A new ghrelin receptor antagonist agrelax participates in the control of emotional-explorative behavior and anxiety in rats
Andrei A. Lebedev , Valeriya V. Lukashkova , Anna G. Pshenichnaya , Eugeny R. Bychkov , Viktor A. Lebedev , Vladimir V. Rusanovsky , Petr D. Shabanov
Psychopharmacology & biological narcology ›› 2023, Vol. 14 ›› Issue (1) : 69 -79.
A new ghrelin receptor antagonist agrelax participates in the control of emotional-explorative behavior and anxiety in rats
BACKGROUND: Currently, no study has investigated on the role of ghrelin in the reinforcing system and emotional behavior. Previously, we examined the properties of GHSR1A antagonist [D-Lys3]-GHRP-6 to reduce negative emotional states caused by stress.
AIM: To study the involvement of a new peptide antagonist of the GHSR1A receptor agrelax in the control of emotional–exploratory behavior and anxiety in rats.
MATERIALS AND METHODS: Experiments were performed on 42 male Wistar rats. The behavior of rats was observed; agrelax 1 μg/mL (or water) with a volume of 20 μL (10 μl in each nostril) was administered intranasally. A battery of behavioral tests was used: an elevated plus maze, an open field, a marble test, an intruder–resident test, and an anxiety-phobic state assessment (FS).
RESULTS: In the elevated plus maze test, the time spent in the light arm and the number of hangings from the open arm increased in the test animals compared with animals that did not receive the drug (p < 0.05). After the administration of agrelax, the number of balloons buried and the number of elevations supported by the wall of the chamber in the marble test decreased compared with that in animals that did not receive the drug (p < 0.05). In the open field, agrelax-infected rats showed a decrease in the number of sniffs (p ≤ 0.01). In the FS test after the agrelax administration, the time of descent from the platform decreased compared with the control (p ≤ 0.05). In the “intruder–resident” test, individual behavior (p ≤ 0.01) and protective behavior (p ≤ 0.05) decreased after agrelax administration.
CONCLUSION: A new peptide antagonist of the GHSR1A receptor agrelax is involved in the control of emotional–exploratory behavior in rats. Agrelax reduced anxiety levels and exploratory activity. The results provide grounds for the development of new approaches to the treatment of phobic spectrum disorders using drugs that modulate ghrelin regulation.
ghrelin / GHSR1A antagonist / agrelax / anxiety
| [1] |
Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–660. DOI: 10.1038/45230 |
| [2] |
Kojima M., Hosoda H., Date Y., et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach // Nature. 1999. Vol. 402. P. 656–660. DOI: 10.1038/45230 |
| [3] |
Chen Ch-Y, Asakawa A, Fujimiya M, et al. Ghrelin gene products and the regulation of food intake and gut motility. Pharmacol Rev. 2009;61(4):430–481. DOI: 10.1124/pr.109.001958 |
| [4] |
Chen Ch.-Y., Asakawa A., Fujimiya M., et al. Ghrelin gene products and the regulation of food intake and gut motility // Pharmacol Rev. 2009. Vol. 61, No. 4. P. 430–481. DOI: 10.1124/pr.109.001958 |
| [5] |
Gnanapavan S, Kola B, Bustin SA, et al. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin Endocrinol Metabolism. 2002;87(6):2988–2991. DOI: 10.1210/jcem.87.6.8739 |
| [6] |
Gnanapavan S., Kola B., Bustin S.A., et al. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans // J Clin Endocrinol Metabolism. 2002. Vol. 87, No. 6. P. 2988–2991. DOI: 10.1210/jcem.87.6.8739 |
| [7] |
Perello M, Sakata I, Birnbaum S, et al. Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent manner. Biol Psychiatry. 2010;67(9):880–886. DOI: 10.1016/j.biopsych.2009.10.030 |
| [8] |
Perello M., Sakata I., Birnbaum S., et al. Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent manner // Biol Psychiatry. 2010. Vol. 67, No. 9. P. 880–886. DOI: 10.1016/j.biopsych.2009.10.030 |
| [9] |
Carroll ME, France CP, Meisch RA. Food deprivation increases oral and intravenous drug intake in rats. Science. 1979;205(4403):319–321. DOI: 10.1126/science.36665 |
| [10] |
Carroll M.E., France C.P., Meisch R.A. Food deprivation increases oral and intravenous drug intake in rats // Science. 1979. Vol. 205, No. 4403. P. 319–321. DOI: 10.1126/science.36665 |
| [11] |
Jerlhag E, Egecioglu E, Dickson SL, Engel JA. Glutamatergic regulation of ghrelin-induced activation of the mesolimbic dopamine system. Addict Biol. 2011;16(1):82–91. DOI: 10.1111/j.1369-1600.2010.00231.x |
| [12] |
Jerlhag E., Egecioglu E., Dickson S.L., Engel J.A. Glutamatergic regulation of ghrelin-induced activation of the mesolimbic dopamine system // Addict Biol. 2011. Vol. 16, No. 1. P. 82–91. DOI: 10.1111/j.1369-1600.2010.00231.x |
| [13] |
Patterson ZR, Ducharme R, Anisman H, Abizaid A. Altered metabolic and neurochemical responses to chronic unpredictable stressors in ghrelin receptor-deficient mice. Eur J Neurosci. 2010;32(4):632–639. DOI: 10.1111/j.1460-9568.2010.07310.x |
| [14] |
Patterson Z.R., Ducharme R., Anisman H., Abizaid A. Altered metabolic and neurochemical responses to chronic unpredictable stressors in ghrelin receptor-deficient mice // Eur J Neurosci. 2010. Vol. 32, No. 4. P. 632–639. DOI: 10.1111/j.1460-9568.2010.07310.x |
| [15] |
Zigman JM, Jones JE, Lee CE, et al. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol. 2006;494(3):528–548. DOI: 10.1002/cne.20823 |
| [16] |
Zigman J.M., Jones J.E., Lee C.E., et al. Expression of ghrelin receptor mRNA in the rat and the mouse brain // J Comp Neurol. 2006. Vol. 494, No. 3. P. 528–548. DOI: 10.1002/cne.20823 |
| [17] |
Kaur S, Ryabinin AE. Ghrelin receptor antagonism decreases alcohol consumption and activation of perioculomotorurocortin-containing neurons. Alcoholism Clin Exp Res. 2010;34(9):1525–1534. DOI: 10.1111/j.1530-0277.2010.01237.x |
| [18] |
Kaur S., Ryabinin A.E. Ghrelin receptor antagonism decreases alcohol consumption and activation of perioculomotorurocortin-containing neurons // Alcoholism Clin Exp Res. 2010. Vol. 34, No. 9. P. 1525–1534. DOI: 10.1111/j.1530-0277.2010.01237.x |
| [19] |
Cabral A, Suescun O, Zigman JM, Perello M. Ghrelin indirectly activates hypophysiotropic CRF Neurons in rodents. PLoS One. 2012;7(2):e31462. DOI: 10.1371/journal.pone.0031462 |
| [20] |
Cabral A., Suescun O., Zigman J.M., Perello M. Ghrelin indirectly activates hypophysiotropic CRF Neurons in rodents // PLoS One. 2012. Vol. 7, No. 2. ID e31462. DOI: 10.1371/journal.pone.0031462 |
| [21] |
Yakushina ND, Tissen IY, Lebedev AA, et al. Effect of intranasal ghrelin administration on the compulsive behavior patterns and the level of anxiety after the vital stress exposure to rats. Reviews on Clinical Pharmacology and Drug Therapy. 2017;15(3):28–37. (In Russ.) DOI: 10.17816/RCF15328-37 |
| [22] |
Якушина Н.Д., Тиссен И.Ю., Лебедев А.А., и др. Влияние интраназально вводимого грелина на проявления компульсивного поведения и уровень тревожности у крыс после витального стрессорного воздействия // Обзоры по клинической фармакологии и лекарственной терапии. 2017. Т. 15, № 3. С. 28–37. DOI: 10.17816/RCF15328-37 |
| [23] |
Abizaid A, Liu Z-W, Andrews ZB, et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest. 2006;116(12):3229–3239. DOI: 10.1172/JCI29867 |
| [24] |
Abizaid A., Liu Z.-W., Andrews Z.B., et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite // J Clin Invest. 2006. Vol. 116, No. 12. ID 3229–3239. DOI: 10.1172/JCI29867 |
| [25] |
Shabanov PD, Airapetov MI, Sekste EA, et al. Serum unacylated ghrelin concentrations and expression of GHSR mRNA in the rat brain structures after chronic alcoholization and ethanol withdrawal. Eur Neuropsychopharmacol. 2014;14(S-2):S653. DOI: 10.1016/S0924-977X(14)71050-8 |
| [26] |
Shabanov P.D., Airapetov M.I., Sekste E.A., et al. Serum unacylated ghrelin concentrations and expression of GHSR mRNA in the rat brain structures after chronic alcoholization and ethanol withdrawal // Eur Neuropsychopharmacol. 2014. Vol. 14, No. S-2. ID S653. DOI: 10.1016/S0924-977X(14)71050-8 |
| [27] |
Shabanov PD, Lebedev AA, Bychkov ER, et al. Neurochemical mechanisms and pharmacology of ghrelins. Reviews on Clinical Pharmacology and Drug Therapy. 2020;18(1):5–22. (In Russ.) DOI: 10.7816/RCF1815-22. |
| [28] |
Шабанов П.Д., Лебедев А.А., Бычков Е.Р., и др. Нейрохимические механизмы и фармакология грелинов // Обзоры по клинической фармакологии и лекарственной терапии. 2020. Т. 18, № 1. С. 5–22. DOI: 10.7816/RCF1815-22. |
| [29] |
Lebedev AA, Pshenichnaya AG, Yakushina ND, et al. Effect of astressin, a corticoliberin antagonist, on aggression and anxiety-fobic states in male rats reared in social isolation. Reviews on Clinical Pharmacology and Drug Therapy. 2017;15(3):38–47. (In Russ.) DOI: 10.17816/RCF15338-47 |
| [30] |
Лебедев А.А., Пшеничная А.Г., Якушина Н.Д., и др. Влияние антагониста рецепторов кортиколиберина астрессина на агрессию и тревожно-фобические состояния у самцов крыс, выращенных в социальной изоляции // Обзоры по клинической фармакологии и лекарственной терапии. 2017. Т. 15, № 3. С. 38–47. DOI: 10.17816/RCF15338-47 |
| [31] |
Daliev BB, Bychkov ER, Myznikov LV, et al. Anticompulsive effects of novel derivatives of coumarin in rats. Reviews on Clinical Pharmacology and Drug Therapy. 2021;19(3):339–344. (In Russ.) DOI: 10.17816/RCF193339-344 |
| [32] |
Далиев Б.Б., Бычков Е.Р., Мызников Л.В., и др. Антикомпульсивные эффекты новых производных кумарина у крыс // Обзоры по клинической фармакологии и лекарственной терапии. 2021. Т. 19, № 3. С. 339–344. DOI: 10.17816/RCF193339-344 |
| [33] |
Shabanov PD, Yakushina ND, Lebedev AA. Pharmacology of peptide mechanisms of gambling behavior in rats. Journal of addiction problems. 2020;(4):24–44. (In Russ.) DOI: 10.47877/0234-0623_2020_4_24 |
| [34] |
Шабанов П.Д., Якушина Н.Д., Лебедев А.А. Фармакология пептидных механизмов игрового поведения у крыс // Вопросы наркологии. 2020. № 4. С. 24–44. DOI: 10.47877/0234-0623_2020_4_24 |
| [35] |
Shabanov PD, Vinogradov PM, Lebedev AA, et al. Ghrelin system of the brain participates in control of emotional, explorative behavior and motor activity in rats rearing in conditions of social isolation stress. Reviews on Clinical Pharmacology and Drug Therapy. 2017;15(4):38–45. (In Russ.) DOI: 10.17816/RCF15438-45 |
| [36] |
Шабанов П.Д., Виноградов П.М., Лебедев А.А., и др. Грелиновая система мозга участвует в контроле эмоционально-исследовательского поведения и двигательной активности крыс, выращенных в условиях стресса социальной изоляции // Обзоры по клинической фармакологии и лекарственной терапии. 2017. Т. 15, № 4. С. 38–45. DOI: 10.17816/RCF15438-45 |
| [37] |
Shabanov PD, Lebedev AA, Morozov VI. The role of ghrelin in control of emotional, explorative and motor behavior in experimental posttraumatic stress disorder. Medicо-Biological and Socio-Psychological Problems of Safety in Emergency Situations. 2018;(1):65–74. (In Russ.) DOI: 10.25016/2541-7487-2018-0-1-65-74 |
| [38] |
Шабанов П.Д., Лебедев А.А., Морозов В.И. Роль грелина в контроле эмоционального, исследовательского и двигательного поведения при экспериментальном посттравматическом стрессовом расстройстве // Медико-биологические и социально-психологические проблемы безопасности в чрезвычайных ситуациях. 2018. № 1. С. 65–73. DOI: 10.25016/2541-7487-2018-0-1-65-74 |
| [39] |
Dickson SL, Leng G, Robinson ICAF. Systemic administration of growth hormone-releasing peptide activates hypothalamic arcuate neurons. Neuroscience. 1993;53(2):303–306. DOI: 10.1016/0306-4522(93)90197-n |
| [40] |
Dickson S.L., Leng G., Robinson I.C.A.F. Systemic administration of growth hormone-releasing peptide activates hypothalamic arcuate neurons // Neuroscience. 1993. Vol. 53, No. 2. P. 303–306. DOI: 10.1016/0306-4522(93)90197-n |
| [41] |
Ueberberg B, Unger N, Saeger W, et al. Expression of ghrelin and its receptor in human tissues. Horm Metab Res. 2009;41(11):814–821. DOI:10.1055/s-0029-1233462.148 |
| [42] |
Ueberberg B., Unger N., Saeger W., et al. Expression of ghrelin and its receptor in human tissues // Horm Metab Res. 2009. Vol. 41, No. 11. P. 814–821. DOI:10.1055/s-0029-1233462.148 |
| [43] |
Howard AD, Feighner SD, Cully DF, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science. 1996;273(5277):974–977. DOI: 10.1126/science.273.5277.974.79 |
| [44] |
Howard A.D., Feighner S.D., Cully D.F., et al. A receptor in pituitary and hypothalamus that functions in growth hormone release // Science. 1996. Vol. 273, No. 5277. P. 974–977. DOI: 10.1126/science.273.5277.974.79 |
| [45] |
Muller TD, Perez-Tilve D, Tong J, et al. Ghrelin and its potential in the treatment of eating/wasting disorders and cachexia. J Cachexia Sarcopenia Muscle. 2010;1(2):159–167. DOI: 10.1007/s13539-010-0012-4.114 |
| [46] |
Muller T.D., Perez-Tilve D., Tong J., et al. Ghrelin and its potential in the treatment of eating/wasting disorders and cachexia // J Cachexia Sarcopenia Muscle. 2010. Vol. 1, No. 2. P. 159–167. DOI: 10.1007/s13539-010-0012-4.114 |
| [47] |
Willesen MG, Kristensen P, Romer J. Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology. 1999;70(5):306–316. DOI: 10.1159/000054491.156 |
| [48] |
Willesen M.G., Kristensen P., Romer J. Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat // Neuroendocrinology. 1999. Vol. 70, No. 5. P. 306–316. DOI: 10.1159/000054491.156 |
Eco-Vector
/
| 〈 |
|
〉 |