly regulates body temperature in the thermoneutral zone
Yury I. Luchakov , Petr D. Shabanov
Psychopharmacology & biological narcology ›› 2023, Vol. 14 ›› Issue (3) : 209 -215.
Why does a warm-blooded organism rapidly regulates body temperature in the thermoneutral zone
In work, the analysis of thermal homeostasis in the human body and homoiotherm animals. It is shown that the temperature in the internal tissues of the body (the nucleus of the body) is high and relatively consistent because it is maintained via heat transfer through the blood flow. The presence in peripheral tissues (the body shell) is mainly due to conductive heat transfer (due to temperature gradients at various points of the tissues). Thermal homeostasis occurs when the temperature of the medium fluctuates within the thermoneutral zone in the internal tissues of the body, primarily due to changes in the size of the nucleus and shell rather than changes in heat output to the external environment or heat production. Owing to this mechanism of heat transfer in the tissues, a rapid thermal homeostasis of the internal tissues of the body is carried out when the temperature of the medium changes within the thermoneutral zone.
convective and conductive heat transfer / model / temperature / thermal neutral zone
| [1] |
Fiziologiya cheloveka i zhivotnykh. Ed. by V.Ya. Apchel, Yu.A. Darinskii, V.N. Golubev, et al. Moscow: Akademiya; 2011. (In Russ.) |
| [2] |
Физиология человека и животных / под ред. В.Я. Апчела, Ю.А. Даринского, В.Н. Голубева и др. Москва: Академия, 2011. |
| [3] |
Brin VB. Normal’naya fiziologiya: uchebnik. Ed. by B. I. Tkachenko. Moscow: GEOTAR-Media; 2016. (In Russ.) |
| [4] |
Брин В.Б. Нормальная физиология: учебник / под ред. Б.И. Ткаченко. Москва: ГЭОТАР-Медиа, 2016 |
| [5] |
Dymnikova LP, Ivanov KP. Kolebaniya temperatury tela i temperaturnoi chuvstvitel’nosti gipotalamusa. Fiziologicheskii zhurnal SSSR. 1969;55(3):295–300. (In Russ.) |
| [6] |
Дымникова Л.П., Иванов К.П. Колебания температуры тела и температурной чувствительности гипоталамуса // Физиологический журнал СССР. 1969. Т. 55, № 3. С. 295–300. |
| [7] |
Ivanov KP. Osnovy energetiki organizma. Pt. 1. Leningrad: Nauka; 1990. (In Russ.) |
| [8] |
Иванов К.П. Основы энергетики организма. Т. 1. Ленинград: Наука, 1990. |
| [9] |
Ivanov KP. Sovremennye teoreticheskie i prakticheskie problemy gomoiotermii i termoregulyatsii. Rossiiskii fiziologicheskii zhurnal im. I.M. Sechenova. 2006;92(5):578–592. (In Russ.) |
| [10] |
Иванов К.П. Современные теоретические и практические проблемы гомойотермии и терморегуляции // Российский физиологический журнал им. И.М. Сеченова. 2006. Т. 92, № 5. С. 578–592. |
| [11] |
Ivanov KP. Razvitie energetiki v evolyutsii zhivogo mira (etapy, chisla, postulaty). Zhurnal evolyutsionnoi biokhimii i fiziologii. 2010;46(2):167–175. (In Russ.) |
| [12] |
Иванов К.П. Развитие энергетики в эволюции живого мира (этапы, числа, постулаты) // Журнал эволюционной биохимии и физиологии. 2010. Т. 46, № 2. С. 167–175. |
| [13] |
Luchakov YuI, Shabanov PD. Teplovoi gomeostazis krolika v termoneitral’noi zone. Rossiiskii fiziologicheskii zhurnal im. I.M. Sechenova. 2013;99(9):1089–1096. (In Russ.) |
| [14] |
Лучаков Ю.И., Шабанов П.Д. Тепловой гомеостазис кролика в термонейтральной зоне // Российский физиологический журнал им. И.М. Сеченова. 2013. Т. 99, № 9. С. 1089–1096. |
| [15] |
Luchakov YuI, Shabanov PD, Nesmeyanov AA, et al. Vliyanie sootnosheniya razmerov yadra i obolochki na teplovoi gomeostaz nekotorykh zhivotnykh. Vestnik novykh meditsinskikh tekhnologii. 2014;(1). (In Russ.) DOI: 10.12737/3862 |
| [16] |
Лучаков Ю.И., Шабанов П.Д., Несмеянов А.А., и др. Влияние соотношения размеров ядра и оболочки на тепловой гомеостаз некоторых животных // Вестник новых медицинских технологий. 2014. № 1. DOI: 10.12737/3862 |
| [17] |
Luchakov YuI. Perenos tepla v tkanyakh gomoiotermnogo organizma. Klinicheskaya meditsina i farmakologiya. 2017;3(1):39–45. DOI: 10.12737/article_59300a8b49e788.61178934 |
| [18] |
Лучаков Ю.И. Перенос тепла в тканях гомойотермного организма // Клиническая медицина и фармакология. 2017. Т. 3. № 1. С. 39–45. DOI: 10.12737/article_59300a8b49e788.61178934 |
| [19] |
Savina MV. Mekhanizmy adaptatsii tkanevogo dykhaniya v evolyutsii pozvonochnykh. Saint Petersburg: Nauka; 1992. (In Russ.) |
| [20] |
Савина М.В. Механизмы адаптации тканевого дыхания в эволюции позвоночных. Санкт-Петербург: Наука, 1992. |
| [21] |
Boulant DA. Neuronal basis of Hammel’s model for set-point thermoregulation. J Appl Physiol. 2006;100(4):1347–1354. DOI: 10.1152/japplphysiol.01064.2005 |
| [22] |
Boulant D.A. Neuronal basis of Hammel’s model for set-point thermoregulation // J. Appl. Physiol. 2006. Vol. 100, No. 4. P. 1347–1354. DOI: 10.1152/japplphysiol.01064.2005 |
| [23] |
Fanger PO. Thermal comfort. Copenhagen: Danish Technical Press; 1970. |
| [24] |
Fanger P.O. Thermal comfort. Copenhagen: Danish Technical Press, 1970. |
| [25] |
Griffin JD, Saper CB, Jack A, et al. Synaptic and morphological characteristics of temperature-sensitive and -insensitive rat hypothalamic neurons. J. Physiol. 2001;537(Pt 2):521–535. |
| [26] |
Griffin J.D., Saper C.B., Jack A., et al. Synaptic and morphological characteristics of temperature-sensitive and -insensitive rat hypothalamic neurons // J. Physiol. 2001. Vol. 537, Pt. 2. P. 521–535. |
| [27] |
Lichtenbelt WDM, Frijns AJH, Ooijen MJ, et al. Validation of an in individualised model of human thermoregulation for predicting responses to cold air. J Biometeorol. 2007;51(3):169–179. DOI: 10.1007/s00484-006-0060-9 |
| [28] |
Lichtenbelt W.D.M., Frijns A.J.H., Ooijen M.J., et al. Validation of an in individualised model of human thermoregulation for predicting responses to cold air // J. Biometeorol. 2007. Vol. 51. No. 3. P. 169–179. DOI: 10.1007/s00484-006-0060-9 |
| [29] |
Madden CJ, Morrison SF. Central nervous system circuits that control body temperature. Neurosci Lett. 2019;696:225–232. DOI: 10.1016/j.neulet.2018.11.027 |
| [30] |
Madden C.J., Morrison S.F. Central nervous system circuits that control body temperature // Neurosci. Lett. 2019. Vol. 696. P. 225–232. DOI: 10.1016/j.neulet.2018.11.027 |
| [31] |
Mekjavic IB, Eiken O. Contribution of thermal and nonthermal factors to the regulation of body temperature in humans. J Appl Physiol. 2006;100(6):2065–2072. DOI: 10.1152/japplphysiol.01118.2005 |
| [32] |
Mekjavic I.B., Eiken O. Contribution of thermal and nonthermal factors to the regulation of body temperature in humans // J. Appl. Physiol. 2006. Vol. 100, No. 6. P. 2065–2072. DOI: 10.1152/japplphysiol.01118.2005 |
| [33] |
Morrison SF.Central neural control of thermoregulation and brown adipose. Auton. Neurosci. 2016;196:14–24. DOI: 10.1016/j.autneu.2016.02.010 |
| [34] |
Morrison S.F. Central neural control of thermoregulation and brown adipose // Auton. Neurosci. 2016. Vol. 196. P. 1–24. DOI: 10.1016/j.autneu.2016.02.010 |
| [35] |
Morrison S.F. Efferent neural pathways for the control of brown adipose tissue thermogenesis and shivering. Handb Clin Neurol. 2018;156:281–303. DOI: 10.1016/B978-0-444-63912-7.00017-5 |
| [36] |
Morrison S.F. Efferent neural pathways for the control of brown adipose tissue thermogenesis and shivering // Handb. Clin. Neurol. 2018. Vol. 156. P. 281–303. DOI: 10.1016/B978-0-444-63912-7.00017-5 |
| [37] |
Romanovsky AA. Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):37–46. DOI: 10.1152/ajpregu.00668.2006 |
| [38] |
Romanovsky A.A. Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system // Amer. J. Physiol. Regul. Integr. Comp. Physiol. 2007. Vol. 292, No. 1. P. 37–46. DOI: 10.1152/ajpregu.00668.2006 |
| [39] |
Tan CL, Knight ZA. Regulation of body temperature by the nervous system. Neuron. 2018;98(1):31–48. DOI: 10.1016/j.neuron.2018.02.022 |
| [40] |
Tan C.L., Knight Z.A. Regulation of body temperature by the nervous system // Neuron. 2018. Vol. 98, No. 1. P. 31–48. DOI: 10.1016/j.neuron.2018.02.022 |
| [41] |
Werner J. System properties, feedback control and effector coordination of human temperature regulation. Eur J Appl Physiol. 2010;109(1):13–25. DOI: 10.1007/s00421-009-1216-1 |
| [42] |
Werner J. System properties, feedback control and effector coordination of human temperature regulation // Eur. J. Appl. Physiol. 2010. Vol. 109, No. 1. P. 13–25. DOI: 10.1007/s00421-009-1216-1 |
| [43] |
Zhao ZD, Yang WZ, Gao C, et al. A hypothalamic circuit that controls body temperature. Natl Acad Sci USA. 2017;114(8):2042–2047. DOI: 10.1073/pnas.1616255114 |
| [44] |
Zhao Z.D., Yang W.Z., Gao C., et al. A hypothalamic circuit that controls body temperature // Natl. Acad. Sci. USA. 2017. Vol. 114, No. 8. P. 2042–2047. DOI: 10.1073/pnas.1616255114 |
Eco-Vector
/
| 〈 |
|
〉 |