Antidyskinetic activity of new derivatives of inydazol-4,5-dicarbonic acid in a parkinsonism experimental model due to administration of 6-hydroxydopapine
Vladimir D. Dergachev , Ekaterina E. Yakovleva , Maria A. Brusina , Evgenii R. Bychkov , Levon B. Piotrovskiy , Petr D. Shabanov
Psychopharmacology & biological narcology ›› 2023, Vol. 14 ›› Issue (3) : 161 -168.
Antidyskinetic activity of new derivatives of inydazol-4,5-dicarbonic acid in a parkinsonism experimental model due to administration of 6-hydroxydopapine
BACKGROUND: Levodopa therapy currently remains the clinical method of choice for patients with Parkinson’s disease. However, in the late stages of the disease, approximately 80% of patients receiving treatment developed levodopa-induced dyskinesia. The studied substances are derivatives of imidazole-4,5-dicarboxylic acid. Their pharmacological effect is produced due to interaction with the recognition site of NMDA receptor, which, together with their high efficiency, implies that they are safer than previously available drugs in this pharmacological group.
AIM: To study the antidyskinetic effect of IEM2295 and IEM2296 derivatives of imidazole-4,5-dicarboxylic acid.
MATERIALS AND METHODS: The model is based on the toxic effect of 6-hydroxydopamine on rat brain tissue. The first (control) group of rats received injections of only Levodopa and Benserazide, the second group received injections of Levodopa, Benserazide, and the test substance IEM2295, and the third group received injections of Levodopa, Benserazide and the test substance IEM2296. Each group was evaluated based on three criteria: motor function violations, limb dyskinesia, and axial and chewing dyskinesia. The severity of motor functions was graded on a scale of 0 to 4 points at 35, 70, 105, and 140 minutes after injection of the above substances, where 0 and 4 represent the absence and most pronounced degree of pathological movements, respectively.
RESULTS: The result analysis showed that the greatest effect on reducing the severity of limb dyskinesia, axial dyskinesia, and chewing dyskinesia in rats was observed at 105 and 140 minutes after injections of the studied substances. Statistically significant differences between the control group and rats receiving injections of the studied substances were revealed at all the time points for limb dyskinesia; i.e., at 35, 105, and 140 minutes for axial dyskinesia and at 105 and 140 minutes for chewing dyskinesia.
CONCLUSIONS: In the experimental model of parkinsonism, IEM2295 and IEM2296 show antiparkinsonian and antidyskinetic activity because they reduce the severity of motor function disorders in rats with levodopa-induced dyskinesia. The results indicate the prospects for continued development of these substances and further research for effective and safe antiparkinsonian agents among compounds of this class.
6-hydroxydopamine / dyskinesia / levodopa-induced complications / NMDA / Parkinson’s disease / parkinsonism
| [1] |
Perez-Lloret S, Rascol O. Efficacy and safety of amantadine for the treatment of l-DOPA-induced dyskinesia. J Neural Transm. 2018;125(8):1237–1250. DOI: 10.1007/s00702-018-1869-1 |
| [2] |
Perez-Lloret S., Rascol O. Efficacy and safety of amantadine for the treatment of l-DOPA-induced dyskinesia // J. Neural. Transm. 2018. Vol. 125, No. 8. P. 1237–1250. DOI: 10.1007/s00702-018-1869-1 |
| [3] |
Schwab RS, England AC Jr, Poskanzer DC, et al. Amantadine in the treatment of Parkinson’s disease. JAMA. 1969;208(7). |
| [4] |
Schwab R.S., England A.C. Jr., Poskanzer D.C. Amantadine in the treatment of parkinson’s disease // JAMA. 1969. Vol. 208. No. 7. |
| [5] |
Savica R, Grossardt BR, Rocca WA, et al. Parkinson disease with and without Dementia: a prevalence study and future projections. Mov Disord. 2018;33(4):537–543. DOI: 10.1002/mds.27277 |
| [6] |
Savica R., Grossardt B.R., Rocca W.A., et al. Parkinson disease with and without Dementia: a prevalence study and future projections // Mov. Disord. 2018. Vol. 33, No. 4. P. 537–543. DOI: 10.1002/mds.27277 |
| [7] |
Chen Z, Li G, Liu J. Autonomic dysfunction in Parkinson’s disease: implications for pathophysiology, diagnosis, and treatment. Neurobiol Dis. 2020;134. DOI: 10.1016/j.nbd.2019.104700 |
| [8] |
Chen Z., Li G., Liu J. Autonomic dysfunction in Parkinson’s disease: Implications for pathophysiology, diagnosis, and treatment // Neurobiol. Dis. 2020. Vol. 134. DOI: 10.1016/j.nbd.2019.104700 |
| [9] |
Fereshtehnejad SM, Yao C, Pelletier A, et al. Evolution of prodromal Parkinson’s disease and dementia with Lewy bodies: a prospective study. Brain. 2019;142(7):2051–2067. DOI: 10.1093/brain/awz111 |
| [10] |
Fereshtehnejad S.M., Yao C., Pelletier A., et al. Evolution of prodromal Parkinson’s disease and dementia with Lewy bodies: a prospective study // Brain. 2019. Vol. 142, No. 7. P. 2051–2067. DOI: 10.1093/brain/awz111 |
| [11] |
Cersosimo MG, Raina GB, Pellene LA, et al. Weight loss in Parkinson’s disease: the relationship with motor symptoms and disease progression. Biomed Res Int. 2018;2018:1–6. DOI: 10.1155/2018/9642524 |
| [12] |
Cersosimo M.G., Raina G.B., Pellene L.A., et al. Weight loss in Parkinson’s disease: the relationship with motor symptoms and disease progression // Biomed Res. Int. 2018. Vol. 2018. P. 1–6. DOI: 10.1155/2018/9642524 |
| [13] |
Jankovic J, Tan EK. Parkinson’s disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2020;91(8):795–808. DOI: 10.1136/jnnp-2019-322338 |
| [14] |
Jankovic J., Tan E.K. Parkinson’s disease: etiopathogenesis and treatment // J. Neurol. Neurosurg. Psychiatry. 2020. Vol. 91, No. 8. P. 795–808. DOI: 10.1136/jnnp-2019-322338 |
| [15] |
Draoui A, El Hiba O, Aimrane A, et al. Parkinson’s disease: from bench to bedside. Rev Neurolog (Paris). 2020;176(7–8):543–559. DOI: 10.1016/j.neurol.2019.11.002 |
| [16] |
Draoui A., El Hiba O., Aimrane A., et al. Parkinson’s disease: from bench to bedside // Rev. Neurol (Paris). 2020. Vol. 176, No. 7–8. P. 543–559. DOI: 10.1016/j.neurol.2019.11.002 |
| [17] |
Pajares M, I. Rojo A, Manda G, et al. Inflammation in Parkinson’s disease: mechanisms and therapeutic implications. Cells. 2020;9(7). DOI: 10.3390/cells9071687 |
| [18] |
Pajares M., I. Rojo A., Manda G., et al. Inflammation in Parkinson’s disease: mechanisms and therapeutic implications // Cells. 2020. Vol. 9, No. 7. DOI: 10.3390/cells9071687 |
| [19] |
Fernández-Montoya J, Avendaño C, Negredo P. The glutamatergic system in primary somatosensory neurons and its involvement in sensory input-dependent plasticity. Int J Mol Sci. 2017;19(1). DOI: 10.3390/ijms19010069 |
| [20] |
Fernández-Montoya J., Avendaño C., Negredo P. The Glutamatergic system in primary somatosensory neurons and its involvement in sensory input-dependent plasticity //Int. J. Mol. Sci. 2017. Vol. 19, No. 1. DOI: 10.3390/ijms19010069 |
| [21] |
Mironova YuS, Zhukova NG, Zhukova IA, et al. Parkinson’s disease and glutamatergic system. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2018;118(5):138-142. (In Russ.) DOI: 10.17116/jnevro201811851138 |
| [22] |
Миронова Ю.С., Жукова Н.Г., Жукова И.А., и др. Болезнь Паркинсона и глутаматергическая система // Журнал неврологии и психиатрии им. С.С. Корсакова. 2018. Т. 118, № 5. С. 138-142. DOI: 10.17116/jnevro201811851138 |
| [23] |
Yasuhara T. Neurobiology research in Parkinson’s disease. Int J Mol Sci. 2020;21(3). DOI: 10.3390/ijms21030793 |
| [24] |
Yasuhara T. Neurobiology research in Parkinson’s disease // Int. J. Mol. Sci. 2020. Vol. 21, No. 3. DOI: 10.3390/ijms21030793 |
| [25] |
Bhattacharya S, Ma Y, Dunn AR, et al. NMDA receptor blockade ameliorates abnormalities of spike firing of subthalamic nucleus neurons in a parkinsonian nonhuman primate. J Neuro Res. 2018;96(7):1324–1335. DOI: 10.1002/jnr.24230 |
| [26] |
Bhattacharya S., Ma Y., Dunn A.R., et al. NMDA receptor blockade ameliorates abnormalities of spike firing of subthalamic nucleus neurons in a parkinsonian nonhuman primate // J. Neurosci. Res. 2018. Vol. 96, No. 7. P. 1324–1335. DOI: 10.1002/jnr.24230 |
| [27] |
Nuzzo T, Punzo D, Devoto P, et al. The levels of the NMDA receptor co-agonist D-serine are reduced in the substantia nigra of MPTP-lesioned macaques and in the cerebrospinal fluid of Parkinson’s disease patients. Sci Rep. 2019;9(1). DOI: 10.1038/s41598-019-45419-1 |
| [28] |
Nuzzo T., Punzo D., Devoto P., et al. The levels of the NMDA receptor co-agonist D-serine are reduced in the substantia nigra of MPTP-lesioned macaques and in the cerebrospinal fluid of Parkinson’s disease patients // Sci. Rep. 2019. Vol. 9, No. 1. DOI: 10.1038/s41598-019-45419-1 |
| [29] |
Himmelberg MM, West RJH, Elliott CJH, et al. Abnormal visual gain control and excitotoxicity in early-onset Parkinson’s disease Drosophila models. J Neurophysiol. 2018;119(3):957–970. DOI: 10.1152/jn.00681 |
| [30] |
Himmelberg M.M., West R.J.H., Elliott C.J.H., et al. Abnormal visual gain control and excitotoxicity in early-onset Parkinson’s disease Drosophila models // J. Neurophysiol. 2018. Vol. 119, No. 3. P. 957–970. DOI: 10.1152/jn.00681. |
| [31] |
Christoffersen CL, Meltzer LT. Evidence for N-methyl-d-aspartate and AMPA subtypes of the glutamate receptor on substantia nigra dopamine neurons: possible preferential role for N-methyl-d-aspartate receptors. Neuroscience. 1995;67(2):373–381. DOI: 10.1016/0306-4522(95)00047-m |
| [32] |
Christoffersen C.L., Meltzer L.T. Evidence for N-methyl-d-aspartate and AMPA subtypes of the glutamate receptor on substantia nigra dopamine neurons: possible preferential role for N-methyl-d-aspartate receptors // Neuroscience. 1995. Vol. 67, No. 2. P. 373–381. DOI: 10.1016/0306-4522(95)00047-m |
| [33] |
Cerri S, Blandini F. An update on the use of non-ergot dopamine agonists for the treatment of Parkinson’s disease. Exp Opin Pharmacother. 2020;21(18):2279–2291. DOI: 10.1080/14656566.2020.1805432 |
| [34] |
Cerri S., Blandini F. An update on the use of non-ergot dopamine agonists for the treatment of Parkinson’s diseas // Expert Opin. Pharmacother. 2020. Vol. 21, No. 18. P. 2279–2291. DOI: 10.1080/14656566.2020.1805432 |
| [35] |
Kwon DK, Kwatra M, Wang J, et al. Levodopa-induced dyskinesia in Parkinson’s disease: pathogenesis and emerging treatment strategies. Cells. 2022;11(23). DOI: 10.3390/cells11233736 |
| [36] |
Kwon D.K., Kwatra M., Wang J., et al. Levodopa-induced dyskinesia in Parkinson’s disease: pathogenesis and emerging treatment strategies //Cells. 2022. Vol. 11, No. 23. DOI: 10.3390/cells11233736 |
| [37] |
Danysz W, Parsons CG, Kornhuber J, et al. Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents — preclinical studies. Neurosci Biobehav Rev. 1997;21(4):455–468. DOI: 10.1016/s0149-7634(96)00037-1 |
| [38] |
Danysz W., Parsons C.G., Kornhuber J., et al. Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents — preclinical studies // Neurosci. Biobehav. Rev. 1997. Vol. 21, No. 4. P. 455–468. DOI: 10.1016/s0149-7634(96)00037-1 |
| [39] |
Müller T, Kuhn W, Möhr JD. Evaluating ADS5102 (amantadine) for the treatment of Parkinson’s disease patients with dyskinesia. Exp Opin Pharmacother. 2019;20(10):1181–1187. DOI: 10.1080/14656566.2019.1612365 |
| [40] |
Müller T., Kuhn W., Möhr J.D. Evaluating ADS5102 (amantadine) for the treatment of Parkinson’s disease patients with dyskinesia // Exp. Opin. Pharmacother. 2019. Vol. 20, No. 10. P. 1181–1187. DOI: 10.1080/14656566.2019.1612365 |
| [41] |
Iakovleva EE, Brusina MA, Bychkov ER, et al. Antiparkinsonian activity of new ligands of the glutamate NMDA-receptor complex — imidazole-4,5-dicarboxylic acid derivatives. Vestnik Smolenskoi gosudarstvennoi meditsinskoi akademii. 2020;19(3):41–47. (In Russ.) DOI: 10.37903/vsgma.2020.3.5 |
| [42] |
Яковлева Е.Е., Брусина М.А., Бычков Е.Р., и др. Противопаркинсоническая активность новых лигандов глутаматного NMDA-рецепторного комплекса — производных имидазол-4,5-дикарбоновых кислот // Вестник Смоленской государственной медицинской академии. 2020. Т. 19, № 3. С. 41–47. DOI: 10.37903/vsgma.2020.3.5 |
| [43] |
Dergachev VD, Yakovleva EE, Brusina MA, et al. Antiparkinsonian activity of new N-methyl-D-aspartate receptor ligands in the arecoline hyperkinesis test. Meditsinskiy sovet (Medical Council). 2021;(12):406–412. (In Russ.) DOI: 10.21518/2079-701X-2021-12-406-412 |
| [44] |
Дергачев В.Д., Яковлева Е.Е., Брусина М.А., и др. Противопаркинсоническая активность новых лигандов N-метил-D-аспартат-рецепторов в тесте ареколинового гиперкинеза // Медицинский Совет. 2021. № 12. С. 406–412. DOI: 10.21518/2079-701X-2021-12-406-412 |
| [45] |
Dergachev VD, Yakovleva EE, Brusina MA, et al. Investigation of antiparkinsonian activity of new imidazole-4,5-dicarboxylic acid derivatives on the experimental model of catalepsy. Research Results in Pharmacology. 2023;9(1):41–47. DOI: 10.18413/rrpharmacology.9.10006 |
| [46] |
Dergachev V.D., Yakovleva E.E., Brusina M.A., et al. Investigation of antiparkinsonian activity of new imidazole-4,5-dicarboxylic acid derivatives on the experimental model of catalepsy // Research Results in Pharmacology. 2023. Т. 9, №. 1. С. 41–47. DOI: 10.18413/rrpharmacology.9.10006 |
| [47] |
Guimarães RP, Ribeiro DL, Dos Santos KB, et al. The 6-hydroxydopamine rat model of Parkinson’s disease. J Vis Exp. 2021;(176). DOI: 10.3791/62923 |
| [48] |
Guimarães R.P., Ribeiro D.L., Dos Santos K.B., et al. The 6-hydroxydopamine rat model of Parkinson’s disease // J. Vis. Exp. 2021. No. 176. DOI: 10.3791/62923 |
| [49] |
Rukovodstvo po provedeniyu doklinicheskikh issledovanii lekarstvennykh sredstv. Ch. 1. Ed. by A.N. Mironov, N.D. Bunyatyan, A.N. Vasil’ev, et al. Moscow: Grif i K; 2012. (In Russ.) |
| [50] |
Руководство по проведению доклинических исследований лекарственных средств. Часть первая / под ред. А.Н. Миронова, Н.Д. Бунятян, А.Н. Васильева. Москва: Гриф и К, 2012. |
| [51] |
Tappakhov AA, Popova TE, Govorova TG, et al. Pharmacogenetics of drug-induced dyskinesias in Parkinson’s disease. Neurology, Neuropsychiatry, Psychosomatics. 2020;12(1):87–92. (In Russ.) DOI: 10.14412/2074-2711-2020-1-87-92 |
| [52] |
Таппахов А.А., Попова Т.Е., Говорова Т.Г., и др. Фармакогенетика лекарственных дискинезий при болезни Паркинсона // Неврология, нейропсихиатрия, психосоматика. 2020. Т. 12, № 1. С. 87–92. DOI: 10.14412/2074-2711-2020-1-87-92 |
| [53] |
Thanvi B, Lo N, Robinson T. Levodopa-induced dyskinesia in Parkinson’s disease: clinical features, pathogenesis, prevention and treatment. Postgrad Med J. 2007;83(980):384–388. DOI: 10.1136/pgmj.2006.054759 |
| [54] |
Thanvi B., Lo N., Robinson T. Levodopa-induced dyskinesia in Parkinson’s disease: clinical features, pathogenesis, prevention and treatment // Postgrad. Med. J. 2007. Vol. 83, No. 980. P. 384–388. DOI: 10.1136/pgmj.2006.054759 |
| [55] |
Jakovleva EE, Foksha SP, Brusina MA, et al. Studying the anticonvulsive activity of new ligands of NDMA-receptor complex — imidazole-4,5-dicarbonic acid derivatives. Reviews on Clinical Pharmacology and Drug Therapy. 2020;18(2):149–154. (In Russ.) DOI: 10.17816/RCF182149-154 |
| [56] |
Яковлева Е.Е., Фокша С.П., Брусина М.А., и др. Исследование противосудорожной активности новых лигандов NMDA-рецепторного комплекса — производных имидазол-4,5-дикарбоновых кислот // Обзоры по клинической фармакологии и лекарственной терапии. 2020. Т. 18, № 2. C. 149–154. DOI: 10.17816/RCF182149-154 |
| [57] |
Cerri S, Mus L, Blandini F. Parkinson’s disease in women and men: what’s the difference? J Parkinsons Dis. 2019;9(3):501–515. DOI: 10.3233/JPD-191683 |
| [58] |
Cerri S., Mus L., Blandini F. Parkinson’s disease in women and men: what’s the difference? // J. Parkinsons Dis. 2019. Vol. 9, No. 3. P. 501–515. DOI: 10.3233/JPD-191683 |
Eco-Vector
/
| 〈 |
|
〉 |