Induction of Neuraminidase Activity in Neural Cells in Vitro by Synthetic Analogues of cAMP

Sergey Nikolaevich Proshin , Evgeniy Rudol'fovich Bychkov , Andrey Andreevich Lebedev , Galina P Kosyakova , Petr Dmitrievich Shabanov , S N Proshin , E R Bychkov , A A Lebedev , G P Kosyakova , P D Shabanov

Psychopharmacology & biological narcology ›› 2008, Vol. 8 ›› Issue (3-4) : 2434 -2442.

PDF
Psychopharmacology & biological narcology ›› 2008, Vol. 8 ›› Issue (3-4) : 2434 -2442. DOI: 10.17816/phbn322000
Articles
other

Induction of Neuraminidase Activity in Neural Cells in Vitro by Synthetic Analogues of cAMP

Author information +
History +
PDF

Abstract

The treatment of human neuroblastoma NB-1 cells by db-cAMP induced the high frequency of neural cells bearing neurite as well as more than two-fold elevated activity of sialidase associated with plasma membrane (SAPM). The elevated silaidase activity was accompanied by increasing the quantity of mRNA for that enzyme as was estimated by RT-PCR. The neural cells with elevated SAPM activity and developed neurite were shown to have high activity of another enzyme (acetylcholinesterase) that is strongly considered as a biochemical marker of neural cell differentiation. Due to our experimental work it has been reasoned that elevated activity of sialidase associated with plasma membrane is closely related to neural cell differentiation and can be considered as a key factor for therapy of disorders connected to damage of cells of neuronal orogon

Keywords

neuraminidase / gangliosides / neural cells

Cite this article

Download citation ▾
Sergey Nikolaevich Proshin, Evgeniy Rudol'fovich Bychkov, Andrey Andreevich Lebedev, Galina P Kosyakova, Petr Dmitrievich Shabanov, S N Proshin, E R Bychkov, A A Lebedev, G P Kosyakova, P D Shabanov. Induction of Neuraminidase Activity in Neural Cells in Vitro by Synthetic Analogues of cAMP. Psychopharmacology & biological narcology, 2008, 8(3-4): 2434-2442 DOI:10.17816/phbn322000

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Miyagi T., Wada T., Iwamatsu A. Molecular cloning and characterization of a plasma membrane-associated sialidase specific for gangliosides. // J. Biol. Chem. 1999. Vol. 274. P. 5004-5011.

[2]

Yamaguchi K., Hata K., Koseki K. Evidence for mitochondrial localization of a novel human sialidase (NEU4). // Biochem. J. 2005. Vol. 390, N 1. P. 85-93.

[3]

Proshin S. Sialidase activity and metastatic characteristics of tumor cell clones in vivo of rat rhabdomyosarcoma RA-23. // J. Glycobiol. 2007. Vol. 17, N 11. P. 1228.

[4]

Hasegawa T., Yamaguchi K., Wada T., et al. Molecular cloning of mouse ganglioside sialidase and its increased expression in Neuro2a cell differentiation. // J. Biol. Chem. 2000. Vol. 275. P. 8007-8015.

[5]

Da Silva J.S., Hasegawa T., Miyagi T. Asymmetric membrane ganglioside sialidase activity specifies axonal fate. // Nat. Neurosci. 2005. Vol. 8, N 5. P. 606-615.

[6]

Kato K., Shiga K., Yamaguchi K. Plasma-membrane-associated sialidase (NEU3) differentially regulates integrin-mediated cell proliferation through laminin- and fibronectin-derived signaling. // Biochem. J. 2006. Vol. 394, N 3. P. 647-656.

[7]

Wang Y., Yamaguchi K., Wada T., et al. A close association of the ganglioside-specific sialidase Neu3 with caveolin in membrane microdomains. // J. Biol. Chem. 2002. Vol. 277, N 29. P. 26252-26259.

[8]

Odintsova E., Butters T.D., Monti E. Gangliosides play an important role in the organization of CD82-enriched microdomains. // Biochem. J. 2006. Vol. 400, N 2. P. 315-325.

[9]

Mao L., Wang J.Q. Glutamate cascade to cAMP response-binding protein phosphorylation in cultured striatal neurons through calcium-coupled group I metabotropic glutamate receptors. // Mol. Pharmacol. 2002. Vol. 62, N 3. P. 473-484.

[10]

Kumar A.P., Bhaskaran S., Ganapathy M., et al. Akt/cAMP-responsive element binding protein/cyclin D1 network: a novel target for prostate cancer inhibition in transgenic adenocarcinoma of mouse prostate model mediated by nexrutine, a phellodendron amurensen bark extract. // Clin. Cancer Res. 2007. Vol. 13, N 9. P. 2784-2794.

[11]

Palestini P., Pitto M., Ferraretto A., et al. Change of ganglioside accessibility at the plasma membrane surface of cultured neurons, following protein kinase C activation. // Biochemistry. 1998. Vol. 37. P. 3143-3148.

[12]

Hata K., Sasaki A., Sawada M., et al. Overexpression of ganglioside sialidase in transgenic mice leads to non-insulin dependent diabetes mellitus. // Glycoconj. J. 2001. Vol. 18. P. 90-94.

[13]

Kopitz J., von Reitzenstein C., Mühl C., Cantz M. Role of plasma membrane ganglioside sialidase of human neuroblastoma cells in growth control and differentiation. // Biochem. Biophys. Res. Commun. 1994. Vol. 199. P. 1188-1193.

[14]

Rodriguez J.A., Piddini E., Hasegawa T., et al. Plasma membrane ganglioside regulates axonal growth and regeneration in hippocampal neurons in culture. // J. Neurosci. 2001. Vol. 21, N 21. P. 8387-8395.

[15]

Warren L. The thiobarbituric acid assay of sialic acids. // J. Biol. Chem. 1959. Vol. 234, N 8. P. 1971-1975.

[16]

Miyagi T., Tsuiki S. Rat-liver lysosomal sialidase. Solubilization, substrate specificity and comparison with the cytosolic sialidase. // Eur.J. Biochem. 1984. Vol. 141. P. 75-81.

[17]

Ellman G., Courtney K.D., Andres V., et al. A new and rapid colorimetric determination of acetylcholinesterase activity. // Biochem. Pharmacol. 1961. Vol. 7. P. 88-95.

[18]

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. // Anal. Biochem. 1976. Vol. 72. P. 248-254.

[19]

Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinum thiocyanate-phenol-chlorophorm extraction. // Anal. Biochem. 1987. Vol. 162. P. 156-159.

[20]

Kozireski-Chuback D., Wu G., Ledeen R.W. Up-regulation of nuclear GM1 accompanies axon-like, but not dendrite-like, outgrowth in NG108-15 cells. // J. Neurosci. Res. 1999. Vol. 55. P. 107-118.

[21]

Shelly M., Cancedda L., Heilshorn S., Sumbre G., Poo M.M. LKB1/STRAD promotes axon initiation during neuronal polarization. // Cell. 2007. Vol. 129, N 3. P. 565-577.

[22]

Kalka D., von Reitzenstein C., Kopitz J., Cantz M. The plasma membrane ganglioside silaidase cofractionates with markers of lipid rafts. Biochem. Biophys. Res. Commun. 2001. Vol. 283. P. 989-993.

[23]

Razani B., Rubin C.S., Lisanti M.P. Regulation of cAMP-mediated signal transduction via interaction of caveolins with the catalytic subunit of protein kinase A. // J. Biol. Chem. 1999. Vol. 274. P. 26353-26360,

[24]

Razani B., Lisanti M.P. Two distinct caveolin-1 domains mediate the functional interaction of caveolin-1 with protein kinase A. // Am.J. Physiol. Cell Physiol. 2001. Vol. 281. P. C1241-C1250.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

50

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/