The history of the Department of Pharmacology, Institute of Experimental Medicine (to the 100th anniversary of the department)

Petr D. Shabanov

Psychopharmacology & biological narcology ›› 2023, Vol. 14 ›› Issue (3) : 169 -184.

PDF
Psychopharmacology & biological narcology ›› 2023, Vol. 14 ›› Issue (3) : 169 -184. DOI: 10.17816/phbn567967
History
research-article

The history of the Department of Pharmacology, Institute of Experimental Medicine (to the 100th anniversary of the department)

Author information +
History +
PDF

Abstract

The Department of Pharmacology of the Institute of Experimental Medicine was established in the autumn of 1923 on the initiative of the institute’s leadership. Professor Nikolai Pavlovich Kravkov (1865–1924), the most respected domestic pharmacologist at that time and the head of the Department of Pharmacology of the Military Medical Academy, was invited as the alleged head of the department. However, N.P. Kravkov’s untimely death in April 1924 precluded the department from developing extensive research in Pharmacology. Professor Vladimir Vasilyevich Savich (1874–1936), a student of I.P. Pavlov who focused his main research on the effect of medicinal substances on the nervous regulation of the cardiovascular system, gastrointestinal tract, endocrine system, and water metabolism, led the department from 1924 to 1936. The mechanism of the direct impact of drugs and poisons on organs and tissues was studied using both isolated organs, notably endocrine glands, and classical conditioned reflex techniques. In 1936, the department was disbanded in connection with the death of the head (V.V. Savich) and the reorganization of the institute’s structure. Professor S.V. Anichkov (1892–1981), who later became the Hero of Socialist Labor, laureate of the Lenin and State Prizes of the USSR, and academician of the USSR Academy of Medical Sciences, revived the department in 1948 and remained its permanent head until his death (in July 1981). Along with him were well-known researchers Professors V.M. Karasik, N.V. Khromov-Borisov, I.S. Zavodskaya (who led the department from 1981 to 1984), Y.S. Borodkin (who led the department from 1984 to 1992), N.A. Kharauzov, V.E. Ryzhenkov, N.S. Sapronov (who led the department from 1992 to 2011), P.P. Denisenko, and N.A. Losev. The main focus of the department from 1948 to 1984 was the integration of fundamental pharmacological advancements with the introduction of drugs into healthcare practice. Currently, the Department of Neuropharmacology. S.V. Anichkova is one of the largest research centers in Russia, focusing on fundamental research in Pharmacology. Professor P.D. Shabanov has been the head of the department since 2011. The department divided into four laboratories: the Laboratory of Chemistry and Pharmacology of Medicinal Products (led by Doctor of Medical Sciences, E.R. Bychkov), the Laboratory of General Pharmacology (led by Doctor of Biological Sciences, Prof. A.A. Lebedev), the Laboratory of Biochemical Pharmacology (led by Doctor of Medical Sciences, Prof. P.D. Shabanov), and the Laboratory of Synthesis and Nanotechnology of Medicinal Substances (led by Doctor of Biological Sciences, Prof. L.B. Piotrovsky).

Keywords

Department of Pharmacology / Institute of Experimental Medicine / research areas / structure

Cite this article

Download citation ▾
Petr D. Shabanov. The history of the Department of Pharmacology, Institute of Experimental Medicine (to the 100th anniversary of the department). Psychopharmacology & biological narcology, 2023, 14(3): 169-184 DOI:10.17816/phbn567967

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shabanov PD. Department of pharmacology at the imperial medical and surgical academy: the first 100 years (1798–1898). Psychopharmacology & biological narcology. 2023;14(1):23–39. (In Russ.) DOI: 10.17816/phbn321614

[2]

Шабанов П.Д. Кафедра фармакологии Императорской Медико-хирургической академии: первые 100 лет (1798–1898) // Психофармакология и биологическая наркология. 2023. Т. 14, № 1. C. 23–39. DOI: 10.17816/phbn321614

[3]

Losev NA, Sapronov NS, Khnychenko LK, et al. Farmakologiya novykh kholinergicheskikh sredstv (farmakologiya — klinike). Saint Petersburg: Art-Xpress; 2015. (In Russ.)

[4]

Лосев Н.А., Сапронов Н.С., Хныченко Л.К., и др. Фармакология новых холинергических средств (фармакология — клинике). Санкт-Петербург: Art-Xpress, 2015.

[5]

Yakovleva EE, Foksha SP, Brusina MA, et al. Studying the anticonvulsive activity of new ligands of NDMA-receptor complex — imidazole-4,5-dicarbonic acid derivatives. Reviews on Clinical Pharmacology and Drug Therapy. 2020;18(2):149–154. DOI: 10.17816/RCF182149-154

[6]

Яковлева Е.Е., Фокша С.П., Брусина М.А., и др. Исследование противосудорожной активности новых лигандов NMDA-рецепторного комплекса — производных имидазол-4,5-дикарбоновых кислот // Обзоры по клинической фармакологии и лекарственной терапии. 2020. Т. 18. № 2. C. 149–154. DOI: 10.17816/RCF182149-15

[7]

Yakovleva EE, Bychkov ER, Brusina MA, et al. Pharmacological activity of new imidazole-4,5-dicarboxylic acid derivatives in dopaminergic transmission suppression ttests in mice and rats. Research Results in Pharmacology. 2020;6(4):51–57. DOI: 10.3897/rrpharmacology.6.57883

[8]

Yakovleva E.E., Bychkov E.R., Brusina M.A., et al. Pharmacological activity of new imidazole-4,5-dicarboxylic acid derivatives in dopaminergic transmission suppression ttests in mice and rats // Research Results in Pharmacology. Vol. 6, No. 4. P. 51–57. DOI: 10.3897/rrpharmacology.6.57883

[9]

Khnychenko LK, Yakovleva EE, Bychkov ER, et al. Effects of fluorencarbonic acid derivative on the levels of monoamines and their metabolites in brain structures of rats with modeled depression-like state. Bull Exp Biol Med. 2017. 163(5):632–634. DOI: 10.1007/s10517-017-3866-z

[10]

Khnychenko L.K., Yakovleva E.E., Bychkov E.R., et al. Effects of fluorencarbonic acid derivative on the levels of monoamines and their metabolites in brain structures of rats with modeled depression-like state // Bull. Exp. Biol. Med. 2017. Vol. 163, No. 5. P. 632–634. DOI: 10.1007/s10517-017-3866-z

[11]

Khnychenko LK, Yakovleva EE. Synthesis and pharmacological activity of 2-(diethylamino)ethyl 9-hydroxy-9H-fluorene-9-carboxylate hydrochloride. Pharm Chem J. 2019;53:216–219. DOI: 10.1007/s11094-019-01982-5

[12]

Khnychenko L.K., Yakovleva E.E. Synthesis and pharmacological activity of 2-(diethylamino) ethyl 9-hydroxy-9H-fluorene-9-carboxylate hydrochloride // Pharm. Chem. J. 2019. Vol. 53. P. 216–219. DOI: 10.1007/s11094-019-01982-5

[13]

Gmiro VE, Serdyuk SE, Veselkina OS. Synthesis and pharmacological properties of 1-(6-aminohexylamino)-1-phenylcyclohexyl dihydrochloride (IEM-2062) as compared with memantine. Pharm Chem J. 2019;53(1):29–34. DOI: 10.1007/s11094-019-01950-z

[14]

Gmiro V.E., Serdyuk S.E., Veselkina O.S. Synthesis and pharmacological properties of 1-(6-aminohexylamino)-1-phenylcyclohexyl dihydrochloride (IEM-2062) as compared with memantine // Pharm. Chem. J. 2019. Vol. 53, No. 1. P. 29–34. DOI: 10.1007/s11094-019-01950-z

[15]

Gmiro VE, Serdyuk SE, Veselkina OS. Comparison of the chronic anticonvulsant activity and safety of IEM-1913, sodium valproate, IEM-1676, and memantine in experiments on rats. Neurosci Behav Physiol. 2019;49(3):306–314. DOI: 10.1007/s11055-019-00733

[16]

Gmiro V.E., Serdyuk S.E., Veselkina O.S. Comparison of the chronic anticonvulsant activity and safety of IEM-1913, sodium valproate, IEM-1676, and memantine in experiments on rats // Neurosci. Behav. Physiol. 2019. Vol. 49, No. 3. P. 306–314. DOI: 10.1007/s11055-019-00733

[17]

Gmiro VE, Serdyuk SE. Stimulation of vagus by phenylephrine increases the efficiency and safety of antidepressants and anti-epileptics. Eur J Gen Med. 2019;2(1):7–9. DOI: 10.31487/j.ejgm.2019.01.01

[18]

Gmiro V.E., Serdyuk S.E. Stimulation of vagus by phenylephrine increases the efficiency and safety of antidepressants and anti-epileptics // Eur. J. Gen. Med. 2019. Vol. 2, No. 1. P. 7–9. DOI: 10.31487/j.ejgm.2019.01.01

[19]

Rodionova OM, Safonova AF, Kashirin AO, et al. The influence of new coumarin derivatives on survival rate of mice in model conditions of acute hypoxia. Medical academic journal. 2019;19(4):103–108. (In Russ.) DOI: 10.17816/MAJ19258

[20]

Родионова О.М., Сафонова А.Ф., Каширин А.О., и др. Влияние новых производных кумарина на выживаемость мышей в модельных условиях острой гипоксии // Медицинский академический журнал. 2019. Т. 19, № 4. C. 103–108. DOI: 10.17816/MAJ19258

[21]

Yakovleva EE, Myznikov LV, Shabanov PD. Comparison of the anticonvulsant activities of substituted hydroxycoumarins and 4-[(3-nitro-2-oxo-2H-chromen-4-yl]amino]butanoic acid. Pharmaceutical Chemistry Journal. 2020;54(9):904–908. (In Russ.) DOI: 10.30906/0023-1134-2020-54-9-22-26

[22]

Яковлева Е.Е., Мызников Л.В., Шабанов П.Д. Сравнение противосудорожной активности замещенных оксикумаринов и 4-[(3-нитро-2-оксо-2H-хромен-4-ил)амино]бутановой кислоты // Химико-фармацевтический журнал. 2020. Т. 54, № 9. С. 22–26. DOI: 10.30906/0023-1134-2020-54-9-22-26

[23]

Lizunov AV, Okunevich IV, Lebedev AA, et al. Molecular mechanisms of the cytoprotector cramizol effect in the experimental dyslipidemia model. Biomeditsinskaya Khimiya, 2020;66(4):326–331. (In Russ.) DOI: 10.18097/PBMC20206604326

[24]

Лизунов А.В., Окуневич И.В., Лебедев А.А., и др. Молекулярные механизмы гиполипидемического действия цитопротектора крамизола при экспериментальной дислипидемии // Биомедицинская химия. 2020. Т. 66, № 4. С. 326–331. DOI: 10.18097/PBMC20206604326

[25]

Lebedev AA, Bessolova YN, Efimov NS, et al. Role of orexin peptide system in emotional overeating induced by brain reward stimulation in fed rats. Research Results in Pharmacology. 2020;6(2):81–91. DOI: 10.3897/rrpharmacology.6.52180

[26]

Lebedev A.A., Bessolova Y.N., Efimov N.S., et al. Role of orexin peptide system in emotional overeating induced by brain reward stimulation in fed rats // Research Results in Pharmacology. 2020. Vol. 6, No. 2. P. 81–91. DOI: 10.3897/rrpharmacology.6.52180

[27]

Lebedev A, Khokhlov P, Tissen I, et al. Expression of gambling elements is connected with content of desacyl-ghrelin in the limbic structures and the brain receptors activity. Eur. Neuropsychopharmacol. 2019;29(6):S109–S110. DOI: 10.1038/s41598-019-38549

[28]

Lebedev A., Khokhlov P., Tissen I., et al. Expression of gambling elements is connected with content of desacyl-ghrelin in the limbic structures and the brain receptors activity // Eur. Neuropsychopharmacol. 2019. Vol. 29, No. 6. P. S109–S110. DOI: 10.1038/s41598-019-38549

[29]

Tissen I, Lebedev A, Shabanov P, et al. OX1R antagonist SB408124 action and extrahypothalamic CRF in rats after psychotraumatic exposure. Georgian Med News. 2019;(290):127–131.

[30]

Tissen I., Lebedev A., Shabanov P., et al. OX1R antagonist SB408124 action and extrahypothalamic CRF in rats after psychotraumatic exposure // Georgian Med. News. 2019. No. 290. P. 127–131.

[31]

Roik RO, Lebedev AA, Shabanov PD. The value of extended amygdala structures in emotive effects of narcogenic with diverse chemical structure. Research Results in Pharmacology. 2019;5(3):11–19. DOI: 10.3897/rrpharmacology.5.38389

[32]

Roik R.O., Lebedev A.A., Shabanov P.D. The value of extended amygdala structures in emotive effects of narcogenic with diverse chemical structure // Research Results in Pharmacology. 2019. Vol. 5, No. 3. P. 11–19. DOI: 10.3897/rrpharmacology.5.38389

[33]

Khokhlov PP, Bairamov AA, Blazhenko AA, et al. Peptidnye signal’nye sistemy kostistykh ryb kak novaya molekulyarnaya model’ dlya eksperimental’noi neirofarmakologii. Vestnik Smolenskoi gosudarstvennoi meditsinskoi akademii. 2023;22(1):42–52. (In Russ.) DOI: 10.37903/vsgma.2023.1.6

[34]

Хохлов П.П., Байрамов А.А., Блаженко А.А., и др. Пептидные сигнальные системы костистых рыб как новая молекулярная модель для экспериментальной нейрофармакологии // Вестник Смоленской государственной медицинской академии. 2023. Т. 22, № 1. С. 42–52. DOI: 10.37903/vsgma.2023.1.6 EDN: DGHYWC

[35]

Reikhardt BA, Shabanov PD. Catalytic subunit of PKA as a prototype of the eukaryotic protein kinase family. Biochemistry (Moscow). 2020;85(4):409–424. DOI: 10.1134/S0006297920040021

[36]

Reikhardt B.A., Shabanov P.D. Catalytic subunit of PKA as a prototype of the eukaryotic protein kinase family // Biochemistry (Moscow) Suppl. Series B: Biomed. Chem. 2020. Vol. 85, No. 4. P. 409–424. DOI: 10.1134/S0006297920040021

[37]

Reikhardt BA, Shabanov PD. The effect of structural analogues of etimizole on protein kinase CK2, protein phosphorylation, and transcription of chromatin in rat cortical and hippocampal neurons. Biochemistry (Moscow) Suppl Series B: Biomed Chem. 2020;14(4):320–328. DOI: 10.1134/S1990750820040101

[38]

Reikhardt B.A., Shabanov P.D. The effect of structural analogues of etimizole on protein kinase CK2, protein phosphorylation, and transcription of chromatin in rat cortical and hippocampal neurons // Biochemistry (Moscow) Suppl. Series B: Biomed. Chem. 2020. Vol. 14, No. 4. P. 320–328. DOI: 10.1134/S1990750820040101

[39]

Karpova IV. Effects of oxytocin on the levels and metabolism of monoamines in the brain of white outbred mice during long-term social isolation. Bull Exp Biol Med. 2017;163(6):714–717. DOI: 10.1007/s10517-017-3887-7

[40]

Karpova I.V. Effects of oxytocin on the levels and metabolism of monoamines in the brain of white outbred mice during long-term social isolation // Bull. Exp. Biol. Med. 2017. Vol. 163, No. 6. P. 714–717. DOI: 10.1007/s10517-017-3887-7

[41]

Karpova IV, Bychkov ER, Shabanov PD, et al. The effect of acute hypoxia with hypercapnia on the monoamine content in symmetrical brain areas of albino mice. Biochemistry (Moscow) Suppl Series B: Biomed Chem. 2018;12(4):303–307. DOI: 10.1134/S1990750818040030

[42]

Karpova I.V., Bychkov E.R., Shabanov P.D., et al. The effect of acute hypoxia with hypercapnia on the monoamine content in symmetrical brain areas of albino mice // Biochemistry (Moscow) Suppl. Series B: Biomed. Chem. 2018. Vol. 12, No. 4. P. 303–307. DOI: 10.1134/S1990750818040030

[43]

Karpova IV, Mikheev VV, Marysheva VV, et al. Long-term social isolation changes the sensitivity of monoaminergic brain systems to acute hypoxia with hypercapnia. Biochemistry (Moscow) Suppl Series B: Biomed Chem. 2019;13(2):140–145. DOI: 10.1134/S1990750819020057

[44]

Karpova I.V., Mikheev V.V., Marysheva V.V., et al. Long-term social isolation changes the sensitivity of monoaminergic brain systems to acute hypoxia with hypercapnia // Biochemistry (Moscow) Suppl. Series B: Biomed. Chem. 2019. Vol. 13, No. 2. Р. 140–145. DOI: 10.1134/S1990750819020057

[45]

Karpova IV, Mikheev VV, Marysheva VV, et al. The time-course of changes in the state of brain monoaminergic systems of mice under the acute hypoxia with hypercapnia // Biochemistry (Moscow) Suppl Series B: Biomed Chem. 2020;14(2):136–149. DOI: 10.1134/S1990750820020079

[46]

Karpova I.V., Mikheev V.V., Marysheva V.V., et al. The time-course of changes in the state of brain monoaminergic systems of mice under the acute hypoxia with hypercapnia // Biochemistry (Moscow) Suppl. Series B: Biomed. Chem. 2020. Vol. 14, No. 2. P. 136–149. DOI: 10.1134/S1990750820020079

[47]

Airapetov MI, Sekste EA, Eresko SO, et al. Chronic alcoholism influences the mRNA level of the orexin receptor type 1 (OXR1) in emotiogenic structures of the rat brain. Biochemistry (Moscow) Suppl Series B: Biomed Chem. 2019;13(1):93–96. DOI: 10.18097/PBMC20186405451

[48]

Airapetov M.I., Sekste E.A., Eresko S.O., et al. Chronic alcoholism influences the mRNA level of the orexin receptor type 1 (OXR1) in emotiogenic structures of the rat brain // Biochemistry (Moscow) Suppl. Series B: Biomed. Chem. 2019. Vol. 13, No. 1. P. 93–96. DOI: 10.18097/PBMC20186405451

[49]

Airapetov MI, Eresko SO, Bychkov ER, et al. Expression of Toll-like receptors in emotiogenic structures of rat brain is changed under longterm alcohol consumption and ethanol withdrawal. Med. Immunol. (Russia). 2020;22(1):77–86. DOI: 10.15789/1563-0625-EOT-1836

[50]

Airapetov M.I., Eresko S.O., Bychkov E.R., et al. Expression of Toll-like receptors in emotiogenic structures of rat brain is changed under longterm alcohol consumption and ethanol withdrawal // Med. Immunol. (Russia). 2020. Vol. 22, No. 1. P. 77–86. DOI: 10.15789/1563-0625-EOT-1836.

[51]

Airapetov MI, Lebedev AA, Bychkov ER, et al. Alcoholization and ethanol withdrawal leads to activation of the neuroimmune response in the prefrontal rat brain. Biochemistry (Moscow) Suppl Series B: Biomed Chem. 2020;14(1):15–19. DOI: 10.1134/S1990750820010023

[52]

Airapetov M.I., Lebedev A.A., Bychkov E.R., et al. Alcoholization and ethanol withdrawal leads to activation of the neuroimmune response in the prefrontal rat brain // Biochemistry (Moscow) Suppl. Series B: Biomed. Chem. 2020. Vol. 14, No. 1. P. 15–19. DOI: 10.1134/S1990750820010023

[53]

Airapetov MI, Eresko SO., Lebedev AA, et al. Involvement of TOLL-like receptors in the neuroimmunology of alcoholism. Biomeditsinskaya Khimiya. 2020;66(3):208–215. (In Russ.) DOI: 10.18097/PBMC20206603208

[54]

Айрапетов М.И., Ереско С.О., Лебедев А.А., и др. Алкоголизация и отмена этанола приводят к активации нейроиммунного ответа в префронтальной коре мозга крыс // Биомедицинская химия. 2019. Т. 65, № 5. С. 380–384. DOI: 10.1134/S1990750820010023

[55]

Piotrovskii LB. Ocherki o nanomeditsine. Saint Petersburg: Evropeiskii dom; 2013. (In Russ.)

[56]

Айрапетов М.И., Ереско С.О., Лебедев А.А., и др. Роль Toll-подобных рецепторов в нейроиммунологии алкоголизма // Биомедицинская химия. 2020. Т. 66, № 3. С. 208–215. DOI: 10.18097/PBMC20206603208

[57]

Zhukov IS, Kozlova AA, Gainetdinov RR, et al. Minimal age-related alterations in behavioral and hematological parameters in trace amine-associated receptor 1 (TAAR1) knockout mice. Cell Mo. Neurobiol. 2020;40(2):273–282. DOI: 10.1007/s10571-019-00721-4

[58]

Пиотровский Л.Б. Очерки о наномедицине. Санкт-Петербург: Европейский дом, 2013.

[59]

Sapronov NS. Gonadoliberiny. Saint Petersburg: Art-ekspress; 2012. (In Russ.)

[60]

Zhukov I.S., Kozlova A.A., Gainetdinov R.R., et al. Minimal age-related alterations in behavioral and hematological parameters in trace amine-associated receptor 1 (TAAR1) knockout mice // Cell. Mol. Neurobiol. 2020. Vol. 40, No. 2. P. 273–282. DOI: 10.1007/s10571-019-00721-4

[61]

Vislobokov AI, Borisova VA, Prosheva VI, et al. Farmakologiya ionnykh kanalov. Saint Petersburg: Inform-navigator; 2012. (In Russ.)

[62]

Сапронов Н.С. Гонадолиберины. Санкт-Петербург: Арт-экспресс, 2012.

[63]

Shabanov PD. Narkologiya. Moscow: GEOTAR-Media; 2012. (In Russ.)

[64]

Вислобоков А.И., Борисова В.А., Прошева В.И., и др. Фармакология ионных каналов. Санкт-Петербург: Информ-навигатор, 2012.

[65]

Glushchenko VV, Shabanov PD. Minimal’naya disfunktsiya mozga. Moscow: Binom; 2013. (In Russ.)

[66]

Шабанов П.Д. Наркология. Москва: ГЭОТАР-Медиа, 2012.

[67]

Vislobokov AI., Shabanov PD. Kletochnye i molekulyarnye mekhanizmy deistviya lekarstv. Saint Peterbusrg: Inform-navigator; 2014. (In Russ.)

[68]

Глущенко В.В., Шабанов П.Д. Минимальная дисфункция мозга. Москва: Бином, 2013.

[69]

Droblenkov AV, Shabanov PD. Morfologiya ishemizirovannogo mozga. Saint Petersburg: Art-ekspress; 2018. (In Russ.)

[70]

Вислобоков А.И., Шабанов П.Д. Клеточные и молекулярные механизмы действия лекарств. Санкт-Петербург: Информ-навигатор, 2014.

[71]

Talibov AKh, Nozdrachev AD, Shabanov PD. Funktsional’naya kardiologiya v sporte. Saint Petersburg: Art-ekspress; 2020. (In Russ.)

[72]

Дробленков А.В., Шабанов П.Д. Морфология ишемизированного мозга. Санкт-Петербург: Арт-экспресс, 2018.

[73]

Tikhanov VI, Shabanov PD. Ne-neironal’nyi atsetilkholin pecheni. Moscow: Rossiiskaya akademiya nauk; 2020. (In Russ.)

[74]

Талибов А.Х., Ноздрачев А.Д., Шабанов П.Д. Функциональная кардиология в спорте. Санкт-Петербург: Арт-экспресс, 2020.

[75]

Shabanov PD, Vorob’eva VV. Klinicheskaya farmakologiya. Akademicheskii kurs. Saint Petersburg: Art-ekspress; 2020. (In Russ.)

[76]

Тиханов В.И., Шабанов П.Д. Не-нейрональный ацетилхолин печени. Москва: Российская академия наук, 2020.

[77]

Lekarstvennye sredstva, primenyaemye v gematologii: klassifikatsiya i opisanie preparatov. In: Ratsional’naya farmakoterapiya v gematologii. Ed. by O.A. Rukavitsyna. Moscow: Litterra; 2021. P. 549–782. (In Russ.)

[78]

Шабанов П.Д., Воробьева В.В. Клиническая фармакология. Академический курс. Санкт-Петербург: Арт-экспресс, 2020.

[79]

Shabanov PD, Buznik GV, Bairamov AA. Farmakoterapiya astenicheskogo sindroma metabolicheskimi sredstvami: rekomendatsii dlya vrachei. Saint Petersburg: Art-ekspress; 2021. (In Russ.)

[80]

Шабанов П.Д., Орлов Ф.А., Тутаева В.В., и др. Лекарственные средства, применяемые в гематологии: классификация и описание препаратов // Рациональная фармакотерапия в гематологии / под ред. О.А. Рукавицына. Москва: Литтерра, 2021. С. 549–782.

[81]

Шабанов П.Д., Бузник Г.В., Байрамов А.А. Фармакотерапия астенического синдрома метаболическими средствами: рекомендации для врачей. Санкт-Петербург: Арт-экспресс, 2021.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/