Comparison of anxiolytic effects of mammalian and bony fish kisspeptins in Danio rerio
Vladanka A. Goltz , Andrei A. Lebedev , Aleksandra A. Blazhenko , Viktor A. Lebedev , Alekber A. Bayramov , Platon P. Khokhlov , Evgenii R. Bychkov , Sarng S. Pyurveev , Sergei V. Kazakov , Petr D. Shabanov
Psychopharmacology & biological narcology ›› 2023, Vol. 14 ›› Issue (2) : 85 -96.
Comparison of anxiolytic effects of mammalian and bony fish kisspeptins in Danio rerio
In our previous work, we suggested that analogs of mammalian kisspeptin Kiss1 reduce anxiety and phobic reactions novel in Danio rerio. The most effective dose for the action of the studied analogs of kisspeptin corresponded to 0.1 mg per 1000 mL of water. In this study, other analogs of mammalian Kiss1 at a dose of 0.1 mg per 1000 mL of water also reduced the anxious behavior of Danio fish. The effect of Kiss1 and Kiss2 kisspeptins on the behavior of Danio rerio was also evaluated. In the novel test, the number of freezing decreased by two times with the introduction of kisspeptin 10 and by three times after the introduction of the kisspeptin analog. An analog of mammalian kisspeptin reduced the freezing time by two times. The length of the trajectory decreased by two times under the influence of the mammalian Kiss1 kisspeptin analog. With the action of kisspeptin 10, the number of transitions to the upper part of the tank increased by two times. After the introduction of the kisspeptin analog, the number of transitions to the upper part of the aquarium increased by three times. In the predator test, the number and time of freezing decreased by 1.5 times with the action of mammalian kisspeptins. The length of the trajectory after the introduction of kisspeptin bony fish and kisspeptin 10 mammals increased. The length of the trajectory after the introduction of Kiss1 increased by 1.5 times. The length of the trajectory after the introduction of Kiss2 increased by three times. After the introduction of kisspeptin 10, the trajectory increased by two times, and the time spent in the lower part of the tank decreased by two times. Kisspeptins of bony fish also reduced the anxiety and phobic reactions in fish, but to a lesser extent. Thus, kisspeptin 10 and an analog of mammalian kisspeptin in response to the presentation of a predator had more significant effects on anxiety in Danio rerio compared with the action of kisspeptin bony fish Kiss1 and Kiss2. Thus, bony fish kisspeptins and mammalian kisspeptins can reduce anxiety and phobic reactions in Danio rerio; however, mammalian kisspeptins are the most effective. Bony fish kisspeptin Kiss1 has an anxiolytic effect in contrast to Kiss2, which suggests that it affects fear reduction, and Kiss2 appears to be responsible for social and sexual behavior. The results support the hypothesis that kisspeptins may be involved in the regulation of anxiety and phobic states, apparently to maintain the emotional aspects of reproductive behavior, such as sexual motivation and arousal.
Danio rerio / Kiss 1 / Kiss 2 / kisspeptin 10 / mammalian kisspeptin analogs / anxiety / fear
| [1] |
Comninos AN, Wall MB, Demetriou L, et al. Kisspeptin modulates sexual and emotional brain processing in humans. J Clin Invest. 2017;127(2):709–719. DOI: 10.1172/JCI89519 |
| [2] |
Comninos A.N., Wall M.B., Demetriou L., et al. Kisspeptin modulates sexual and emotional brain processing in humans // J Clin Invest. 2017. Vol. 127, No. 2. P. 709–719. DOI: 10.1172/JCI89519 |
| [3] |
Comninos AN, Dhillo WS. Emerging roles of kisspeptin in sexual and emotional brain processing. Neuroendocrinology. 2018;106(2):195–202. DOI: 10.1159/000481137 |
| [4] |
Comninos A.N., Dhillo W.S. Emerging roles of kisspeptin in sexual and emotional brain processing // Neuroendocrinology. 2018. Vol. 106, No. 2. Р. 195–202. DOI: 10.1159/000481137 |
| [5] |
Mills EGA, O’Byrne KT, Comninos AN. Kisspeptin as a behavioral hormone. Semin Reprod Med. 2019;37(2):56–63. DOI: 10.1055/s-0039-3400239 |
| [6] |
Mills E.G.A., O’Byrne K.T., Comninos A.N. Kisspeptin as a behavioral hormone // Semin Reprod Med. 2019. Vol. 37, No. 2. Р. 56–63. DOI: 10.1055/s-0039-3400239 |
| [7] |
Mills EGA, O’Byrne KT, Comninos AN. The roles of the amygdala kisspeptin system. Semin Reprod Med. 2019;37(2):64–70. DOI: 10.1055/s-0039-3400462 |
| [8] |
Mills E.G.A., O’Byrne K.T., Comninos A.N. The roles of the amygdala kisspeptin system // Semin Reprod Med. 2019. Vol. 37, No. 2. Р.64–70. DOI: 10.1055/s-0039-3400462 |
| [9] |
Zhu Y, Wu X, Zhou R, et al. Hypothalamic-pituitary-end-organ axes: hormone function in female patients with major depressive disorder. Neurosci Bull. 2021;37(2):1176–1187. DOI: 10.1007/s12264-021-00689-6 |
| [10] |
Zhu Y., Wu X., Zhou R., et al. Hypothalamic-pituitary-end-organ axes: hormone function in female patients with major depressive disorder // Neurosci Bull. 2021. Vol. 37, No. 2. Р. 1176–1187. DOI: 10.1007/s12264-021-00689-6 |
| [11] |
Oyola MG, Handa RJ. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsivity. Stress. 2017;20(5):476–494. DOI: 10.1080/10253890.2017.1369523 |
| [12] |
Oyola M.G., Handa R.J. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsivity // Stress. 2017. Vol. 20, No. 5. Р. 476–494. DOI: 10.1080/10253890.2017.1369523 |
| [13] |
Lehman MN, Hileman SM, Goodman RL. Neuroanatomy of the kisspeptin signaling system in mammals: Comparative and developmental aspects. Kauffman A, Smith J, editors. Kisspeptin signaling in reproductive biology. Advances in experimental medicine and biology. Vol. 784. New York: Springer, 2013. Р. 27–62. DOI: 10.1007/978-1-4614-6199-9_3 |
| [14] |
Lehman M.N., Hileman S.M., Goodman R.L. Neuroanatomy of the kisspeptin signaling system in mammals: Comparative and developmental aspects. Kisspeptin signaling in reproductive biology. Advances in experimental medicine and biology. Vol. 784 / A. Kauffman, J. Smith, editors. New York: Springer, 2013. Р. 27–62. DOI: 10.1007/978-1-4614-6199-9_3 |
| [15] |
Hellier V, Brock O, Bakker J. The role of kisspeptin in sexual behavior. Semin Reprod Med. 2019;37(2):84–92. DOI: 10.1055/s-0039-3400992 |
| [16] |
Hellier V., Brock O., Bakker J. The role of kisspeptin in sexual behavior // Semin Reprod Med. 2019. Vol. 37, No. 2. Р. 84–92. DOI: 10.1055/s-0039-3400992 |
| [17] |
Colledge WH. GPR54 and kisspeptins. Orphan G Protein-coupled receptors and novel neuropeptides. Civelli O, Zhou QY, editors. Results and problems in cell differentiation. Vol. 46. Berlin: Springer, 2008. Р.117–143. DOI: 10.1007/400_2007_050 |
| [18] |
Colledge W.H. GPR54 and kisspeptins. Orphan G Protein-coupled receptors and novel neuropeptides. Results and problems in cell differentiation. Vol. 46 / O. Civelli, Q.Y. Zhou, editors. Berlin: Springer, 2008. Р.117–143. DOI: 10.1007/400_2007_050 |
| [19] |
Kitahashi T, Ogawa S, Parhar IS. Cloning and expression of kiss2 in the zebrafish and medaka. Endocrinology. 2009;150(2):821–831. DOI: 10.1210/en.2008-0940 |
| [20] |
Kitahashi T., Ogawa S., Parhar I.S. Cloning and expression of kiss2 in the zebrafish and medaka // Endocrinology. 2009. Vol. 150, No. 2. P. 821–831. DOI: 10.1210/en.2008-0940 |
| [21] |
Gopurappilly R, Ogawa S, Parhar IS. Functional significance of GnRH and kisspeptin, and their cognate receptors in teleost reproduction. Front Endocrinol. 2013;8(4):24. DOI: 10.3389/fendo.2013.00024 |
| [22] |
Gopurappilly R., Ogawa S., Parhar I.S. Functional significance of GnRH and kisspeptin, and their cognate receptors in teleost reproduction // Front Endocrinol. 2013. Vol. 8, No. 4. P. 24. DOI: 10.3389/fendo.2013.00024 |
| [23] |
Ogawa S, Ng KW, Ramadasan PN, et al. Habenular Kiss1 neurons modulate the serotonergic system in the brain of zebrafish. Endocrinology. 2012;153(5):2398–2407. DOI: 10.1210/en.2012-1062 |
| [24] |
Ogawa S., Ng K.W., Ramadasan P.N., et al. Habenular Kiss1 neurons modulate the serotonergic system in the brain of zebrafish // Endocrinology. 2012. Vol. 153, No. 5. P. 2398–2407. DOI: 10.1210/en.2012–1062 |
| [25] |
Amo R, Aizawa H, Takahoko M, et al. Identification of the zebrafish ventral habenula as a homolog of the mammalian lateral habenula. J Neurosci. 2010;30(4):1566–1574. DOI: 10.1523/JNEUROSCI.3690-09.2010 |
| [26] |
Amo R., Aizawa H., Takahoko M., et al. Identification of the zebrafish ventral habenula as a homolog of the mammalian lateral habenula // J Neurosci. 2010. Vol. 30, No. 4. P. 1566–1574. DOI: 10.1523/JNEUROSCI.3690-09.2010 |
| [27] |
Brailoiu GC, Dun SL, Ohsawa M, et al. KiSS-1 expression and metastin-like immunoreactivity in the rat brain. J Comp Neurol. 2005;481(3):314–329. DOI: 10.1002/cne.20350 |
| [28] |
Brailoiu G.C., Dun S.L., Ohsawa M., et al. KiSS-1 expression and metastin-like immunoreactivity in the rat brain // J Comp Neurol. 2005. Vol. 481, No. 3. Р. 314–329. DOI: 10.1002/cne.20350 |
| [29] |
Overgaard A, Tena-Sempere M, Franceschini I, et al. Comparative analysis of kisspeptin-immunoreactivity reveals genuine differences in the hypothalamic Kiss1 systems between rats and mice. Peptides. 2013;45:85–90. DOI: 10.1016/j.peptides.2013.04.013 |
| [30] |
Overgaard A., Tena-Sempere M., Franceschini I., et al. Comparative analysis of kisspeptin-immunoreactivity reveals genuine differences in the hypothalamic Kiss1 systems between rats and mice // Peptides. 2013. Vol. 45. Р. 85–90. DOI: 10.1016/j.peptides.2013.04.013 |
| [31] |
Lee DK, Nguyen T, O’Neill GP, et al. Discovery of a receptor related to the galanin receptors. FEBS Lett. 1999;446(1):103–107. DOI: 10.1016/S0014-5793(99)00009-5 |
| [32] |
Lee D.K., Nguyen T., O’Neill G.P., et al. Discovery of a receptor related to the galanin receptors // FEBS Lett. 1999. Vol. 446, No. 1. Р. 103–107. DOI: 10.1016/S0014-5793(99)00009-5 |
| [33] |
Higo S, Honda S, Iijima N, et al. Mapping of kisspeptin receptor mRNA in the whole rat brain and its co-localisation with oxytocin in the paraventricular nucleus. J Neuroendocrinol. 2016;28(4):1–8. DOI: 10.1111/jne.12356 |
| [34] |
Higo S., Honda S., Iijima N., et al. Mapping of kisspeptin receptor mRNA in the whole rat brain and its co-localisation with oxytocin in the paraventricular nucleus // J Neuroendocrinol. 2016. Vol. 28, No. 4. Р. 1–8. DOI: 10.1111/jne.12356 |
| [35] |
Servili A, Le Page Y, Leprince J, et al. Organization of two independent kisspeptin systems derived from evolutionary-ancient kiss genes in the brain of zebrafish. J Endocrinol. 2011;152(4):1527–1540. DOI: 10.1210/en.2010-0948 |
| [36] |
Servili A., Le Page Y., Leprince J., et al. Organization of two independent kisspeptin systems derived from evolutionary-ancient kiss genes in the brain of zebrafish // J Endocrinol. 2011. Vol. 152, No. 4. P. 1527–1540. DOI: 10.1210/en.2010-0948 |
| [37] |
Song Y, Duan X, Chen J, et al. The distribution of kisspeptin (Kiss)1- and Kiss2 — Positive neurones and their connections with gonadotrophin-releasing hormone-3 neurones in the zebrafish brain. J Neuroendocrinol. 2015;27(3):198–211. DOI: 10.1111/jne.12251 |
| [38] |
Song Y., Duan X., Chen J., et al. The distribution of kisspeptin (Kiss)1- and Kiss2 — Positive neurones and their connections with gonadotrophin-releasing hormone-3 neurones in the zebrafish brain // J Neuroendocrinol. 2015. Vol. 27, No. 3. P. 198–211. DOI: 10.1111/jne.12251 |
| [39] |
Song Y, Chen J, Tao B, et al. Kisspeptin2 regulates hormone expression in female zebrafish (Danio rerio) pituitary. J Mol Cell Endocrinol. 2020;513:110–858. DOI: 10.1016/j.mce.2020.110858 |
| [40] |
Song Y., Chen J., Tao B., et al. Kisspeptin2 regulates hormone expression in female zebrafish (Danio rerio) pituitary // J Mol Cell Endocrinol. 2020. Vol. 513. P. 110–858. DOI: 10.1016/j.mce.2020.110858 |
| [41] |
Selvaraj S, Kitano H, Fujinaga Y, et al. Molecular characterization, tissue distribution, and mRNA expression profiles of two Kiss genes in the adult male and female chub mackerel (Scomber japonicus) during different gonadal stages. Gen Comp Endocrinol. 2010;169(1):28–38. DOI: 10.1016/j.ygcen.2010.07.011 |
| [42] |
Selvaraj S., Kitano H., Fujinaga Y., et al. Molecular characterization, tissue distribution, and mRNA expression profiles of two Kiss genes in the adult male and female chub mackerel (Scomber japonicus) during different gonadal stages // Gen Comp Endocrinol. 2010. Vol. 169, No. 1. P. 28–38. DOI: 10.1016/j.ygcen.2010.07.011 |
| [43] |
Shahjahan M, Motohashi E, Doi H, Ando H. Elevation of Kiss2 and its receptor gene expression in the brain and pituitary of grass puffer during the spawning season. Gen Comp Endocrinol. 2010;169(1): 48–57. DOI: 10.1016/j.ygcen.2010.07.008 |
| [44] |
Shahjahan M., Motohashi E., Doi H., Ando H. Elevation of Kiss2 and its receptor gene expression in the brain and pituitary of grass puffer during the spawning season // Gen Comp Endocrinol. 2010. Vol. 169, No. 1. P. 48–57. DOI: 10.1016/j.ygcen.2010.07.008 |
| [45] |
Alvarado MV, Carrillo M, Felip A. Expression of kisspeptins and their Receptors, gnrh-/gnrhr-II-1a and gonadotropin genes in the brain of adult male and female European sea bass during different gonadal stages. Gen Comp Endocrinol. 2013;187:104–116. DOI: 10.1016/j.ygcen.2013.03.030 |
| [46] |
Alvarado M.V., Carrillo M., Felip A. Expression of kisspeptins and their Receptors, gnrh-/gnrhr-II-1a and gonadotropin genes in the brain of adult male and female European sea bass during different gonadal stages // Gen Comp Endocrinol. 2013. Vol. 187. P. 104–116. DOI: 10.1016/j.ygcen.2013.03.030 |
| [47] |
Ogawa S, Sivalingam M, Anthonysamy R, Parhar IS. Distribution of Kiss2 receptor in the brain and its localization in neuroendocrine cells in the zebrafish. Cell and Tissue Res. 2020;379(2):349–372. DOI: 10.1007/s00441-019-03089-5 |
| [48] |
Ogawa S., Sivalingam M., Anthonysamy R., Parhar I.S. Distribution of Kiss2 receptor in the brain and its localization in neuroendocrine cells in the zebrafish // Cell and Tissue Res. 2020. Vol. 379, No. 2. P. 349–372. DOI: 10.1007/s00441-019-03089-5 |
| [49] |
Felip A, Zanuy S, Pined R, et al. Evidence for two distinct KiSS genes in non-placental vertebrates that encode kisspeptins with different gonadotropin-releasing activities in fish and mammals. J Mol Cell Endocrinology. 2009;312(1–2):61–71. DOI: 10.1016/j.mce.2008.11.017 |
| [50] |
Felip A., Zanuy S., Pined R., et al. Evidence for two distinct KiSS genes in non-placental vertebrates that encode kisspeptins with different gonadotropin-releasing activities in fish and mammals // J Mol Cell Endocrinology. 2009. Vol. 312, No. 1–2. P. 61–71. DOI: 10.1016/j.mce.2008.11.017 |
| [51] |
Spence R, Gerlach G, Lawrence C, Smith C. The behaviour and ecology of the Danio rerio. Biol Rev Camb Philos Soc. 2008;83(1): 13–34. DOI: 10.1111/j.1469–185X.2007.00030.x |
| [52] |
Spence R., Gerlach G., Lawrence C., Smith C. The behaviour and ecology of the Danio rerio // Biol Rev Camb Philos Soc. 2008. Vol. 83, No. 1. P. 13–34. DOI: 10.1111/j.1469-185X.2007.00030.x |
| [53] |
Maximino C, de Brito MT, Colmanetti R, et al. Parametric analyses of anxiety in Danio rerio scototaxis. Behav Brain Res. 2010;210(1): 1–7. DOI: 10.1016/j.bbr.2010.01.031 |
| [54] |
Maximino C., de Brito M.T., Colmanetti R., et al. Parametric analyses of anxiety in Danio rerio scototaxis // Behav Brain Res. 2010. Vol. 210, No. 1. P. 1–7. DOI: 10.1016/j.bbr.2010.01.031 |
| [55] |
Miklosi A, Andrew RJ. The zebrafish as a model for behavioral studies. Zebrafish. 2006;3(2):227–234. DOI: 10.1089/zeb.2006.3.227 |
| [56] |
Miklosi A., Andrew R.J. The zebrafish as a model for behavioral studies // Zebrafish. 2006. Vol. 3, No. 2. P. 227–234. DOI: 10.1089/zeb.2006.3.227 |
| [57] |
Wong K, Elegante M, Bartels B, et al. Analyzing habituation responses to novelty in Danio rerio (Danio rerio). Behav Brain Res. 2010;208(2):450–457. DOI: 10.1016/j.bbr.2009.12.023 |
| [58] |
Wong K., Elegante M., Bartels B., et al. Analyzing habituation responses to novelty in Danio rerio (Danio rerio) // Behav Brain Res. 2010. Vol. 208, No. 2. P. 450–457. DOI: 10.1016/j.bbr.2009.12.023 |
| [59] |
Barcellos LJG, Koakoski G, Da Rosa JGS, et al. Chemical communication of predation risk in zebrafish does not depend on cortisol increase. Sci Rep. 2014;4:5076. DOI: 10.1038/srep05076 |
| [60] |
Barcellos L.J.G., Koakoski G., Da Rosa J.G.S., et al. Chemical communication of predation risk in zebrafish does not depend on cortisol increase // Sci Rep. 2014. Vol. 4. ID 5076. DOI: 10.1038/srep05076 |
| [61] |
Kalluef AV, Stewart AM, Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Cell Press. 2014;35(2):63–75. DOI: 10.1016/j.tips.2013.12.002 |
| [62] |
Kalluef A.V., Stewart A.M., Gerlai R. Zebrafish as an emerging model for studying complex brain disorders // Cell Press. 2014. Vol. 35, No. 2. P. 63–75. DOI: 10.1016/j.tips.2013.12.002 |
| [63] |
O’Connor CM, Reddon AR, Odetunde A, et al. Social cichlid fish change behavior in response to a visual predator stimulus, but not the odour of damaged conspecifics. Behav Processes. 2015;121: 21–29. DOI: 10.1016/j.beproc.2015.10.002 |
| [64] |
O’Connor C.M., Reddon A.R., Odetunde A., et al. Social cichlid fish change behavior in response to a visual predator stimulus, but not the odour of damaged conspecifics // Behav Processes. 2015. Vol. 121. P. 21–29. DOI: 10.1016/j.beproc.2015.10.002 |
| [65] |
Shabanov PD, Lebedev VA, Lebedev AA, Bychkov ER. Effect of novelty stress on behavioral responses of Danio rerio and assessment of dose-dependent effects of anxiolytics of benzodiazepine structure with phenazepam as an example. Reviews on Clinical Pharmacology and Drug Therapy. 2017;15(3):57–63. (In Russ.) DOI: 10.17816/RCF15357-63 |
| [66] |
Шабанов П.Д., Лебедев В.А., Лебедев А.А., Бычков Е.Р. Влияние стресса новизны на поведенческие ответы danio rerio и оценка дозозависимых эффектов анксиолитиков бензодиазепинового ряда на примере феназепама // Обзоры по клинической фармакологии и лекарственной терапии. 2017. Т. 15, № 3. С. 57–63. DOI: 10.17816/RCF15357-63 |
| [67] |
Shabanov PD, Blazhenko AA, Devyashin AS, et al. In search of new brain biomarkers of stress. Res Results Pharmacol. 2021;7(1): 41–46. DOI: 10.3897/rrpharmacology.7.63326 |
| [68] |
Shabanov P.D., Blazhenko A.A., Devyashin A.S., et al. In search of new brain biomarkers of stress // Res Results Pharmacol. 2021. Vol. 7, No. 1. P. 41–46. DOI: 10.3897/rrpharmacology.7.63326 |
| [69] |
Cachat J, Stewart A, Grossman L, Kalueff AV. Measuring behavioral and endocrine responses to novelty stress in adult Danio rerio. Nat Protoc. 2010;5(11):1786–1789. DOI: 10.1038/nprot |
| [70] |
Cachat J., Stewart A., Grossman L., Kalueff A.V. Measuring behavioral and endocrine responses to novelty stress in adult Danio rerio // Nat Protoc. 2010. Vol. 5, No. 11. P. 1786–1789. DOI: 10.1038/nprot |
| [71] |
Devyashin AS, Blazhenko AA, Lebedev VA, et al. Assessment of dose-dependent effects of anxiolytics of benzodiazepine structure with diazepam as an example in Danio Rerio. Reviews on Clinical Pharmacology and Drug Therapy. 2020;18(1):43–49. (In Russ.) DOI: 10.17816/RCF18143-49 |
| [72] |
Девяшин А.С., Блаженко А.А., Лебедев В.А., и др. Оценка дозозависимых эффектов анксиолитиков бензодиазепинового ряда на примере диазепама у danio rerio // Обзоры по клинической фармакологии и лекарственной терапии. 2020. Т. 18, № 1. С. 43–49. DOI: 10.17816/RCF18143-49 |
| [73] |
Eresko SO, Airapetov MI, Matveeva NA, et al. Danio Rerio as a model object in drug research. Narcology. 2020;19(4):43–48. DOI: 10.25557/1682-8313 |
| [74] |
Ереско С.О., Айрапетов М.И., Матвеева Н.А., и др. Danio rerio как модельный объект в наркологических исследованиях // Наркология. 2020. Т. 19, № 4. С. 43–48. DOI: 10.25557/1682-8313 |
| [75] |
Blazhenko AA, Khokhlov PP, Tissen IY, et al. Benzodiazepine tranquilizers abolish the stress-induced increase of the brain ghrelin level in DANIO RERIO. Reviews on Clinical Pharmacology and Drug Therapy. 2020;18(4):327–332. (In Russ.) DOI: 10.17816/RCF184327-332 |
| [76] |
Блаженко А.А., Хохлов П.П., Тиссен И.Ю., и др. Устранение стрессогенного повышения грелина в головном мозге danio rerio бензодиазепиновыми транквилизаторами // Обзоры по клинической фармакологии и лекарственной терапии. 2020. Т. 18, № 4. С. 327–332. DOI: 10.17816/RCF184327-332 |
| [77] |
Lebedev VA, Lebedev AA, Bychkov ER, Shabanov PD. Probability Of Using The Behavioral Responses Of Danio Rerio In Assessment Of Dose-Dependent Effects Of Phenazepam. Laboratory Animals for Science. 2018;(1):12–21. (In Russ.) DOI: 10.29926/2618723X-2018-01-02 |
| [78] |
Лебедев В.А., Лебедев А.А., Бычков Е.Р., Шабанов П.Д. Возможность использования поведенческих ответов danio rerio в оценке дозозависимых эффектов феназепама // Лабораторные животные для научных исследований. 2018. № 1. С. 12–21. DOI: 10.29926/2618723X-2018-01-02 |
| [79] |
Adamec R, Walling S, Burton P. Long-lasting, selective, anxiogenic effects of feline predator stress in mice. Physiol Behav. 2004;83(3):401–410. DOI: 10.1016/j.physbeh.2004.08.029 |
| [80] |
Adamec R., Walling S., Burton P. Long-lasting, selective, anxiogenic effects of feline predator stress in mice // Physiol Behav. 2004. Vol. 83, No. 3. P. 401–410. DOI: 10.1016/j.physbeh.2004.08.029 |
| [81] |
Zoladz PR, Conrad CD, Fleshner M, Diamond DM. Acute episodes of predator exposure in conjunction with chronic social instability as an animal model of post-traumatic stress disorder. Stress. 2008;11(4):259–281. DOI: 10.1080/10253890701768613 |
| [82] |
Zoladz P.R., Conrad C.D., Fleshner M., Diamond D.M. Acute episodes of predator exposure in conjunction with chronic social instability as an animal model of post-traumatic stress disorder // Stress. 2008. Vol. 11, No. 4. P. 259–281. DOI: 10.1080/10253890701768613 |
| [83] |
Zoladz PR, Fleshner M, Diamond DM. Differential effectiveness of tianeptine, clonidine and amitriptyline in blocking traumatic memory expression, anxiety and hypertension in an animal model of PTSD. Prog Neuropsychopharmacol. Biol Psychiatry. 2013;44:1–16. DOI: 10.1016/j.pnpbp.2013.01.001 |
| [84] |
Zoladz P.R., Fleshner M., Diamond D.M. Differential effectiveness of tianeptine, clonidine and amitriptyline in blocking traumatic memory expression, anxiety and hypertension in an animal model of PTSD // Prog Neuropsychopharmacol. Biol Psychiatry. 2013. Vol. 44. P. 1–16. DOI: 10.1016/j.pnpbp.2013.01.001 |
| [85] |
Zohar J, Matar MA, Ifergane G, et al. Brief post stressor treatment with pregabalin in an animal model for PTSD: short-term anxiolytic effects without long-term anxiogenic effect. Eur Neuropsychopharmacol. 2008;18(9):653–666. DOI: 10.1016/j.euroneuro.2008.04.009 |
| [86] |
Zohar J., Matar M.A., Ifergane G., et al. Brief post stressor treatment with pregabalin in an animal model for PTSD: short-term anxiolytic effects without long-term anxiogenic effect // Eur Neuropsychopharmacol. 2008. Vol. 18, No. 9. P. 653–666. DOI: 10.1016/j.euroneuro.2008.04.009 |
| [87] |
Mackenzie L, Nalivaiko E, Beig MI, et al. Ability of predator odour exposure to elicit conditioned versus sensitized posttraumatic stress disorder-like behaviours, and forebrain delta Fos B expression, in rats. Neuroscience. 2010;169(2):733–742. DOI: 10.1016/j.neuroscience.2010.05.005 |
| [88] |
Mackenzie L., Nalivaiko E., Beig M.I., et al. Ability of predator odour exposure to elicit conditioned versus sensitized posttraumatic stress disorder-like behaviours, and forebrain delta Fos B expression, in rats // Neuroscience. 2010. Vol. 169, No. 2. P. 733–742. DOI: 10.1016/j.neuroscience.2010.05.005 |
| [89] |
Cohen H, Liu T, Kozlovsky N, et al. The neuropeptide Y (NPY)-ergic system is associated with behavioral resilience to stress exposure in an animal model of posttraumatic stress disorder. Neuropsychopharmacology. 2012;37(2):350–363. DOI: 10.1038/npp.2011.230 |
| [90] |
Cohen H., Liu T., Kozlovsky N., et al. The neuropeptide Y (NPY)-ergic system is associated with behavioral resilience to stress exposure in an animal model of posttraumatic stress disorder // Neuropsychopharmacology. 2012. Vol. 37, No. 2. P. 350–363. DOI: 10.1038/npp.2011.230 |
| [91] |
Bronmark C, Miner JG. Predator-induced phenotypical change in body morphology in crucian carp. Science. 1992;258(5086): 1348–1350. DOI: 10.1126/science.258.5086.1348 |
| [92] |
Bronmark C., Miner J.G. Predator-induced phenotypical change in body morphology in crucian carp // Science. 1992. Vol. 258, No. 5086. P. 1348–1350. DOI: 10.1126/science.258.5086.1348 |
| [93] |
Ferrari MCO, Chivers DP, Wisenden BD. Chemical ecology of predator-prey interactions in aquatic ecosystems: a review and prospectus. Can J Zool. 2010;88(7):698–724. DOI: 10.1139/Z10-029 |
| [94] |
Ferrari M.C.O., Chivers D.P., Wisenden B.D. Chemical ecology of predator-prey interactions in aquatic ecosystems: a review and prospectus // Can J Zool. 2010. Vol. 88, No. 7. P. 698–724. DOI: 10.1139/Z10-029 |
| [95] |
Chivers DP, Mirza RS. Predator diet cues and the assessment of predation risk by aquatic vertebrates: a review and prospectus. Marchlewska-Koj A, Lepri JJ, Müller-Schwarze D, editors. Chemical Signals in Vertebrates 9. Boston: Springer, 2001. P. 277–284. DOI: 10.1007/978-1-4615-0671-3_37 |
| [96] |
Chivers D.P., Mirza R.S. Predator diet cues and the assessment of predation risk by aquatic vertebrates: a review and prospectus. Chemical Signals in Vertebrates 9 / A. Marchlewska-Koj, J.J. Lepri, D. Müller-Schwarze, editors. Boston: Springer, 2001. P. 277–284. DOI: 10.1007/978-1-4615-0671-3_37 |
| [97] |
Dawidowicz P, Loose CJ. Metabolic costs during predator-induced dielvertical migration of Daphnia. Limnol Oceanogr. 1992;37(8): 1589–1595. DOI: 10.4319/lo.1992.37.8.1589 |
| [98] |
Dawidowicz P., Loose C.J. Metabolic costs during predator-induced dielvertical migration of Daphnia // Limnol Oceanogr. 1992. Vol. 37, No. 8. P. 1589–1595. DOI: 10.4319/lo.1992.37.8.1589 |
| [99] |
Fonner CW, Woodley SK. Testing the predation stress hypothesis: behavioural and hormonal responses to predator cues in Allegheny Mountain dusky salamanders. Behaviour. 2015;152(6):797–819. DOI: 10.1163/1568539X-00003254 |
| [100] |
Fonner C.W., Woodley S.K. Testing the predation stress hypothesis: behavioural and hormonal responses to predator cues in Allegheny Mountain dusky salamanders // Behaviour. 2015. Vol. 152, No. 6. P. 797–819. DOI: 10.1163/1568539X-00003254 |
| [101] |
Gazzola A, Brandalise F, Rubolini D, et al. Fear is the mother of invention: anuran embryos exposed to predator cues alter lifehistory traits, post-hatching behaviour and neuronal activity patterns. J Exp Biol. 2015;218(24):3919–3930. DOI: 10.1242/jeb.126334 |
| [102] |
Gazzola A., Brandalise F., Rubolini D., et al. Fear is the mother of invention: anuran embryos exposed to predator cues alter lifehistory traits, post-hatching behaviour and neuronal activity patterns // J Exp Biol. 2015. Vol. 218, No. 24. P. 3919–3930. DOI: 10.1242/jeb.126334 |
| [103] |
Hazlett BA. Responses to multiple chemical cues by the crayfish Orconectes virilis. Behaviour. 1999;136(2):161–177. DOI: 10.1651/C-2595.1 |
| [104] |
Hazlett B.A. Responses to multiple chemical cues by the crayfish Orconectes virilis // Behaviour. 1999. Vol. 136, No. 2. P. 161–177. DOI: 10.1651/C-2595.1 |
| [105] |
Foam PE, Harvey MC, Mirza RS, Brown GE. Heads up: juvenile convict cichlids switch to threat-sensitive foraging tactics based on chemosensory information. Anim Behav. 2005;70(3):601–607. DOI: 10.1016/j.anbehav.2004.12.011 |
| [106] |
Foam P.E., Harvey M.C., Mirza R.S., Brown G.E. Heads up: juvenile convict cichlids switch to threat-sensitive foraging tactics based on chemosensory information // Anim Behav. 2005. Vol. 70, No. 3. P. 601–607. DOI: 10.1016/j.anbehav.2004.12.011 |
| [107] |
Briones-Fourzán P, Ramírez-Zaldívar E, Lozano-Álvarez E. Influence of conspecific and heterospecific aggregation cues and alarm odors on shelter choice by syntopic spiny lobsters. Biol Bull. 2008;215(2):182–190. DOI: 10.2307/25470699 |
| [108] |
Briones-Fourzán P., Ramírez-Zaldívar E., Lozano-Álvarez E. Influence of conspecific and heterospecific aggregation cues and alarm odors on shelter choice by syntopic spiny lobsters // Biol Bull. 2008. Vol. 215, No. 2. P. 182–190. DOI: 10.2307/25470699 |
| [109] |
Mitchell MD, Bairos-Novak KR. Mechanisms underlying the control of responses to predator odours in aquatic prey. J Exp Biol. 2017;220(11):1937–1946. DOI: 10.1242/jeb.135137 |
| [110] |
Mitchell M.D., Bairos-Novak K.R. Mechanisms underlying the control of responses to predator odours in aquatic prey // J Exp Biol. 2017. Vol. 220, No. 11. P. 1937–1946. DOI: 10.1242/jeb.135137 |
| [111] |
Derby CD, Sorensen PW. Neural processing, perception, and behavioral responses to natural chemical stimuli by fish and crustaceans. J Chem Ecol. 2008;34(7):898–914. DOI: 10.1007/s10886-008-9489-0 |
| [112] |
Derby C.D., Sorensen P.W. Neural processing, perception, and behavioral responses to natural chemical stimuli by fish and crustaceans // J Chem Ecol. 2008. Vol. 34, No. 7. P. 898–914. DOI: 10.1007/s10886-008-9489-0 |
| [113] |
Døving KB, Lastein S. The alarm reaction in fishes-odorants, modulations of responses, neural pathways. Ann NY Acad Sci. 2009;1170(1):413–423. DOI: 10.1111/j.1749-6632.2009.04111.x |
| [114] |
Døving K.B., Lastein S. The alarm reaction in fishes-odorants, modulations of responses, neural pathways // Ann NY Acad Sci. 2009. Vol. 1170, No. 1. P. 413–423. DOI: 10.1111/j.1749-6632.2009.04111.x |
| [115] |
Hamdani EH, Døving KB. Sensitivity and selectivity of neurons in the medial region of the olfactory bulb to skin extract from conspecifics in crucian carp, Carassius carassius. Chem Senses. 2003;28(3):181–189. DOI: 10.1093/chemse/28.3.181 |
| [116] |
Hamdani E.H., Døving K.B. Sensitivity and selectivity of neurons in the medial region of the olfactory bulb to skin extract from conspecifics in crucian carp, Carassius carassius // Chem Senses. 2003. Vol. 28, No. 3. P. 181–189. DOI: 10.1093/chemse/28.3.181 |
| [117] |
Brown GE, Ferrari MCO, Elvidge CK, et al. Phenotypically plastic neophobia: a response to variable predation risk. Proc R Soc B Biol Sci. 2013;280(1756):20122712. DOI: 10.1098/rspb.2012.2712 |
| [118] |
Brown G.E., Ferrari M.C.O., Elvidge C.K., et al. Phenotypically plastic neophobia: a response to variable predation risk // Proc R Soc B Biol Sci. 2013. Vol. 280, No. 1756. ID 20122712. DOI: 10.1098/rspb.2012.2712 |
| [119] |
Mitchell MD, Chivers DP, Brown GE, Ferrari MCO. Living on the edge: how does environmental risk affect the behavioural and cognitive ecology of prey? Anim Behav. 2016;115:185–192. DOI: 10.1016/j.anbehav.2016.03.018 |
| [120] |
Mitchell M.D., Chivers D.P., Brown G.E., Ferrari M.C.O. Living on the edge: how does environmental risk affect the behavioural and cognitive ecology of prey? // Anim Behav. 2016. Vol. 115. P. 185–192. DOI: 10.1016/j.anbehav.2016.03.018 |
| [121] |
Orr MV, El-Bekai M, Lui M, et al. Predator detection in Lymnaea stagnalis. J Exp Biol. 2007;210(23):4150–4158. DOI: 10.1242/jeb.010173 |
| [122] |
Orr M.V., El-Bekai M., Lui M., et al. Predator detection in Lymnaea stagnalis // J Exp Biol. 2007. Vol. 210, No. 23. P. 4150–4158. DOI: 10.1242/jeb.010173 |
| [123] |
Brown C, Braithwaite VA. Effects of predation pressure on the cognitive ability of the poeciliid Brachyraphis episcopi. Behav Ecol. 2005;16(2):482–487. DOI: 10.1093/beheco/ari016 |
| [124] |
Brown C., Braithwaite V.A. Effects of predation pressure on the cognitive ability of the poeciliid Brachyraphis episcopi // Behav Ecol. 2005. Vol. 16, No. 2. P. 482–487. DOI: 10.1093/beheco/ari016 |
| [125] |
Demin KA, Krotova NA, Ilyin NP, et.al. Evolutionarily conserved gene expression patterns for afective disorders revealed using crossspecies brain transcriptomic analyses in humans, rats and zebrafsh. Sci Rep. 2022;12:20836. DOI: 10.1038/s41598-022-22688-x |
| [126] |
Demin K.A., Krotova N.A., Ilyin N.P., et.al. Evolutionarily conserved gene expression patterns for afective disorders revealed using crossspecies brain transcriptomic analyses in humans, rats and zebrafsh // Sci Rep. 2022. Vol. 12. ID 20836. DOI: 10.1038/s41598-022-22688-x |
| [127] |
Stewart A, Ferdous F. The developing utility of Danio rerio in modeling neurobehavioral disorders. Int J Comp Psychol. 2010;23(1):104–121. DOI: 10.1016/j.pnpbp.2010.11.035 |
| [128] |
Stewart A., Ferdous F. The developing utility of Danio rerio in modeling neurobehavioral disorders // Int J Comp Psychol. 2010. Vol. 23, No. 1. P. 104–121. DOI: 10.1016/j.pnpbp.2010.11.035 |
Eco-Vector
/
| 〈 |
|
〉 |