The cognitive stability of an elderly human is guaranteed by his lifelong motor activity

Alexandr S. Radchenko

Psychopharmacology & biological narcology ›› 2022, Vol. 13 ›› Issue (4) : 85 -92.

PDF
Psychopharmacology & biological narcology ›› 2022, Vol. 13 ›› Issue (4) : 85 -92. DOI: 10.17816/phbn278248
Clinical Pharmacology
research-article

The cognitive stability of an elderly human is guaranteed by his lifelong motor activity

Author information +
History +
PDF

Abstract

A person’s muscular activity, or behavior when performing various types of physical exercises, is determined by the brain’s complex, multi-level architectonics. The organization of any type of movement in sports and physical exercises, as well as various types of professional motor activity, involves all levels of the central nervous system.

This study aims to analyze the benefits of sports for maintaining long-term brain activity.

This study conducted literary critical analysis of the functional interaction of various cortical and subcortical mechanisms of human voluntary movements with domestic and foreign literature involvement.

Regular sports cause structural changes in areas of the brain that are directly or indirectly involved in the organization of movements. Moreover, due to an increase in perfusion, a significant part of the gray matter of the primary sensorimotor fields and many associative areas of the cortex are also subject to structural changes. Muscle work and any motor activity are a positive factor that determines a person’s cognitive stability in old age due to favorable changes in the brain.

This conclusion refutes the popular belief that long-term sports lead to the preservation of only the motor cortex with age, whereas the capillary networks in other areas, particularly associative fields, occlude earlier with age, and impair intelligence.

Keywords

perfusion / neuron / associative fields / physical activity

Cite this article

Download citation ▾
Alexandr S. Radchenko. The cognitive stability of an elderly human is guaranteed by his lifelong motor activity. Psychopharmacology & biological narcology, 2022, 13(4): 85-92 DOI:10.17816/phbn278248

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

youtube.com [Internet]. Dubynin Vyacheslav: Mozg i dvizhenie. 2018. Available at: https://www.youtube.com/watch?v=XNMGhUG3YDA&t=4445s (In Russ.)

[2]

youtube.com [Электронный ресурс]. Дубынин Вячеслав: Мозг и движение. 2018. Режим доступа: https://www.youtube.com/watch?v=XNMGhUG3YDA&t=4445s

[3]

Ivanov KP. Osnovy ehnergetiki organizma: Teoreticheskie i prakticheskie aspekty. T. 2. Biologicheskoe okislenie i ego obespechenie kislorodom. Saint Petersburg: Nauka, 1993. 272 p. (In Russ.)

[4]

Иванов К.П. Основы энергетики организма: Теоретические и практические аспекты. Т. 2. Биологическое окисление и его обеспечение кислородом. Санкт-Петербург: Наука, 1993. 272 с.

[5]

Ivanov KP. Modern ideas of oxygen transport from blood to tissue. Progress in physiological science. 2001;32(4):3–22. (In Russ.)

[6]

Иванов К.П. Современные представления о транспорте кислорода в тканях // Успехи физиологических наук. 2001. Т. 32, № 4. С. 3–22.

[7]

Ivanov KP. Brain hypoxia and death of neurons as the result of disorder of microcirculation in the brain and of regional brain circulation. Regional blood circulation and microcirculation. 2010;9(2):5–17. DOI: 10.24884/1682-6655-2010-9-2-5-17 (In Russ.)

[8]

Иванов К.П. Гипоксия мозга и гибель нейронов вследствие нарушения микроциркуляции мозгового кровообращения // Регионарное кровообращение и микроциркуляция. 2010. Т. 9, № 2. С. 5–17. DOI: 10.24884/1682-6655-2010-9-2-5-17

[9]

Mishin AN, Shapiro VA. Figurnoe katanie kak kosmicheskoi polet. Saint Petersburg: Renome, 2015. 296 p. (In Russ.)

[10]

Мишин А.Н., Шапиро В.А. Фигурное катание как космической полет. Санкт-Петербург: Реноме, 2015. 296 с.

[11]

Radchenko AS, Davydov BB, Kalinichenko AN. Long-term cyclic aerobic training preserves the brain’s health in elderly persons (brief review). I.P. Pavlov Russian Medical Biological Herald. 2016;24(4):152–163. (In Russ.) DOI: 10.23888/PAVLOVJ20164152-163

[12]

Радченко А.С., Давыдов В.В., Калиниченко А.Н. Многолетняя циклическая аэробная тренировка сохраняет здоровье мозга человека в пожилом возрасте (краткий обзор иностранной литературы) // Российский медико-биологический вестник им. академика И.П. Павлова. 2016. Т. 24, № 4. C. 152–163. DOI: 10.23888/PAVLOVJ20164152-163

[13]

Savel’ev SV. Atlas mozga cheloveka. Moscow: VEDI, 2005. 400 p. (In Russ.)

[14]

Савельев С.В. Атлас мозга человека. Москва: ВЕДИ, 2005. 400 с.

[15]

Savel’ev SV. Izmenchivost’ i genial’nost’. Moscow: VEDI, 2012. 128 p. (In Russ.)

[16]

Савельев С.В. Изменчивость и гениальность. Москва: ВЕДИ, 2012. 128 с.

[17]

Savel’ev SV. Tserebral’nyi sorting. Moscow: VEDI, 2016. 232 p. (In Russ.)

[18]

Савельев С.В. Церебральный сортинг. Москва: ВЕДИ, 2016. 232 с.

[19]

Savel’ev SV. Morfologiya soznaniya: v 2 t. T. 1. izd. 2, ispr. i dop. Moscow: VEDI, 2020. 224 p. (In Russ.)

[20]

Савельев С.В. Морфология сознания: в 2 т. Т. 1. изд. 2, испр. и доп. Москва: ВЕДИ, 2020. 224 с.

[21]

Savel’ev SV. Morfologiya soznaniya: v 2 t. T. 2. Moscow: VEDI, 2021. 208 p. (In Russ.)

[22]

Савельев С.В. Морфология сознания: в 2 т. Т. 2. Москва: ВЕДИ, 2021. 208 с.

[23]

Batouli SAH, Saba V. At least eighty percent of brain grey matter is modifiable by physical activity: A review study. Behav Brain Res. 2017;332:205–217. DOI: 10.1016/j.bbr.2017.06.002

[24]

Batouli S.A.H., Saba V. At least eighty percent of brain grey matter is modifiable by physical activity: A review study // Behav Brain Res. 2017. Vol. 332. P. 205–217. DOI: 10.1016/j.bbr.2017.06.002

[25]

Belsky DW, Caspi A, Houts R, et al. Quantification of biological aging in young adults. PNAS. 2015;112(30):E4104–E4110. DOI: 10.1073/pnas.1506264112

[26]

Belsky D.W., Caspi A., Houts R., et al. Quantification of biological aging in young adults // PNAS. 2015. Vol. 112, No. 30. P. E4104–E4110. DOI: 10.1073/pnas.1506264112

[27]

Benedict C, Brooks SJ, Kullberg J, et al. Association between physical activity and brain health in older adults. Neurobiol Aging. 2003;34(1):83–90. DOI: 10.1016/j.neurobiolaging.2012.04.013

[28]

Benedict C., Brooks S.J., Kullberg J., et al. Association between physical activity and brain health in older adults // Neurobiol Aging. 2003. Vol. 34, No. 1. P. 83–90. DOI: 10.1016/j.neurobiolaging.2012.04.013

[29]

Caspers S, Zilles K, Laird AR, Eickhoff SB. ALE meta-analysis of action observation and imitation in the human brain. Neuroimage. 2010;50(3):1148–1167. DOI: 10.1016/j.neuroimage.2009.12.112

[30]

Caspers S., Zilles K., Laird A.R., Eickhoff S.B. ALE meta-analysis of action observation and imitation in the human brain // Neuroimage. 2010. Vol. 50, No. 3. P. 1148–1167. DOI: 10.1016/j.neuroimage.2009.12.112

[31]

Chouinard PA, Paus T. The primary motor and premotor areas of the human cerebral cortex. Neurosci. 2006;12(2):143–152. DOI: 10.1177/1073858405284255

[32]

Chouinard P.A., Paus T. The primary motor and premotor areas of the human cerebral cortex // Neurosci. 2006. Vol. 12, No. 2. P. 143–152. DOI: 10.1177/1073858405284255

[33]

Doyon J, Benali H. Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol. 2005;15(2):161–167. DOI: 10.1016/j.conb.2005.03.0

[34]

Doyon J., Benali H. Reorganization and plasticity in the adult brain during learning of motor skills // Curr Opin Neurobiol. 2005. Vol. 15, No. 2. P. 161–167. DOI: 10.1016/j.conb.2005.03.0

[35]

Esteban-Cornejo I, Catena A, Hillman CH, et al. Commentary: At least eighty percent of brain grey matter is modifiable by physical activity: a review study. Front Hum Neurosci. 2018;12:195. DOI: 10.3389/FNHUM.2018.00195

[36]

Esteban-Cornejo I., Catena A., Hillman C.H., et al. Commentary: At least eighty percent of brain grey matter is modifiable by physical activity: a review study // Front Hum Neurosci. 2018. Vol. 12. ID 195. DOI: 10.3389/FNHUM.2018.00195

[37]

Gerber P, Schlaffke L, Heba S, et al. Juggling revisited —A voxel–based morphometry study with expert jugglers. Neuroimage. 2014;95:320–325. DOI: 10.1016/j.neuroimage.2014.04.023

[38]

Gerber P., Schlaffke L., Heba S., et al. Juggling revisited —A voxel–based morphometry study with expert jugglers // Neuroimage. 2014. Vol. 95. P. 320–325. DOI: 10.1016/j.neuroimage.2014.04.023

[39]

Goble DJ, Coxon JP, Van Impe A, et al. The neural control of bimanual movements in the elderly: brain regions exhibiting age-related increases in activity, frequency-induced neural modulation, and task-specific compensatory recruitment. Hum Brain Mapp. 2010;31:1281–1295. DOI: 10.1002/hbm.20943

[40]

Goble D.J., Coxon J.P., Van Impe A., et al. The neural control of bimanual movements in the elderly: brain regions exhibiting age-related increases in activity, frequency-induced neural modulation, and task-specific compensatory recruitment // Hum Brain Mapp. 2010. Vol. 31. P. 1281–1295. DOI: 10.1002/hbm.20943

[41]

Golby A, Poldrack R, Brewer J, et al. Material-specific lateralization in the medial temporal lobe and prefrontal cortex during memory encoding. Brain. 2001;124(9):1841–1854. DOI: 10.1093/BRAIN/124.9.1841

[42]

Golby A., Poldrack R., Brewer J., et al. Material-specific lateralization in the medial temporal lobe and prefrontal cortex during memory encoding // Brain. 2001. Vol. 124, No. 9. P. 1841–1854. DOI: 10.1093/BRAIN/124.9.1841

[43]

Gordon GRJ, Choi HB, Rungta RL, et al. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature. 2008;456:745–749. DOI: 10.1038/nature07525

[44]

Gordon G.R.J., Choi H.B., Rungta R.L., et al. Brain metabolism dictates the polarity of astrocyte control over arterioles // Nature. 2008. Vol. 456. P. 745–749. DOI: 10.1038/nature07525

[45]

Grazina R, Massano J. Physical exercise and Parkinson’s disease: influence on symptoms, disease course and prevention. Rev Neurosci. 2013;24(2):139–152. DOI: 10.1515/revneuro-2012-0087

[46]

Grazina R., Massano J. Physical exercise and Parkinson’s disease: influence on symptoms, disease course and prevention // Rev Neurosci. 2013. Vol. 24, No. 2. P. 139–152. DOI: 10.1515/revneuro-2012-0087

[47]

Grefkes C, Fink GR. The functional organization of the intraparietal sulcus in humans and monkeys. J Anat. 2005;207(1):3–17. DOI: 10.1111/j.1469-7580.2005.00426.x

[48]

Grefkes C., Fink G.R. The functional organization of the intraparietal sulcus in humans and monkeys // J Anat. 2005. Vol. 207, No. 1. P. 3–17. DOI: 10.1111/j.1469-7580.2005.00426.x

[49]

Hertzog C, Kramer AF, Wilson RS, Lindenberger U. Enrichment effects on adult cognitive development. Psychol Sci Public Inheres. 2008;9(1):1–65. DOI: 10.1111/j.1539-6053.2009.01034.x

[50]

Hertzog C., Kramer A.F., Wilson R.S., Lindenberger U. Enrichment effects on adult cognitive development // Psychol Sci Public Inheres. 2008. Vol. 9, No. 1. P. 1–65. DOI: 10.1111/j.1539-6053.2009.01034.x

[51]

Kattenstroth J-C, Kolankowska I, Kalisch T, Dinse HR. Superior sensory, motor, and cognitive performance in elderly individuals with multi-Year dancing activities. Front Aging Neurosci. 2010;2:31. DOI: 10.3389/fnagi.2010

[52]

Kattenstroth J.-C., Kolankowska I., Kalisch T., Dinse H.R. Superior sensory, motor, and cognitive performance in elderly individuals with multi-Year dancing activities // Front Aging Neurosci. 2010. Vol. 2. ID 31. DOI: 10.3389/fnagi.2010

[53]

Middleton LE, Barnes DE, Lui LY, Yaffe K. Physical activity over the life course and its association with cognitive performance and impairment in old age. J Am Geriatr Soc. 2010;58(7):1322–1326. DOI: 10.1111/j.1532-5415.2010.02903.x

[54]

Middleton L.E., Barnes D.E., Lui L.Y., Yaffe K. Physical activity over the life course and its association with cognitive performance and impairment in old age // J Am Geriatr Soc. 2010. Vol. 58, No. 7. P. 1322–1326. DOI: 10.1111/j.1532-5415.2010.02903.x

[55]

Milham MP, Erickson KI, Banich MT, et al. Attentional control in the aging brain: insights from an fMRI study of the stroop task. Brain Cogn. 2002;49(3):277–296. DOI: 10.1006/brcg.2001.1501

[56]

Milham M.P., Erickson K.I., Banich M.T., et al. Attentional control in the aging brain: insights from an fMRI study of the stroop task // Brain Cogn. 2002. Vol. 49, No. 3. P. 277–296. DOI: 10.1006/brcg.2001.1501

[57]

Perl O, Ravia A, Rubinson M, et al. Human non-olfactory cognition phase-locked with inhalation. Nat Hum Behav. 2019;3:501–512. DOI: 10.1038/s41562-019-0556-z

[58]

Perl O., Ravia A., Rubinson M., et al. Human non-olfactory cognition phase-locked with inhalation // Nat Hum Behav. 2019. Vol. 3. P. 501–512. DOI: 10.1038/s41562-019-0556-z

[59]

Richards M, Hardy R, Wadsworth MEJ. Does active leisure protect cognition? Evidence from a national birth cohort. Soc Sci Med. 2003;56(4):785–792. DOI: 10.1016/S0277-9536(02)00075-8

[60]

Richards M., Hardy R., Wadsworth M.E.J. Does active leisure protect cognition? Evidence from a national birth cohort // Soc Sci Med. 2003. Vol. 56, No. 4. P. 785–792. DOI: 10.1016/S0277-9536(02)00075-8

[61]

Rojas-Libano D, Wimmer del Solar J, Aguilar-Rivera M, et al. Local cortical activity of distant brain areas can phase-lock to the olfactory bulb’s respiratory rhythm in the freely behaving rat. J Neurophysiol. 2018;120(3):960–972. DOI: 10.1152/jn.00088.2018

[62]

Rojas-Libano D., Wimmer del Solar J., Aguilar-Rivera M., et al. Local cortical activity of distant brain areas can phase-lock to the olfactory bulb’s respiratory rhythm in the freely behaving rat // J Neurophysiol. 2018. Vol. 120, No. 3. P. 960–972. DOI: 10.1152/jn.00088.2018

[63]

Sakadžić S, Mandeville ET, Gagnon L, et al. Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue. Nat Commun. 2014;5:5734. DOI: 10.1038/NCOMMS6734

[64]

Sakadžić S., Mandeville E.T., Gagnon L., et al. Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue // Nat Commun. 2014. Vol. 5. ID 5734. DOI: 10.1038/NCOMMS6734

[65]

Schlaffke L, Lissek S, Lenz M, et al. Sports and brain morphology − a voxel-based morphometry study with endurance athletes and martial artists. Neuroscience. 2014;259:35–42. DOI: 10.1016/j.neuroscience.2013.11.046

[66]

Schlaffke L., Lissek S., Lenz M., et al. Sports and brain morphology — a voxel-based morphometry study with endurance athletes and martial artists // Neuroscience. 2014. Vol. 259. P. 35–42. DOI: 10.1016/j.neuroscience.2013.11.046

[67]

Shea SA. Behavioural and arousal-related influences on breathing in humans. Exp Physiol. 1996;81(1):1–26. DOI: 10.1113/EXPPHYSIOL.1996.SP003911

[68]

Shea S.A. Behavioural and arousal-related influences on breathing in humans // Exp Physiol. 1996. Vol. 81, No. 1. P. 1–26. DOI: 10.1113/EXPPHYSIOL.1996.SP003911

[69]

Tort ABL, Brankack JA. Draguhn. Respiration-entrained brain rhythms are global but often overlooked. Trends Neurosci. 2018;41(4):186–197. DOI: 10.1016/j.tins.2018.01.007

[70]

Tort A.B.L., Brankack J.A. Draguhn. Respiration-entrained brain rhythms are global but often overlooked // Trends Neurosci. 2018. Vol. 41, No. 4. P. 186–197. DOI: 10.1016/j.tins.2018.01.007

[71]

Weinstein AM, Voss MW, Prakash RS, et al. The association between aerobic fitness and executive function is mediated by prefrontal cortex volume. Brain Behav Immun. 2012;26(5):811–819. DOI: 10.1016/j. bbi.2011.11.008

[72]

Weinstein A.M., Voss M.W., Prakash R.S., et al. The association between aerobic fitness and executive function is mediated by prefrontal cortex volume // Brain Behav Immun. 2012. Vol. 26, No. 5. P. 811–819. DOI: 10.1016/j. bbi.2011.11.008

[73]

Zhang Q, Roche QM, Gheres KW, et al. Cerebral oxygenation during locomotion is modulated by respiration. Nat Commun. 2019;10(1):5515. DOI: 10.1038/S41467-019-13523-5

[74]

Zhang Q., Roche Q.M., Gheres K.W., et al. Cerebral oxygenation during locomotion is modulated by respiration // Nat Commun. 2019. Vol. 10, No. 1. ID 5515. DOI: 10.1038/S41467-019-13523-5

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

37

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/