Selective antagonists of calcium-permeable GluA1 AMPA-receptors as potential antiaddictive agents

Aleksandr M. Potapkin , Valerii E. Gmiro , Petr D. Shabanov

Psychopharmacology & biological narcology ›› 2022, Vol. 13 ›› Issue (3) : 7 -30.

PDF
Psychopharmacology & biological narcology ›› 2022, Vol. 13 ›› Issue (3) : 7 -30. DOI: 10.17816/phbn267069
Review
review-article

Selective antagonists of calcium-permeable GluA1 AMPA-receptors as potential antiaddictive agents

Author information +
History +
PDF

Abstract

An increase in synaptic dopamine levels, particularly in the nucleus accumbens sheath, is a critical initial response for encoding a drug’s positive effect and the development of associative learning, which is crucial for finding drugs in response to their rewarding effects.

This study aims to review current data describing the role of AMPA glutamate receptors in the pathological drug search that occurs during the transition from drug use to drug abuse.

Publications reviewed and analyzed the journal publications in international databases (PubMed, Web of Science, Scopus, RSCI) on the mechanisms of interaction between dopamine and AMPA glutamate receptors in drug addiction pathogenesis are reviewed and analyzed.

After repeated exposure to psychostimulant drugs, the dopamine response to narcogen administration becomes sensitized, which is responsible for drugs of abuse over other natural reinforcers. The nucleus accumbens contains convergent inputs of dopamine and glutamate, which modulate the response to psychostimulant drugs. Simultaneously, a constant increase in AMPA-receptors lacking the GluA2 subunit was observed, which leads to an increase in conductivity and initiates a cascade of calcium-dependent signaling. With the development of compulsive drug seeking, the expression of AMPA-receptors in the nucleus accumbens increases.

Based on this hypothesis, it is reasonable to propose drugs for the treatment of drug dependence that counteract the neuroplastic changes in AMPA-receptors caused by repeated drug exposure and leading to addiction. IEM-1460 and IEM-2131, which are two GluA1 AMPA blockers, have been proposed as potential therapeutic agents against addiction and other CNS diseases.

Keywords

addiction / GluA1 AMPA-receptors / IEM-1460 / IEM-2131

Cite this article

Download citation ▾
Aleksandr M. Potapkin, Valerii E. Gmiro, Petr D. Shabanov. Selective antagonists of calcium-permeable GluA1 AMPA-receptors as potential antiaddictive agents. Psychopharmacology & biological narcology, 2022, 13(3): 7-30 DOI:10.17816/phbn267069

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Haber SN, Fudge JL. The primate substantia nigra and VTA: integrative circuitry and function. Crit Rev Neurobiol. 1997;11(4):323–342. DOI: 10.1615/critrevneurobiol.v11.i4.40

[2]

Haber S.N., Fudge J.L. The primate substantia nigra and VTA: integrative circuitry and function // Crit Rev Neurobiol. 1997. Vol. 11, No. 4. P. 323–342. DOI: 10.1615/critrevneurobiol.v11.i4.40

[3]

Ikemoto S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev. 2007;56(1):27–78. DOI: 10.1016/j.brainresrev.2007.05.004

[4]

Ikemoto S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex // Brain Res Rev. 2007. Vol. 56, No. 1. P. 27–78. DOI: 10.1016/j.brainresrev.2007.05.004

[5]

Arias-Carrion O, Stamelou M, Murillo-Rodriguez E, et al. Dopaminergic reward system: a short integrative review. Int Arch Med. 2010;3:24. DOI: 10.1186/1755-7682-3-24

[6]

Arias-Carrion O., Stamelou M., Murillo-Rodriguez E., et al. Dopaminergic reward system: a short integrative review // Int Arch Med. 2010. Vol. 3. P. 24. DOI: 10.1186/1755-7682-3-24

[7]

Polter AM, Kauer JA. Stress and VTA synapses: implications for addiction and depression. Eur J Neurosci. 2014;39(7):1179–1188. DOI: 10.1111/ejn.12490

[8]

Polter A.M., Kauer J.A. Stress and VTA synapses: implications for addiction and depression // Eur J Neurosci. 2014. Vol. 39, No. 7. P. 1179–1188. DOI: 10.1111/ejn.12490

[9]

Nair-Roberts RG, Chatelain-Badie SD, Benson E, et al. Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience. 2008;152(4):1024–1031. DOI: 10.1016/j.neuroscience.2008.01.046

[10]

Nair-Roberts R.G., Chatelain-Badie S.D., Benson E., et al. Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat // Neuroscience. 2008. Vol. 152, No. 4. P. 1024–1031. DOI: 10.1016/j.neuroscience.2008.01.046

[11]

Yamaguchi T, Qi J, Wang H-L, et al. Glutamatergic and dopaminergic neurons in the mouse ventral tegmental area. Eur J Neurosci. 2015;41(6):760–772. DOI: 10.1111/ejn.12818

[12]

Yamaguchi T., Qi J., Wang H.-L., et al. Glutamatergic and dopaminergic neurons in the mouse ventral tegmental area // Eur J Neurosci. 2015. Vol. 41, No. 6. P. 760–772. DOI: 10.1111/ejn.12818

[13]

Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharmacology. 2010;35:192–216. DOI: 10.1038/npp.2009.104

[14]

Price J.L., Drevets W.C. Neurocircuitry of mood disorders // Neuropsychopharmacology. 2010. Vol. 35. P. 192–216. DOI: 10.1038/npp.2009.104

[15]

Van Zessen R, Phillips JL, Budygin EA, Stuber GD. Activation of VTA GABA neurons disrupts reward consumption. Neuron. 2012;73(6):1184–1194. DOI: 10.1016/j.neuron.2012.02.016

[16]

Van Zessen R., Phillips J.L., Budygin E.A., Stuber G.D. Activation of VTA GABA neurons disrupts reward consumption // Neuron. 2012. Vol. 73, No. 6. P. 1184–1194. DOI: 10.1016/j.neuron.2012.02.016

[17]

Bouarab C, Thompson B, Polter AM. VTA GABA neurons at the interface of stress and reward. Front Neural Circuits. 2019;13:78. DOI: 10.3389/fncir.2019.00078

[18]

Bouarab C., Thompson B., Polter A.M. VTA GABA neurons at the interface of stress and reward // Front Neural Circuits. 2019. Vol. 13. ID 78. DOI: 10.3389/fncir.2019.00078

[19]

Chowdhury S, Matsubara T, Miyazaki T, et al. GABA neurons in the ventral tegmental area regulate nonrapid eye movement sleep in mice. Elife. 2019;8:e44928. DOI: 10.7554/eLife.44928

[20]

Chowdhury S., Matsubara T., Miyazaki T., et al. GABA neurons in the ventral tegmental area regulate nonrapid eye movement sleep in mice // Elife. 2019. Vol. 8. ID e44928. DOI: 10.7554/eLife.44928

[21]

Yu X, Li W, Ma Y, et al. GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat Neurosci. 2019;22:106–119. DOI: 10.1038/s41593-018-0288-9

[22]

Yu X., Li W., Ma Y., et al. GABA and glutamate neurons in the VTA regulate sleep and wakefulness // Nat Neurosci. 2019. Vol. 22. P. 106–119. DOI: 10.1038/s41593-018-0288-9

[23]

Yu X, Ba W, Zhao G, et al. Dysfunction of ventral tegmental area GABA neurons causes mania-like behavior. Mol Psychiatry. 2021;26:5213–5228. DOI: 10.1038/s41380-020-0810-9

[24]

Yu X., Ba W., Zhao G., et al. Dysfunction of ventral tegmental area GABA neurons causes mania-like behavior // Mol Psychiatry. 2021. Vol. 26. P. 5213–5228. DOI: 10.1038/s41380-020-0810-9

[25]

Galaj E, Han X, Shen H, et al. Dissecting the role of GABA neurons in the VTA versus SNr in opioid reward. J Neurosci. 2020;40(46):8853–8869. DOI: 10.1523/JNEUROSCI.0988-20.2020

[26]

Galaj E., Han X., Shen H., et al. Dissecting the role of GABA neurons in the VTA versus SNr in opioid reward // J Neurosci. 2020. Vol. 40, No. 46. P. 8853–8869. DOI: 10.1523/JNEUROSCI.0988-20.2020

[27]

Mangieri LR, Jiang Z, Lu Y, et al. Defensive behaviors driven by a hypothalamic-ventral midbrain circuit. eNeuro. 2019;6(4):1–19. DOI: 10.1523/ENEURO.0156-19.2019

[28]

Mangieri L.R., Jiang Z., Lu Y., et al. Defensive behaviors driven by a hypothalamic-ventral midbrain circuit // eNeuro. 2019. Vol. 6, No. 4. P. 1–19. DOI: 10.1523/ENEURO.0156-19.2019

[29]

Barbano MF, Wang H-L, Zhang S, et al. VTA Glutamatergic neurons mediate innate defensive behaviors. Neuron. 2020;107(2):368–382. DOI: 10.1016/j.neuron.2020.04.024

[30]

Barbano M.F., Wang H.-L., Zhang S., et al. VTA Glutamatergic neurons mediate innate defensive behaviors // Neuron. 2020. Vol. 107, No. 2. P. 368–382. DOI: 10.1016/j.neuron.2020.04.024

[31]

Zell V, Steinkellner T, Hollon NG, et al. VTA glutamate neuron activity drives positive reinforcement absent dopamine co-release. Neuron. 2020;107(5):864–873. DOI: 10.1016/j.neuron.2020.06.011

[32]

Zell V., Steinkellner T., Hollon N.G., et al. VTA glutamate neuron activity drives positive reinforcement absent dopamine co-release // Neuron. 2020. Vol. 107, No. 5. P. 864–873. DOI: 10.1016/j.neuron.2020.06.011

[33]

Wang H-L, Qi J, Zhang S, et al. Rewarding effects of optical stimulation of ventral tegmental area glutamatergic neurons. J Neurosci. 2015;35(48):15948–15954. DOI: 10.1523/JNEUROSCI.3428-15.2015

[34]

Wang H.-L., Qi J., Zhang S., et al. Rewarding effects of optical stimulation of ventral tegmental area glutamatergic neurons // J Neurosci. 2015. Vol. 35, No. 48. P. 15948–15954. DOI: 10.1523/JNEUROSCI.3428-15.2015

[35]

Spanagel R, Weiss F, Spanagel R, et al. The dopamine hypothesis of reward: past and current status. Trends Neurosci. 1999;22(11):521–527. DOI: 10.1016/s0166-2236(99)01447-2

[36]

Spanagel R., Weiss F., Spanagel R., et al. The dopamine hypothesis of reward: past and current status // Trends Neurosci. 1999. Vol. 22, No. 11. P. 521–527. DOI: 10.1016/s0166-2236(99)01447-2

[37]

Cai J, Tong Q. Anatomy and Function of Ventral Tegmental Area Glutamate Neurons. Front Neural Circuits. 2022;16:867053. DOI: 10.3389/fncir.2022.867053

[38]

Cai J., Tong Q. Anatomy and Function of Ventral Tegmental Area Glutamate Neurons // Front Neural Circuits. 2022. Vol. 16. ID 867053. DOI: 10.3389/fncir.2022.867053

[39]

Bardo MT. Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens. Crit Rev Neurobiol. 1998;12(1-2):37–67. DOI: 10.1615/critrevneurobiol.v12.i1-2.30

[40]

Bardo M.T. Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens // Crit Rev Neurobiol. 1998. Vol. 12, No. 1-2. P. 37–67. DOI: 10.1615/critrevneurobiol.v12.i1-2.30

[41]

Christie MJ, Summers RJ, Stephenson JA, et al. Excitatory amino acid projections to the nucleus accumbens septi in the rat: a retrograde transport study utilizing D[3H]aspartate and [3H]GABA. Neuroscience. 1987;22(2):425–439. DOI: 10.1016/0306-4522(87)90345-9

[42]

Christie M.J., Summers R.J., Stephenson J.A., et al. Excitatory amino acid projections to the nucleus accumbens septi in the rat: a retrograde transport study utilizing D[3H]aspartate and [3H]GABA// Neuroscience. 1987. Vol. 22, No. 2. P. 425–439. DOI: 10.1016/0306-4522(87)90345-9

[43]

Gorelova N, Yang CR. The course of neural projection from the prefrontal cortex to the nucleus accumbens in the rat. Neuroscience. 1997;76(3):689–706. DOI: 10.1016/s0306-4522(96)00380-6

[44]

Gorelova N., Yang C.R. The course of neural projection from the prefrontal cortex to the nucleus accumbens in the rat // Neuroscience. 1997. Vol. 76, No. 3. P. 689–706. DOI: 10.1016/s0306-4522(96)00380-6

[45]

Groenewegen HJ, Vermeulen-Van der Zee E, Te Kortschot A, Witter MP. Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris-leucoagglutinin. Neuroscience. 1987;23(1):103–112. DOI: 10.1016/0306-4522(87)90275-2

[46]

Groenewegen H.J., Vermeulen-Van der Zee E., Te Kortschot A., Witter M.P. Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris-leucoagglutinin // Neuroscience. 1987. Vol. 23, No. 1. P. 103–112. DOI: 10.1016/0306-4522(87)90275-2

[47]

Kelley AE, Domesick VB, Nauta WJH. The amygdalostriatal projection in the rat — an anatomical study by anterograde and retrograde tracing methods. Neuroscience. 1982;7(3):615–630. DOI: 10.1016/0306-4522(82)90067-7

[48]

Kelley A.E., Domesick V.B., Nauta W.J.H. The amygdalostriatal projection in the rat — an anatomical study by anterograde and retrograde tracing methods // Neuroscience. 1982. Vol. 7, No. 3. P. 615–630. DOI: 10.1016/0306-4522(82)90067-7

[49]

Everitt BJ, Morris KA, O’Brien A, Robbins TW. The basolateral amygdala-ventral striatal system and conditioned place preference: further evidence of limbic-striatal interactions underlying reward-related processes. Neuroscience. 1991;42(1):1–18. DOI: 10.1016/0306-4522(91)90145-e

[50]

Everitt B.J., Morris K.A., O’Brien A., Robbins T.W. The basolateral amygdala-ventral striatal system and conditioned place preference: further evidence of limbic–striatal interactions underlying reward-related processes // Neuroscience. 1991. Vol. 42, No. 1. P. 1–18. DOI: 10.1016/0306-4522(91)90145-e

[51]

Everitt BJ, Parkinson JA, Olmstead MC, et al. Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems. Ann NY Acad Sci. 1999;877(1):412–438. DOI: 10.1111/j.1749-6632.1999.tb09280.x

[52]

Everitt B.J., Parkinson J.A., Olmstead M.C., et al. Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems // Ann NY Acad Sci. 1999. Vol. 877, No. 1. P. 412–438. DOI: 10.1111/j.1749-6632.1999.tb09280.x

[53]

Tzschentke TM. Pharmacology and behavioural pharmacology of the mesocortical dopamine system. Prog Neurobiol. 2001;63(3):241–320. DOI: 10.1016/s0301-0082(00)00033-2

[54]

Tzschentke T.M. Pharmacology and behavioural pharmacology of the mesocortical dopamine system // Prog Neurobiol. 2001. Vol. 63, No. 3. P. 241–320. DOI: 10.1016/s0301-0082(00)00033-2

[55]

Tzschentke TM, Schmidt WJ. Functional relationship among medial prefrontal cortex, nucleus accumbens, and ventral tegmental area in locomotion and reward. Crit Rev Neurobiol. 2000;14(2):131–142. DOI: 10.1615/CritRevNeurobiol.v14.i2.20

[56]

Tzschentke T.M., Schmidt W.J. Functional relationship among medial prefrontal cortex, nucleus accumbens, and ventral tegmental area in locomotion and reward // Crit Rev Neurobiol. 2000. Vol. 14, No. 2. P. 131–142. DOI: 10.1615/CritRevNeurobiol.v14.i2.20

[57]

Blaha CD, Yang CR, Floresco SB, et al. Stimulation of the ventral subiculum of the hippocampus evokes glutamate receptor-mediated changes in dopamine efflux in the rat nucleus accumbens. Eur J Neurosci. 1997;9(5):902–911. DOI: 10.1111/j.1460-9568.1997.tb01441.x

[58]

Blaha C.D., Yang C.R., Floresco S.B., et al. Stimulation of the ventral subiculum of the hippocampus evokes glutamate receptor-mediated changes in dopamine efflux in the rat nucleus accumbens // Eur J Neurosci. 1997. Vol. 9, No. 5. P. 902–911. DOI: 10.1111/j.1460-9568.1997.tb01441.x

[59]

Floresco SB, Yang CR, Phillips AG, Blaha CD. Basolateral amygdala stimulation evokes glutamate receptor-dependent dopamine efflux in the nucleus accumbens of the anesthetised rat. Eur J Neurosci. 1998;10(4):1241–1251. DOI: 10.1046/j.1460-9568.1998.00133.x

[60]

Floresco S.B., Yang C.R., Phillips A.G., Blaha C.D. Basolateral amygdala stimulation evokes glutamate receptor-dependent dopamine efflux in the nucleus accumbens of the anesthetised rat // Eur J Neurosci. 1998. Vol. 10, No. 4. P. 1241–1251. DOI: 10.1046/j.1460-9568.1998.00133.x

[61]

Youngren KD, Daly DA, Moghaddam B. Distinct actions of endogenous excitatory amino acids on the outflow of dopamine in the nucleus accumbens. J Pharmacol Exp Ther. 1993;264(1):289–293.

[62]

Youngren K.D., Daly D.A., Moghaddam B. Distinct actions of endogenous excitatory amino acids on the outflow of dopamine in the nucleus accumbens // J Pharmacol Exp Ther. 1993. Vol. 264, No. 1. P. 289–293.

[63]

Cornish JL, Kalivas PW. Glutamate transmission in the nucleus accumbens mediates relapse in cocaine addiction. J Neurosci. 2000;20(15):RC89. DOI: 10.1523/JNEUROSCI.20-15-j0006.2000

[64]

Cornish J.L., Kalivas P.W. Glutamate transmission in the nucleus accumbens mediates relapse in cocaine addiction // J Neurosci. 2000. Vol. 20, No. 15. ID RC89. DOI: 10.1523/JNEUROSCI.20-15-j0006.2000

[65]

Cornish JL, Duffy P, Kalivas PW. A role for nucleus accumbens glutamate transmission in the relapse to cocaine-seeking behavior. Neuroscience. 1999;93(4):1359–1367. DOI: 10.1016/s0306-4522(99)00214-6

[66]

Cornish J.L., Duffy P., Kalivas P.W. A role for nucleus accumbens glutamate transmission in the relapse to cocaine-seeking behavior // Neuroscience. 1999. Vol. 93, No. 4. P. 1359–1367. DOI: 10.1016/s0306-4522(99)00214-6

[67]

Ramón y Cajal S. La fine structure des centres nerveux. Proc R Soc Lond. 1894;55:444–468. DOI: 10.1098/rspl.1894.0063

[68]

Ramón y Cajal S. La fine structure des centres nerveux // Proc R Soc Lond. 1894. Vol. 55. P. 444–468. DOI: 10.1098/rspl.1894.0063

[69]

Bliss TVP, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973;232(2):331–356. DOI: 10.1113/jphysiol.1973.sp010273

[70]

Bliss T.V.P., Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path // J Physiol. 1973. Vol. 232, No. 2. P. 331–356. DOI: 10.1113/jphysiol.1973.sp010273

[71]

Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron. 2002;44(1):5–21. DOI: 10.1016/j.neuron.2004.09.012

[72]

Malenka R.C., Bear M.F. LTP and LTD: an embarrassment of riches // Neuron. 2002. Vol. 44, No. 1. P. 5–21. DOI: 10.1016/j.neuron.2004.09.012

[73]

Foeller E, Feldman DE. Synaptic basis for developmental plasticity in somatosensory cortex. Curr Opin Neurobiol. 2004;14(1):89–95. DOI: 10.1016/j.conb.2004.01.011

[74]

Foeller E., Feldman D.E. Synaptic basis for developmental plasticity in somatosensory cortex // Curr Opin Neurobiol. 2004. Vol. 14, No. 1. P. 89–95. DOI: 10.1016/j.conb.2004.01.011

[75]

Hyman SE, Malenka RC. Addiction and the brain: the neurobiology of compulsion and its persistence. Nature Rev Neurosci. 2001;2(10):695–703. DOI: 10.1038/35094560

[76]

Hyman S.E., Malenka R.C. Addiction and the brain: the neurobiology of compulsion and its persistence // Nature Rev Neurosci. 2001. Vol. 2, No.10. P. 695–703. DOI: 10.1038/35094560

[77]

Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry. 2005;162(8):1403–1413. DOI: 10.1176/appi.ajp.162.8.1403

[78]

Kalivas P.W., Volkow N.D. The neural basis of addiction: a pathology of motivation and choice // Am J Psychiatry. 2005. Vol. 162, No. 8. P. 1403–1413. DOI: 10.1176/appi.ajp.162.8.1403

[79]

Montague PR, Hyman SE, Cohen JD. Computational roles for dopamine in behavioural control. Nature. 2004;431:760–767. DOI: 10.1038/nature03015

[80]

Montague P.R., Hyman S.E., Cohen J.D. Computational roles for dopamine in behavioural control // Nature. 2004. Vol. 431. P. 760–767. DOI: 10.1038/nature03015

[81]

Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci. 2006;29:565–598. DOI: 10.1146/annurev.neuro.29.051605.113009

[82]

Hyman S.E., Malenka R.C., Nestler E.J. Neural mechanisms of addiction: the role of reward–related learning and memory // Annu Rev Neurosci. 2006. Vol. 29. P. 565–598. DOI: 10.1146/annurev.neuro.29.051605.113009

[83]

Kauer JA. Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annu Rev Physiol. 2004;66:447–475. DOI: 10.1146/annurev.physiol.66.032102.112534

[84]

Kauer J.A. Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse // Annu Rev Physiol. 2004. Vol. 66. P. 447–475. DOI: 10.1146/annurev.physiol.66.032102.112534

[85]

Kelley AE. Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron. 2004;44(1):161–179. DOI: 10.1016/j.neuron.2004.09.016

[86]

Kelley A.E. Memory and addiction: shared neural circuitry and molecular mechanisms // Neuron. 2004. Vol. 44, No. 1. P. 161–179. DOI: 10.1016/j.neuron.2004.09.016

[87]

Luscher C. The emergence of a circuit model for addiction. Annu Rev Neurosci. 2016;39:257–276. DOI: 10.1146/annurev-neuro-070815-013920

[88]

Luscher C. The emergence of a circuit model for addiction // Annu Rev Neurosci. 2016. Vol. 39. P. 257–276. DOI: 10.1146/annurev-neuro-070815-013920

[89]

Wolf ME. Synaptic mechanisms underlying persistent cocaine craving. Nat Rev Neurosci. 2016;17:351–365. DOI: 10.1038/nrn.2016.39

[90]

Wolf M.E. Synaptic mechanisms underlying persistent cocaine craving // Nat Rev Neurosci. 2016. Vol. 17. P. 351–365. DOI: 10.1038/nrn.2016.39

[91]

Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. PNAS USA. 1988;85(14):5274–5278. DOI: 10.1073/pnas.85.14.5274

[92]

Di Chiara G., Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats // PNAS USA. 1988. Vol. 85, No. 14. P. 5274–5278. DOI: 10.1073/pnas.85.14.5274

[93]

Schultz W. Multiple dopamine functions at different time courses. Annu Rev Neurosci. 2007;30:259–288. DOI: 10.1146/annurev.neuro.28.061604.135722

[94]

Schultz W. Multiple dopamine functions at different time courses // Annu Rev Neurosci. 2007. Vol. 30. P. 259–288. DOI: 10.1146/annurev.neuro.28.061604.135722

[95]

Kauer JA, Malenka RC. Synaptic plasticity and addiction. Nat Rev Neurosci. 2007;8:844–858. DOI: 10.1038/nrn2234

[96]

Kauer J.A., Malenka R.C. Synaptic plasticity and addiction // Nat Rev Neurosci. 2007. Vol. 8. P. 844–858. DOI: 10.1038/nrn2234

[97]

Brown JC, Yuan S, DeVries WH, et al. NMDA-receptor agonist reveals LTP-like properties of the 10-Hz rTMS in the human motor cortex. Brain Stimul. 2021;14(3):619–621. DOI: 10.1016/j.brs.2021.03.016

[98]

Brown J.C., Yuan S., DeVries W.H., Armstrong N.M., Korte J.E., Sahlem G.L., Carpenter L.L., George M.S. NMDA-receptor agonist reveals LTP-like properties of the 10-Hz rTMS in the human motor cortex. Brain Stimul. 2021; 14(3) 619-621. DOI: 10.1016/j.brs.2021.03.016

[99]

Schenk S, Valadez A, Worley CM, McNamara C. Blockade of the acquisition of cocaine selfadministration by the NMDA antagonist MK-801 (dizocilpine). Behav Pharmacol. 1993;4(6):652–659. DOI: 10.1097/00008877-199312000-00011

[100]

Schenk S., Valadez A., Worley C.M., McNamara C. Blockade of the acquisition of cocaine selfadministration by the NMDA antagonist MK-801 (dizocilpine) // Behav Pharmacol. 1993. Vol. 4, No. 6. P. 652–659. DOI: 10.1097/00008877-199312000-00011

[101]

Karler R, Calder LD, Chaudhry IA, Turkanis SA. Blockade of “reverse tolerance” to cocaine and amphetamine by MK-801. Life Sci. 1989;45(7):599–606. DOI: 10.1016/0024-3205(89)90045-3

[102]

Karler R., Calder L.D., Chaudhry I.A., Turkanis S.A. Blockade of “reverse tolerance” to cocaine and amphetamine by MK-801 // Life Sci. 1989. Vol. 45, No. 7. P. 599–606. DOI: 10.1016/0024-3205(89)90045-3

[103]

Jeziorski M, White FJ, Wolf ME. MK-801 prevents the development of behavioral sensitization during repeated morphine administration. Synapse. 1994;16(2):137–147. DOI: 10.1002/syn.890160207

[104]

Jeziorski M., White F.J., Wolf M.E. MK-801 prevents the development of behavioral sensitization during repeated morphine administration // Synapse. 1994. Vol. 16, No. 2. P. 137–147. DOI: 10.1002/syn.890160207

[105]

Kim HS, Park WK, Jang CG, Oh S. Inhibition by MK-801 of cocaine-induced sensitization, conditioned place preference, and dopamine-receptor supersensitivity in mice. Brain Res Bull. 1996;40(3):201–207. DOI: 10.1016/0361-9230(96)00006-8

[106]

Kim H.S., Park W.K., Jang C.G., Oh S. Inhibition by MK-801 of cocaine-induced sensitization, conditioned place preference, and dopamine-receptor supersensitivity in mice // Brain Res Bull. 1996. Vol. 40, No. 3. P. 201–207. DOI: 10.1016/0361-9230(96)00006-8

[107]

Tzschentke TM, Schmidt WJ. N-methyl-D-aspartic acid-receptor antagonists block morphine-induced conditioned place preference in rats. Neurosci Lett. 1995;193(1):37–40. DOI: 10.1016/0304-3940(95)11662-g

[108]

Tzschentke T.M., Schmidt W.J. N-methyl-D-aspartic acid-receptor antagonists block morphine-induced conditioned place preference in rats // Neurosci Lett. 1995. Vol. 193, No. 1. P. 37–40. DOI: 10.1016/0304-3940(95)11662-g

[109]

Moulin TC, Schiöth HB. Excitability, synaptic balance, and.addiction: The homeostatic dynamics of ionotropic glutamatergic receptors in VTA after cocaine exposure. Behav Brain Funct. 2020;16(1):6. DOI: 10.1186/s12993-020-00168-4

[110]

Moulin T.C., Schiöth H.B. Excitability, synaptic balance, and.addiction: The homeostatic dynamics of ionotropic glutamatergic receptors in VTA after cocaine exposure // Behav Brain Funct. 2020. Vol. 16, No. 1. ID 6. DOI: 10.1186/s12993-020-00168-4

[111]

Pignatelli M, Bonci A. Role of dopamine neurons in reward and aversion: a synaptic plasticity perspective. Neuron. 2015;86(5):1145–1157. DOI: 10.1016/j.neuron.2015.04.015

[112]

Pignatelli M., Bonci A. Role of dopamine neurons in reward and aversion: a synaptic plasticity perspective // Neuron. 2015. Vol. 86, No. 5. P. 1145–1157. DOI: 10.1016/j.neuron.2015.04.015

[113]

Stuber GD, Klanker M, de Ridder B, et al. Reward-predictive cues enhance excitatory synaptic strength onto midbrain dopamine neurons. Science. 2008;321(5896):1690–1692. DOI: 10.1126/science.1160873

[114]

Stuber G.D., Klanker M., de Ridder B., et al. Reward-predictive cues enhance excitatory synaptic strength onto midbrain dopamine neurons // Science. 2008. Vol. 321, No. 5896. P. 1690–1692. DOI: 10.1126/science.1160873

[115]

Deroche-Gamonet V, Belin D, Piazza PV. Evidence for Addiction-like Behavior in the Rat. Science. 2004;305(5686):1014–1017. DOI: 10.1126/science.1099020

[116]

Deroche-Gamonet V., Belin D., Piazza P.V. Evidence for Addiction-like Behavior in the Rat // Science. 2004. Vol. 305, No. 5686. P. 1014–1017. DOI: 10.1126/science.1099020

[117]

Grimm JW, Hope BT, Wise RA, Shaham Y. Incubation of cocaine craving after withdrawal. Nature. 2001;412:141–142. DOI: 10.1038/35084134.

[118]

Grimm J.W., Hope B.T., Wise R.A., Shaham Y. Incubation of cocaine craving after withdrawal // Nature. 2001. Vol. 412. P. 141–142. DOI: 10.1038/35084134.

[119]

Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev. 1993;18(3):247–291. DOI: 10.1016/0165-0173(93)90013-p

[120]

Robinson T.E., Berridge K.C. The neural basis of drug craving: an incentive-sensitization theory of addiction // Brain Res Rev. 1993. Vol. 18, No. 3. P. 247–291. DOI: 10.1016/0165-0173(93)90013-p

[121]

Borgland SL, Malenca RC, Bonci A. Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: electrophysiological and behavioral correlates in individual rats. J Neurosci. 2004;24(34):7482–7490. DOI: 10.1523/JNEUROSCI.1312-04.2004

[122]

Borgland S.L., Malenca R.C., Bonci A. Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: electrophysiological and behavioral correlates in individual rats // J Neurosci. 2004. Vol. 24, No. 34. P. 7482–7490. DOI: 10.1523/JNEUROSCI.1312-04.2004

[123]

Ungless MA, Whistler JL, Malenka RC, Bonci A. Single cocaine exposure in vivo induces longterm potentiation in dopamine neurons. Nature. 2001;411:583–587. DOI: 10.1038/35079077

[124]

Ungless M.A., Whistler J.L., Malenka R.C., Bonci A. Single cocaine exposure in vivo induces longterm potentiation in dopamine neurons // Nature. 2001. Vol. 411. P. 583–587. DOI: 10.1038/35079077

[125]

Zhang XF, Hu XT, White FJ, Wolf ME. Increased responsiveness of ventral tegmental area dopamine neurons to glutamate after repeated administration of cocaine or amphetamine is transient and selectively involves AMPA receptors. J Pharmacol Exp Ther. 1997;281(2):699–706.

[126]

Zhang X.F., Hu X.T., White F.J., Wolf M.E. Increased responsiveness of ventral tegmental area dopamine neurons to glutamate after repeated administration of cocaine or amphetamine is transient and selectively involves AMPA receptors // J Pharmacol Exp Ther. 1997. Vol. 281, No. 2. P. 699–706.

[127]

Choi KH, Edwards S, Graham DL, et al. Reinforcement-related regulation of AMPA glutamate receptor subunits in the ventral tegmental area enhances motivation for cocaine. J Neurosci. 2011;31(21):7927–7937. DOI: 10.1523/JNEUROSCI.6014-10.2011

[128]

Choi K.H., Edwards S., Graham D.L., et al. Reinforcement-related regulation of AMPA glutamate receptor subunits in the ventral tegmental area enhances motivation for cocaine // J Neurosci. 2011. Vol. 31, No. 21. P. 7927–7937. DOI: 10.1523/JNEUROSCI.6014-10.2011

[129]

Lane DA, Reed B, Kreek MJ, Pickel VM. Differential glutamate AMPA.receptor plasticity in subpopulations of VTA neurons in the presence or absence of residual cocaine: implications for the development of addiction. Neuropharmacology. 2011;61(7):1129–1140. DOI: 10.1016/j.neuropharm.2010.12.031

[130]

Lane D.A., Reed B., Kreek M.J., Pickel V.M. Differential glutamate AMPA.receptor plasticity in subpopulations of VTA neurons in the presence or absence of residual cocaine: implications for the development of addiction // Neuropharmacology. 2011. Vol. 61, No. 7. P. 1129–1140. DOI: 10.1016/j.neuropharm.2010.12.031

[131]

Lu W, Monteggia LM, Wolf ME. Repeated administration of amphetamine or cocaine does not alter AMPA receptor subunit expression in the rat midbrain. Neuropsychopharmacology. 2002;26:1–13. DOI: 10.1016/S0893-133X(01)00272-X

[132]

Lu W., Monteggia L.M., Wolf M.E. Repeated administration of amphetamine or cocaine does not alter AMPA receptor subunit expression in the rat midbrain // Neuropsychopharmacology. 2002. Vol. 26. P. 1–13. DOI: 10.1016/S0893-133X(01)00272-X

[133]

Kest К, McLemore G, Kao В, Inturrisi СЕ. The competitive α-amino-3-hydroxy-5-methylisoxazole-4-propoinate receptor antagonist LY293558 attenuates and reverses analgesic tolerance to morphine but not to delta or kappa opioids. J Pharmacol Exp Ther. 1997;283(3):1249–1255.

[134]

Kest К., McLemore G., Kao В., Inturrisi С.Е. The competitive α-amino-3-hydroxy-5-methylisoxazole-4-propoinate receptor antagonist LY293558 attenuates and reverses analgesic tolerance to morphine but not to delta or kappa opioids // J Pharmacol Exp Ther. 1997. Vol. 283, No. 3. P. 1249–1255.

[135]

McLemore GL, Kest В, Inturrisi CE. The effects of LY293558, an AMPA receptor antagonist, on acute and chronic morphine dependence. Brain Res. 1997;778(1):120–126. DOI: 10.1016/s0006-8993(97)00985-2

[136]

McLemore G.L., Kest В., Inturrisi C.E. The effects of LY293558, an AMPA receptor antagonist, on acute and chronic morphine dependence // Brain Res. 1997. Vol. 778, No. 1. P. 120–126. DOI: 10.1016/s0006-8993(97)00985-2

[137]

Carlezon WA, Rasmussen K, Nestler EJ. AMPA antagonist LY293558 blocks the development, without blocking the expression, of behavioral sensitization to morphine. Synapse. 1999;31(4):256–262. DOI: 10.1002/(SICI)1098-2396(19990315)31:4<256::AID-SYN3>3.0.CO;2-E

[138]

Carlezon W.A., Rasmussen K., Nestler E.J. AMPA antagonist LY293558 blocks the development, without blocking the expression, of behavioral sensitization to morphine // Synapse. 1999. Vol. 31, No. 4. P. 256–262. DOI: 10.1002/(SICI)1098-2396(19990315)31:4<256::AID-SYN3>3.0.CO;2-E

[139]

Rasmussen K. The role of the locus coeruleus and N-methyl-D-aspartic acid (NMDA) and AMPA receptors in opiate withdrawal. Neuropsychopharmacology. 1995;13(4):295–300. DOI: 10.1016/0893-133X(95)00082-O

[140]

Rasmussen K. The role of the locus coeruleus and N-methyl-D-aspartic acid (NMDA) and AMPA receptors in opiate withdrawal // Neuropsychopharmacology. 1995. Vol. 13, No. 4. P. 295–300. DOI: 10.1016/0893-133X(95)00082-O

[141]

Rasmussen K, Kendrick WT, Kogan JH, Aghajanian GK. A selective AMPA antagonist, LY293558, suppresses morphine withdrawal-induced activation of locus coeruleus neurons and behavioral signs of morphine withdrawal. Neuropsychopharmacology. 1996;15:497–505. DOI: 10.1016/S0893-133X(96)00094-2

[142]

Rasmussen K., Kendrick W.T., Kogan J.H., Aghajanian G.K. A selective AMPA antagonist, LY293558, suppresses morphine withdrawal-induced activation of locus coeruleus neurons and behavioral signs of morphine withdrawal // Neuropsychopharmacology. 1996. Vol. 15. P. 497–505. DOI: 10.1016/S0893-133X(96)00094-2

[143]

Rasmussen K. Morphine Withdrawal as a State of Glutamate Hyperactivity. Herman BH, et al., editors. Contemporary Clinical Neuroscience: Glutamate and Addiction. Totowa, New Jercey: Humana Press Inc., 2002. P. 329–339.

[144]

Rasmussen K. Morphine Withdrawal as a State of Glutamate Hyperactivity. Contemporary Clinical Neuroscience: Glutamate and Addiction / B.H. Herman, et al., editors. Totowa, New Jercey: Humana Press Inc., 2002. P. 329–339.

[145]

Kalivas PW, Stewart J. Dopamine transmission in the initiation and expression of drug- and stressinduced sensitization of motor activity. Brain Res Rev. 1991;16(3):223–244. DOI: 10.1016/0165-0173(91)90007-u

[146]

Kalivas P.W., Stewart J. Dopamine transmission in the initiation and expression of drug- and stressinduced sensitization of motor activity // Brain Res Rev. 1991. Vol. 16, No. 3. P. 223–244. DOI: 10.1016/0165-0173(91)90007-u

[147]

Baler RD, Volkow ND. Drug addiction: the neurobiology of disrupted self-control. Trends Mol Med. 2006;12(12):559–566. DOI: 10.1016/j.molmed.2006.10.005

[148]

Baler R.D., Volkow N.D. Drug addiction: the neurobiology of disrupted self-control // Trends Mol Med. 2006. Vol. 12, No. 12. P. 559–566. DOI: 10.1016/j.molmed.2006.10.005

[149]

Omelchenko N, Sesack SR. Glutamate synaptic inputs to ventral tegmental area neurons in the rat derive primarily from subcortical sources. Neuroscience. 2007;146(3):1259–1274. DOI: 10.1016/j.neuroscience.2007.02.016

[150]

Omelchenko N., Sesack S.R. Glutamate synaptic inputs to ventral tegmental area neurons in the rat derive primarily from subcortical sources // Neuroscience. 2007. Vol. 146, No. 3. P. 1259–1274. DOI: 10.1016/j.neuroscience.2007.02.016

[151]

Carr KD. Homeostatic regulation of reward via synaptic insertion of calcium-permeable AMPA receptors in nucleus accumbens. Rev Physiol Behav. 2020;219:112850. DOI: 10.1016/j.physbeh.2020.112850

[152]

Carr K.D. Homeostatic regulation of reward via synaptic insertion of calcium-permeable AMPA receptors in nucleus accumbens // Rev Physiol Behav. 2020. Vol. 219. ID 112850. DOI: 10.1016/j.physbeh.2020.112850

[153]

Overton PG, Richards CD, Berry MS, Clark D. Long-term potentiation at excitatory amino acid synapses on midbrain dopamine neurons. Neuroreport. 1999;10(2):221–226. DOI: 10.1097/00001756-199902050-00004

[154]

Overton P.G., Richards C.D., Berry M.S., Clark D. Long-term potentiation at excitatory amino acid synapses on midbrain dopamine neurons // Neuroreport. 1999. Vol. 10, No. 2. P. 221–226. DOI: 10.1097/00001756-199902050-00004

[155]

Bonci A, Malenka RC. Properties and plasticity of excitatory synapses on dopaminergic and GABAergic cells in the ventral tegmental area. J Neurosci. 1999;19(10):3723–3730. DOI: 10.1523/JNEUROSCI.19-10-03723.1999

[156]

Bonci A., Malenka R.C. Properties and plasticity of excitatory synapses on dopaminergic and GABAergic cells in the ventral tegmental area // J Neurosci. 1999. Vol. 19, No. 10. P. 3723–3730. DOI: 10.1523/JNEUROSCI.19-10-03723.1999

[157]

Mansvelder HD, McGehee DS. Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron. 2000;27(2):349–357. DOI: 10.1016/s0896-6273(00)00042-8

[158]

Mansvelder H.D., McGehee D.S. Long-term potentiation of excitatory inputs to brain reward areas by nicotine // Neuron. 2000. Vol. 27, No. 2. P. 349–357. DOI: 10.1016/s0896-6273(00)00042-8

[159]

Liu QS, Pu L, Poo MM. Repeated cocaine exposure in vivo facilitates LTP induction in midbrain dopamine neurons. Nature. 2005;437:1027–1031. DOI: 10.1038/nature04050

[160]

Liu Q.S., Pu L., Poo M.M. Repeated cocaine exposure in vivo facilitates LTP induction in midbrain dopamine neurons // Nature. 2005. Vol. 437. P. 1027–1031. DOI: 10.1038/nature04050

[161]

Jones S, Kornblum JL, Kauer JA. Amphetamine blocks long-term synaptic depression in the ventral tegmental area. J Neurosci. 2000;20(15):5575–5580. DOI: 10.1523/JNEUROSCI.20-15-05575.2000

[162]

Jones S., Kornblum J.L., Kauer J.A. Amphetamine blocks long-term synaptic depression in the ventral tegmental area // J Neurosci. 2000. Vol. 20, No. 15. P. 5575–5580. DOI: 10.1523/JNEUROSCI.20-15-05575.2000

[163]

Thomas MT, Malenka RC, Bonci A. Modulation of long-term depression by dopamine in the mesolimbic system. J Neurosci. 2000;20(15):5581–5586. DOI: 10.1523/JNEUROSCI.20-15-05581.2000

[164]

Thomas M.T., Malenka R.C., Bonci A. Modulation of long-term depression by dopamine in the mesolimbic system // J Neurosci. 2000. Vol. 20, No. 15. P. 5581–5586. DOI: 10.1523/JNEUROSCI.20-15-05581.2000

[165]

Saal D, Dong Y, Bonci A, Malenka RC. Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron. 2003;37(4):577–582. DOI: 10.1016/s0896-6273(03)00021-7

[166]

Saal D., Dong Y., Bonci A., Malenka R.C. Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons // Neuron. 2003. Vol. 37, No. 4. P. 577–582. DOI: 10.1016/s0896-6273(03)00021-7

[167]

Faleiro LJ, Jones S, Kauer JA. Rapid synaptic plasticity of glutamatergic synapses on dopamine neurons in the ventral tegmental area in response to acute amphetamine injection. Neuropsychopharmacology. 2004;29:2115–2125. DOI: 10.1038/sj.npp.1300495

[168]

Faleiro L.J., Jones S., Kauer J.A. Rapid synaptic plasticity of glutamatergic synapses on dopamine neurons in the ventral tegmental area in response to acute amphetamine injection // Neuropsychopharmacology. 2004. Vol. 29. P. 2115–2125. DOI: 10.1038/sj.npp.1300495

[169]

Malinow R, Malenka RC. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci. 2002;25:103–126. DOI: 10.1146/annurev.neuro.25.112701.142758

[170]

Malinow R., Malenka R.C. AMPA receptor trafficking and synaptic plasticity // Annu Rev Neurosci. 2002. Vol. 25. P. 103–126. DOI: 10.1146/annurev.neuro.25.112701.142758

[171]

Carlezon WA, Boundy VA, Haile CN, et al. Sensitization to morphine induced by viral-mediated gene transfer. Science. 1997;277(5327):812–814. DOI: 10.1126/science.277.5327.812

[172]

Carlezon W.A., Boundy V.A., Haile C.N., et al. Sensitization to morphine induced by viral-mediated gene transfer // Science. 1997. Vol. 277, No. 5327. P. 812–814. DOI: 10.1126/science.277.5327.812

[173]

Dong Y, Saal D, Thomas M, et al. Cocaine-induced potentiation of synaptic strength in dopamine neurons: behavioral correlates in GluRA(–/–) mice. PNAS USA. 2004;101(39):14282–14287. DOI: 10.1073/pnas.0401553101

[174]

Dong Y., Saal D., Thomas M., et al. Cocaine-induced potentiation of synaptic strength in dopamine neurons: behavioral correlates in GluRA(–/–) mice // PNAS USA. 2004. Vol. 101, No. 39. P. 14282–14287. DOI: 10.1073/pnas.0401553101

[175]

Liu SJ, Zukin RS. Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci. 2007;30(3):126–134. DOI: 10.1016/j.tins.2007.01.006

[176]

Liu S.J., Zukin R.S. Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death // Trends Neurosci. 2007. Vol. 30, No. 3. P. 126–134. DOI: 10.1016/j.tins.2007.01.006

[177]

Carlezon WA, Nestler EJ. Elevated levels of GluA1 in the midbrain: a trigger for sensitization to drugs of abuse? Trends Neurosci. 2002;25(12):610–615. DOI: 10.1016/s0166-2236(02)02289-0

[178]

Carlezon W.A., Nestler E.J. Elevated levels of GluA1 in the midbrain: a trigger for sensitization to drugs of abuse? // Trends Neurosci. 2002. Vol. 25, No. 12. P. 610–615. DOI: 10.1016/s0166-2236(02)02289-0

[179]

Ju W, Morishita W, Tsui J, et al. Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat Neurosci. 2004;7:244–253. DOI: 10.1038/nn1189

[180]

Ju W., Morishita W., Tsui J., et al. Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors // Nat Neurosci. 2004. Vol. 7. P. 244–253. DOI: 10.1038/nn1189

[181]

Clem RL, Barth A. Pathway-specific trafficking of native AMPARs by in vivo experience. Neuron. 2006;49(5):663–670. DOI: 10.1016/j.neuron.2006.01.019

[182]

Clem R.L., Barth A. Pathway-specific trafficking of native AMPARs by in vivo experience // Neuron. 2006. Vol. 49, No. 5. P. 663–670. DOI: 10.1016/j.neuron.2006.01.019

[183]

Plant K, Pelkey KA, Bortolotto ZA, et al. Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nat Neurosci. 2006;9:602–604. DOI: 10.1038/nn1678

[184]

Plant K., Pelkey K.A., Bortolotto Z.A., et al. Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation // Nat Neurosci. 2006. Vol. 9. P. 602–604. DOI: 10.1038/nn1678

[185]

Cull-Candy SG, Farrant M. Ca2+-permeable AMPA receptors and their auxiliary subunits in synaptic plasticity and disease. J Physiol. 2021;599(10):2655–2671. DOI: 10.1113/JP279029

[186]

Cull-Candy S.G., Farrant M. Ca2+-permeable AMPA receptors and their auxiliary subunits in synaptic plasticity and disease // J Physiol. 2021. Vol. 599, No. 10. P. 2655–2671. DOI: 10.1113/JP279029

[187]

Bellone C, Luscher C. Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nat Neurosci. 2006;9(5):636–641. DOI: 10.1038/nn1682

[188]

Bellone C., Luscher C. Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression // Nat Neurosci. 2006. Vol. 9, No. 5. P. 636–641. DOI: 10.1038/nn1682

[189]

Yuan T, Mameli M, O’Connor EC, et al. Expression of cocaine-evoked synaptic plasticity by GluN3A-containing NMDA receptors. Neuron. 2013;80(4):1025–1038. DOI: 10.1016/j.neuron.2013.07.050

[190]

Yuan T., Mameli M., O’Connor E.C., et al. Expression of cocaine-evoked synaptic plasticity by GluN3A-containing NMDA receptors // Neuron. 2013. Vol. 80, No. 4. P. 1025–1038. DOI: 10.1016/j.neuron.2013.07.050

[191]

Conrad KL, Tseng KY, Uejima JL, et al. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature. 2008;454:118–121. DOI: 10.1038/nature06995

[192]

Conrad K.L., Tseng K.Y., Uejima J.L., et al. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving // Nature. 2008. Vol. 454. P. 118–121. DOI: 10.1038/nature06995

[193]

Scheyer AF, Christian DT, Wolf ME, Tseng KY. Emergence of endocytosis-dependent mGlu1 LTD at nucleus accumbens synapses after withdrawal from cocaine self-administration. Front Synaptic Neurosci. 2018;10:36. DOI: 10.3389/fnsyn.2018.00036

[194]

Scheyer A.F., Christian D.T., Wolf M.E., Tseng K.Y. Emergence of endocytosis-dependent mGlu1 LTD at nucleus accumbens synapses after withdrawal from cocaine self-administration // Front Synaptic Neurosci. 2018. Vol. 10. ID 36. DOI: 10.3389/fnsyn.2018.00036

[195]

Mameli M, Bellone C, Brown MTC, Luscher C. Cocaine inverts rules for synaptic plasticity of glutamate transmission in the ventral tegmental area. Nat Neurosci. 2011;14:414–416. DOI: 10.1038/nn.2763

[196]

Mameli M., Bellone C., Brown M.T.C., Luscher C. Cocaine inverts rules for synaptic plasticity of glutamate transmission in the ventral tegmental area // Nat Neurosci. 2011. Vol. 14. P. 414–416. DOI: 10.1038/nn.2763

[197]

Argilli E, Sibley DR, Malenka RC, et al., Mechanism and time course of cocaine-induced long-term potentiation in the ventral tegmental area. J Neurosci. 2008;28(37):9092–9100. DOI: 10.1523/JNEUROSCI.1001-08.2008

[198]

Argilli E., Sibley D.R., Malenka R.C., et al., Mechanism and time course of cocaine-induced long-term potentiation in the ventral tegmental area // J Neurosci. 2008. Vol. 28, No. 37. P. 9092–9100. DOI: 10.1523/JNEUROSCI.1001-08.2008

[199]

Mameli M, Halbout B, Creton C, et al. Cocaine-evoked synaptic plasticity: Persistence in the VTA triggers adaptations in the NAc. Nat Neurosci. 2009;12(8):1036–1041. DOI: 10.1038/nn.2367

[200]

Mameli M., Halbout B., Creton C., et al. Cocaine-evoked synaptic plasticity: Persistence in the VTA triggers adaptations in the NAc // Nat Neurosci. 2009. Vol. 12, No. 8. P. 1036–1041. DOI: 10.1038/nn.2367

[201]

McCutcheon JE, Wang X, Tseng KY, et al. Calcium-permeable AMPA receptors are present in nucleus accumbens synapses after prolonged withdrawal from cocaine self-administration but not experimenter-administered cocaine. J Neurosci. 2011;31(15):5737–5743. DOI: 10.1523/JNEUROSCI.0350-11.2011

[202]

McCutcheon J.E., Wang X., Tseng K.Y., et al. Calcium-permeable AMPA receptors are present in nucleus accumbens synapses after prolonged withdrawal from cocaine self-administration but not experimenter-administered cocaine // J Neurosci. 2011. Vol. 31, No. 15. P. 5737–5743. DOI: 10.1523/JNEUROSCI.0350-11.2011

[203]

Bellone C, Luscher C. mGluRs induce a long-term depression in the ventral tegmental area that involves a switch of the subunit composition of AMPA receptors. Eur J Neurosci. 2005;21(5):1280–1288. DOI: 10.1111/j.1460-9568.2005.03979.x

[204]

Bellone C., Luscher C. mGluRs induce a long-term depression in the ventral tegmental area that involves a switch of the subunit composition of AMPA receptors // Eur J Neurosci. 2005. Vol. 21, No. 5. P. 1280–1288. DOI: 10.1111/j.1460-9568.2005.03979.x

[205]

McCutcheon JE, Loweth JA, Ford KA, et al. Group I mGluR activation reverses cocaine-induced accumulation of calcium-permeable AMPA receptors in nucleus accumbens synapses via a protein kinase C-dependent mechanism. J Neurosci. 2011;31(41):14536–14541. DOI: 10.1523/JNEUROSCI.3625-11.2011

[206]

McCutcheon J.E., Loweth J.A., Ford K.A., et al. Group I mGluR activation reverses cocaine-induced accumulation of calcium-permeable AMPA receptors in nucleus accumbens synapses via a protein kinase C-dependent mechanism // J Neurosci. 2011. Vol. 31, No. 41. P. 14536–14541. DOI: 10.1523/JNEUROSCI.3625-11.2011

[207]

Ruan H, Yao W-D. Loss of m GluA1-LTD following cocaine exposure accumulates Ca2+-permeable AMPA receptors and facilitates synaptic potentiation in the prefrontal cortex. J Neurogenet. 2021;35(4):358–369. DOI: 10.1080/01677063.2021.1931180

[208]

Ruan H., Yao W.-D. Loss of m GluA1-LTD following cocaine exposure accumulates Ca2+-permeable AMPA receptors and facilitates synaptic potentiation in the prefrontal cortex // J Neurogenet. 2021. Vol. 35, No. 4. P. 358–369. DOI: 10.1080/01677063.2021.1931180

[209]

Robinson TE, Becker JB. Enduring changes in brain and behavior produced by chronic amphetamine administration: A review and evaluation of animal models of amphetamine psychosis. Brain Res. 1986;396(2):157–198. DOI: 10.1016/s0006-8993(86)80193-7

[210]

Robinson T.E., Becker J.B. Enduring changes in brain and behavior produced by chronic amphetamine administration: A review and evaluation of animal models of amphetamine psychosis // Brain Res. 1986. Vol. 396, No. 2. P. 157–198. DOI: 10.1016/s0006-8993(86)80193-7

[211]

Voorn P, Vanderschuren LJ, Groenewegen HJ, et al. Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci. 2004;27(8):468–474. DOI: 10.1016/j.tins.2004.06.006

[212]

Voorn P., Vanderschuren L.J., Groenewegen H.J., et al. Putting a spin on the dorsal-ventral divide of the striatum // Trends Neurosci. 2004. Vol. 27, No. 8. P. 468–474. DOI: 10.1016/j.tins.2004.06.006

[213]

Gabbott PL, Warner TA, Jays PR, et al. Prefrontal cortex in the rat: Projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol. 2005;492(2):145–177. DOI: 10.1002/cne.20738

[214]

Gabbott P.L., Warner T.A., Jays P.R., et al. Prefrontal cortex in the rat: Projections to subcortical autonomic, motor, and limbic centers // J Comp Neurol. 2005. Vol. 492, No. 2. P. 145–177. DOI: 10.1002/cne.20738

[215]

Hoover WB, Vertes RP. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct. 2007;212(2):149–179. DOI: 10.1007/s00429-007-0150-4

[216]

Hoover W.B., Vertes R.P. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat // Brain Struct Funct. 2007. Vol. 212, No. 2. P. 149–179. DOI: 10.1007/s00429-007-0150-4

[217]

Pierce RC, Wolf ME. Psychostimulant-induced neuroadaptations in nucleus accumbens AMPA receptor transmission. Cold Spring Harb Perspect Med. 2013;3(2):a012021. DOI: 10.1101/cshperspect.a012021

[218]

Pierce R.C., Wolf M.E. Psychostimulant-induced neuroadaptations in nucleus accumbens AMPA receptor transmission // Cold Spring Harb Perspect Med. 2013. Vol. 3, No. 2. ID a012021. DOI: 10.1101/cshperspect.a012021

[219]

Wolf ME, Ferrario CR. AMPA receptor plasticity in the nucleus accumbens after repeated exposure to cocaine. Neurosci Biobehav Rev. 2010;35(2):185–211. DOI: 10.1016/j.neubiorev.2010.01.013

[220]

Wolf M.E., Ferrario C.R. AMPA receptor plasticity in the nucleus accumbens after repeated exposure to cocaine // Neurosci Biobehav Rev. 2010. Vol. 35, No. 2. P. 185–211. DOI: 10.1016/j.neubiorev.2010.01.013

[221]

Ping A, Xi J, Prasad BM, et al. Contributions of nucleus accumbens core and shell GluR1 containing AMPA receptors in AMPA- and cocaine-primed reinstatement of cocaine-seeking behavior. Brain Res. 2008;1215:173–182. DOI: 10.1016/j.brainres.2008.03.088

[222]

Ping A., Xi J., Prasad B.M., et al. Contributions of nucleus accumbens core and shell GluR1 containing AMPA receptors in AMPA- and cocaine-primed reinstatement of cocaine-seeking behavior // Brain Res. 2008. Vol. 1215. P. 173–182. DOI: 10.1016/j.brainres.2008.03.088

[223]

Famous KR, Kumaresan V, Sadri-Vakili G, et al. Phosphorylation-dependent trafficking of GluR2-containing AMPA receptors in the nucleus accumbens plays a critical role in the reinstatement of cocaine seeking. J Neurosci. 2008;28(43):11061–11070. DOI: 10.1523/JNEUROSCI.1221-08.2008

[224]

Famous K.R., Kumaresan V., Sadri-Vakili G., et al. Phosphorylation-dependent trafficking of GluR2-containing AMPA receptors in the nucleus accumbens plays a critical role in the reinstatement of cocaine seeking // J Neurosci. 2008. Vol. 28, No. 43. P. 11061–11070. DOI: 10.1523/JNEUROSCI.1221-08.2008

[225]

Purgianto A, Scheyer AF, Loweth JA, et al. Different adaptations in AMPA receptor transmission in the nucleus accumbens after short vs long access cocaine self-administration regimens. Neuropsychopharmacology. 2013;38(9):1789–1797. DOI: 10.1038/npp.2013.78

[226]

Purgianto A., Scheyer A.F., Loweth J.A., et al. Different adaptations in AMPA receptor transmission in the nucleus accumbens after short vs long access cocaine self-administration regimens // Neuropsychopharmacology. 2013. Vol. 38, No. 9. P. 1789–1797. DOI: 10.1038/npp.2013.78

[227]

Scheyer AF, Wolf ME, Tseng KY. A protein synthesis-dependent mechanism sustains calcium-permeable AMPA receptor transmission in nucleus accumbens synapses during withdrawal from cocaine self-administration. J Neurosci. 2014;34(8):3095–3100. DOI: 10.1523/JNEUROSCI.4940-13.2014

[228]

Scheyer A.F., Wolf M.E., Tseng K.Y. A protein synthesis-dependent mechanism sustains calcium-permeable AMPA receptor transmission in nucleus accumbens synapses during withdrawal from cocaine self-administration // J Neurosci. 2014. Vol. 34, No. 8. P. 3095–3100. DOI: 10.1523/JNEUROSCI.4940-13.2014

[229]

Lee K, Goodman L, Fourie C, et al. AMPA Receptors as Therapeutic Targets for Neurological Disorders. Adv Protein Chem Struct Biol. 2016;103:203–261. DOI: 10.1016/bs.apcsb.2015.10.004

[230]

Lee K., Goodman L., Fourie C., et al. AMPA Receptors as Therapeutic Targets for Neurological Disorders // Adv Protein Chem Struct Biol. 2016. Vol. 103. P. 203–261. DOI: 10.1016/bs.apcsb.2015.10.004

[231]

Faccidomo S, Cogan ES, Hon OJ, et al. Calcium-permeable AMPA receptor activity and GluA1 trafficking in the basolateral amygdala regulate operant alcohol self-administration. Addict Biol. 2021;26(5):e13049. DOI: 10.1111/adb.13049

[232]

Faccidomo S., Cogan E.S., Hon O.J., et al. Calcium-permeable AMPA receptor activity and GluA1 trafficking in the basolateral amygdala regulate operant alcohol self-administration // Addict Biol. 2021. Vol. 26, No. 5. ID e13049. DOI: 10.1111/adb.13049

[233]

Russell SE, Puttick DJ, Sawyer AM, et al. Nucleus Accumbens AMPA Receptors Are Necessary for Morphine-Withdrawal-Induced Negative-Affective States in Rats. J Neurosci. 2016;36(21):5748–5762. DOI: 10.1523/JNEUROSCI.2875-12.2016

[234]

Russell S.E., Puttick D.J., Sawyer A.M., et al. Nucleus Accumbens AMPA Receptors Are Necessary for Morphine-Withdrawal-Induced Negative-Affective States in Rats // J Neurosci. 2016. Vol. 36, No. 21. P. 5748–5762. DOI: 10.1523/JNEUROSCI.2875-12.2016

[235]

Zhu Y, Wienecke CF, Nachtrab G, Chen XA thalamic input to the nucleus accumbens mediates opiate dependence. Nature. 2016;530:219–222. DOI: 10.1038/nature16954

[236]

Zhu Y., Wienecke C.F., Nachtrab G., Chen X. A thalamic input to the nucleus accumbens mediates opiate dependence // Nature. 2016. Vol. 530. P. 219–222. DOI: 10.1038/nature16954

[237]

Vekovischeva OY, Zamanillo D, Echenko O, et al. Morphineinduced dependence and sensitization are altered in mice deficient in AMPA-type glutamate receptor-A subunits. J Neurosci. 2001;21(12):4451–4459. DOI: 10.1523/JNEUROSCI.21-12-04451.2001

[238]

Vekovischeva O.Y., Zamanillo D., Echenko O., et al. Morphineinduced dependence and sensitization are altered in mice deficient in AMPA-type glutamate receptor-A subunits // J Neurosci. 2001. Vol. 21, No. 12. P. 4451–4459. DOI: 10.1523/JNEUROSCI.21-12-04451.2001

[239]

Carlezon WA, Wise RA. Microinjections of phencyclidine (PCP) and related drugs into nucleus accumbens shell potentiate medial forebrain bundle brain stimulation reward. Psychopharmacologia. 1996;128:413–420. DOI: 10.1007/s002130050151

[240]

Carlezon W.A., Wise R.A. Microinjections of phencyclidine (PCP) and related drugs into nucleus accumbens shell potentiate medial forebrain bundle brain stimulation reward // Psychopharmacologia. 1996. Vol. 128. P. 413–420. DOI: 10.1007/s002130050151

[241]

Bari AA, Pierce RC. D1-like and D2 dopamine receptor antagonists administered into the shell subregion of the rat nucleus accumbens decrease cocaine, but not food, reinforcement. Neuroscience. 2005;135(3):959–968. DOI: 10.1016/j.neuroscience.2005.06.048

[242]

Bari A.A., Pierce R.C. D1-like and D2 dopamine receptor antagonists administered into the shell subregion of the rat nucleus accumbens decrease cocaine, but not food, reinforcement // Neuroscience. 2005. Vol. 135, No. 3. P. 959–968. DOI: 10.1016/j.neuroscience.2005.06.048

[243]

Chartoff EH, Pliakas AM, Carlezon WA. Microinjection of the L-type calcium channel antagonist diltiazem into the ventral nucleus accumbens shell facilitates cocaine-induced conditioned place preferences. Biol Psychiatry. 2006;59(12):1236–1239. DOI: 10.1016/j.biopsych.2005.09.024

[244]

Chartoff E.H., Pliakas A.M., Carlezon W.A. Microinjection of the L-type calcium channel antagonist diltiazem into the ventral nucleus accumbens shell facilitates cocaine-induced conditioned place preferences // Biol Psychiatry. 2006. Vol. 59, No. 12. P. 1236–1239. DOI: 10.1016/j.biopsych.2005.09.024

[245]

Peoples LL, West MO. Phasic firing of single neurons in the rat nucleus accumbens correlated with the timing of intravenous cocaine selfadministration. J Neurosci. 1996;16(10):3459–3473. DOI: 10.1523/JNEUROSCI.16-10-03459.1996

[246]

Peoples L.L., West M.O. Phasic firing of single neurons in the rat nucleus accumbens correlated with the timing of intravenous cocaine selfadministration // J Neurosci. 1996. Vol. 16, No. 10. P. 3459–3473. DOI: 10.1523/JNEUROSCI.16-10-03459.1996

[247]

Carelli RM. The nucleus accumbens and reward: neurophysiological investigations in behaving animals. Behav Cogn Neurosci Rev. 2002;1(4):281–296. DOI: 10.1177/1534582302238338

[248]

Carelli R.M. The nucleus accumbens and reward: neurophysiological investigations in behaving animals // Behav Cogn Neurosci Rev. 2002. Vol. 1, No. 4. P. 281–296. DOI: 10.1177/1534582302238338

[249]

Roitman MF, Wheeler RA, Carelli RM. Nucleus Accumbens neurons are innately tuned for rewarding and aversive taste stimuli, encode their predictors, and are linked to motor output. Neuron. 2005;45(4):587–597. DOI: 10.1016/j.neuron.2004.12.055

[250]

Roitman M.F., Wheeler R.A., Carelli R.M. Nucleus Accumbens neurons are innately tuned for rewarding and aversive taste stimuli, encode their predictors, and are linked to motor output // Neuron. 2005. Vol. 45, No. 4. P. 587–597. DOI: 10.1016/j.neuron.2004.12.055

[251]

Kelz MB, Chen J, Carlezon WA, et al. Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine. Nature. 1999;401:272–276. DOI: 10.1038/45790

[252]

Kelz M.B., Chen J., Carlezon W.A., et al. Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine // Nature. 1999. Vol. 401. P. 272–276. DOI: 10.1038/45790

[253]

Todtenkopf MS, Parsegian A, Naydenov A, et al. Brain reward regulated by AMPA receptor subunits in nucleus accumbens shell. J Neurosci. 2006;26(45):11665–11669. DOI: 10.1523/JNEUROSCI.3070-06.2006

[254]

Todtenkopf M.S., Parsegian A., Naydenov A., et al. Brain reward regulated by AMPA receptor subunits in nucleus accumbens shell // J Neurosci. 2006. Vol. 26, No. 45. P. 11665–11669. DOI: 10.1523/JNEUROSCI.3070-06.2006

[255]

Nelson EC, Agrawal A, Heath AC, et al. Evidence of CNIH3 involvement in opioid dependence. Mol Psychiatry. 2016;21:608–614. DOI: 10.1038/mp.2015.102

[256]

Nelson E.C., Agrawal A., Heath A.C., et al. Evidence of CNIH3 involvement in opioid dependence // Mol Psychiatry. 2016. Vol. 21. P. 608–614. DOI: 10.1038/mp.2015.102

[257]

McFarland K, Kalivas PW. The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J Neurosci. 2001;21(21):8655–8663. DOI: 10.1523/JNEUROSCI.21-21-08655.2001

[258]

McFarland K., Kalivas P.W. The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior // J Neurosci. 2001. Vol. 21, No. 21. P. 8655–8663. DOI: 10.1523/JNEUROSCI.21-21-08655.2001

[259]

LaLumiere RT, Kalivas PW. Glutamate release in the nucleus accumbens core is necessary for heroin seeking. J Neurosci. 2008;28(12):3170–3177. DOI: 10.1523/JNEUROSCI.5129-07.2008

[260]

LaLumiere R.T., Kalivas P.W. Glutamate release in the nucleus accumbens core is necessary for heroin seeking // J Neurosci. 2008. Vol. 28, No. 12. P. 3170–3177. DOI: 10.1523/JNEUROSCI.5129-07.2008

[261]

Hearing MC, Jedynak J, Ebner SR, et al. Reversal of morphineinduced cell-type-specific synaptic plasticity in the nucleus accumbens shell blocks reinstatement. PNAS USA. 2016;113(3):757–762. DOI: 10.1073/pnas.1519248113

[262]

Hearing M.C., Jedynak J., Ebner S.R., et al. Reversal of morphineinduced cell-type-specific synaptic plasticity in the nucleus accumbens shell blocks reinstatement // PNAS USA. 2016. Vol. 113, No. 3. P. 757–762. DOI: 10.1073/pnas.1519248113

[263]

Magazanik LG, Antonov SM, Gmiro VE. Mekhanizmy aktivatsii i blokirovaniya postsinapticheskoi membrany, chuvstvitel’noi k glutamatu. Biologicheskie membrany. 1984;1(2):130–140. (In Russ.)

[264]

Магазаник Л.Г., Антонов С.М., Гмиро В.Е. Механизмы активации и блокирования постсинаптической мембраны, чувствительной к глутамату // Биологические мембраны. 1984. Т. 1, № 2. С. 130–140.

[265]

Magazanik LG, Buldakova SL, Samoilova MV, et al. Block of open channels of recombinant AMPA receptors and native AMPA/kainate receptors by adamantane derivatives. J Physiol Lond. 1997;505(3):655–663. DOI: 10.1111/j.1469-7793.1997.655ba.x

[266]

Magazanik L.G., Buldakova S.L., Samoilova M.V., et al. Block of open channels of recombinant AMPA receptors and native AMPA/kainate receptors by adamantane derivatives // J Physiol Lond. 1997. Vol. 505, No. 3. P. 655–663. DOI: 10.1111/j.1469-7793.1997.655ba.x

[267]

Gmiro VE, Groisman SD, Lukomskaya NYa, et al. Izbiratel’nye blokatory parasimpaticheskikh gangliev. Doklady Akademii Nauk. 1987;292(2):497–501. (In Russ.)

[268]

Гмиро В.Е., Гройсман С.Д., Лукомская Н.Я., и др. Избирательные блокаторы парасимпатических ганглиев // ДАН СССР. 1987. Т. 292, № 2. С. 497–501.

[269]

Skatchkov SN, Buldakova SL, Veh RW, et al. AMPAR channel block and potentiation by spermine and IEM 1460. Abstr Soc Neurosci. 2002.

[270]

Skatchkov S.N., Buldakova S.L., Veh R.W., et al. AMPAR channel block and potentiation by spermine and IEM 1460 // Abstr Soc Neurosci. 2002.

[271]

Gmiro VE, Serdyuk SE. Bis-ammonium adamantane-containing compounds: new modulators of polyamine site. Experimental and clinical pharmacology. 2000;63(3):16–20. (In Russ.)

[272]

Гмиро В.Е., Сердюк С.Е. Бис-аммониевые адамантан-содержащие соединения — новые модуляторы полиаминового участка связывания // Экспериментальная и клиническая фармакология. 2000. Т. 63, № 3. С. 16–20.

[273]

Gmiro VE, Groisman SD, Efremov OM. Peripheral and central routes of administration of quaternary ammonium compound IEM-1460 are equally potent in reducing the severity of nicotine-induced seizures in mice. Bulletin of Experimental Biology and Medicine. 2008;146(7):22–25. (In Russ.) DOI: 10.1007/s10517-008-0229-9

[274]

Гмиро В.Е., Сердюк С.Е., Ефремов О.М. Четвертичное аммониевое соединение ИЭМ-1460 при периферическом и центральном введении равноэффективно ослабляет никотиновые судороги у мышей // Бюллетень экспериментальной биологии и медицины. 2008. Т. 146, № 7. С. 22–25. DOI: 10.1007/s10517-008-0229-9

[275]

Serdyuk SE, Gmiro VE. Combined blockade of α3β4 nicotinic acetylcholine receptors and GluR1 AMPA receptors in rats prevents kainate-induced tonic-clonic seizures. Bulletin of Experimental Biology and Medicine. 2007;143(5):548–550. (In Russ.) DOI: 10.1007/s10517-007-0195-7

[276]

Сердюк С.Е., Гмиро В.Е. Комбинированная блокада α3β4 Н-холинорецепторов и GluR1 AMPA рецепторов устраняет клонико-тонические каинатные судороги у крыс // Бюллетень экспериментальной биологии и медицины. 2007. Т. 143, № 5. С. 548–550. DOI: 10.1007/s10517-007-0195-7

[277]

Serdyuk SE, Gmiro VE. IEM-1460 and Spermine Potentiate the Analgesic Actions of Fentanyl and Analgin in Rats. Russian journal of physiology. 2013;99(12):1361–1365. (In Russ.) DOI: 10.1007/s11055-015-0128-2

[278]

Сердюк С.Е., Гмиро В.Е. ИЭМ-1460 и спермин потенцируют анальгезирующее действие фентанила и анальгина у крыс // Российский физиологический журнал им. И.М. Сеченова. 2013. Т. 99, № 12. С. 1361–1365. DOI: 10.1007/s11055-015-0128-2

[279]

Szczurowska E, Mareš P. An antagonist of calcium permeable AMPA receptors, IEM1460: Anticonvulsant action in immature rats? Epilepsy Res. 2015;109:106–113. DOI: 10.1016/j.eplepsyres.2014.10.020

[280]

Szczurowska E., Mareš P. An antagonist of calcium permeable AMPA receptors, IEM1460: Anticonvulsant action in immature rats? // Epilepsy Res. 2015. Vol. 109. P. 106–113. DOI: 10.1016/j.eplepsyres.2014.10.020

[281]

Umino M, Umino A, Nishikawa T. Effects of selective calcium-permeable AMPA receptor blockade by IEM 1460 on psychotomimetic-induced hyperactivity in the mouse. J Neural Transm. (Vienna). 2018;125(4):705–711. DOI: 10.1007/s00702-017-1827-3

[282]

Umino M., Umino A., Nishikawa T. Effects of selective calcium-permeable AMPA receptor blockade by IEM 1460 on psychotomimetic-induced hyperactivity in the mouse // J Neural Transm. (Vienna). 2018. Vol. 125, No. 4. P. 705–711. DOI: 10.1007/s00702-017-1827-3

[283]

Kobylecki C, Cenci MA, Crossman AR, Ravenscroft P. Calcium-permeable AMPA receptors are involved in the induction and expression of L-DOPA-induced dyskinesia in Parkinson’s disease. J Neurochem. 2010;114(2):499–511. DOI: 10.1111/j.1471-4159.2010.06776.x

[284]

Kobylecki C., Cenci M.A., Crossman A.R., Ravenscroft P. Calcium-permeable AMPA receptors are involved in the induction and expression of L-DOPA-induced dyskinesia in Parkinson’s disease // J Neurochem. 2010. Vol. 114, No. 2. P. 499–511. DOI: 10.1111/j.1471-4159.2010.06776.x

[285]

Kobylecki C, Crossman AR, Ravenscroft P. Alternative splicing of AMPA receptor subunits in the 6-OHDA-lesioned rat model of Parkinson’sdisease and L-DOPA-induced dyskinesia. Exp Neurol. 2013;247:476–484. DOI: 10.1016/j.expneurol.2013.01.019

[286]

Kobylecki C., Crossman A.R., Ravenscroft P. Alternative splicing of AMPA receptor subunits in the 6-OHDA-lesioned rat model of Parkinson’s disease and L-DOPA-induced dyskinesia // Exp Neurol. 2013. Vol. 247. P. 476–484. DOI: 10.1016/j.expneurol.2013.01.019

[287]

Kopach O, Kao S-C, Petralia RS, et al. Inflammation alters trafficking of extrasynaptic AMPA receptors in tonically firing lamina II neurons of the rat spinal dorsal horn. Pain. 2011;152(4):912–923. DOI: 10.1016/j.pain.2011.01.016

[288]

Kopach O., Kao S.-C., Petralia R.S., et al. Inflammation alters trafficking of extrasynaptic AMPA receptors in tonically firing lamina II neurons of the rat spinal dorsal horn // Pain. 2011. Vol. 152, No. 4. P. 912–923. DOI: 10.1016/j.pain.2011.01.016

[289]

Kopach O, Krotov V, Goncharenko J, Voitenko N. Inhibition of Spinal Ca(2+)-Permeable AMPA Receptors with Dicationic Compounds Alleviates Persistent Inflammatory Pain without Adverse Effects. Front Cell Neurosci. 2016;10:50. DOI: 10.3389/fncel.2016.00050

[290]

Kopach O., Krotov V., Goncharenko J., Voitenko N. Inhibition of Spinal Ca(2+)-Permeable AMPA Receptors with Dicationic Compounds Alleviates Persistent Inflammatory Pain without Adverse Effects // Front Cell Neurosci. 2016. Vol. 10. ID 50. DOI: 10.3389/fncel.2016.00050

[291]

Adotevi N, Lewczuk E, Sun H, et al. AMPA receptor plasticity sustains severe, fatal status epilepticus. J Ann Neurol. 2020;87(1):84–96. DOI: 10.1002/ana.25635

[292]

Adotevi N., Lewczuk E., Sun H., et al. AMPA receptor plasticity sustains severe, fatal status epilepticus // J Ann Neurol. 2020. Vol. 87, No. 1. P. 84–96. DOI: 10.1002/ana.25635

[293]

Koval OM, Voitenko LP, Skok MV, et al. The beta-subunit composition of nicotinic acetylcholine receptors in the neurons of the guinea pig inferior mesenteric ganglion. Neurosci Lett. 2004;365(2):143–146. DOI: 10.1016/j.neulet.2004.04.071

[294]

Koval O.M., Voitenko L.P., Skok M.V., et al. The beta-subunit composition of nicotinic acetylcholine receptors in the neurons of the guinea pig inferior mesenteric ganglion // Neurosci Lett. 2004. Vol. 365, No. 2. P. 143–146. DOI: 10.1016/j.neulet.2004.04.071

[295]

Wang N, Orr-Urtreger A, Chapman J, et al. Deficiency of nicotinic acetylcholine receptor beta 4 subunit causes autonomic cardiac and intestinal dysfunction. Mol Pharmacol. 2003;63(3):574–580. DOI: 10.1124/mol.63.3.574

[296]

Wang N., Orr-Urtreger A., Chapman J., et al. Deficiency of nicotinic acetylcholine receptor beta 4 subunit causes autonomic cardiac and intestinal dysfunction // Mol Pharmacol. 2003. Vol. 63, No. 3. P. 574–580. DOI: 10.1124/mol.63.3.574

[297]

Zhou X, Ren J, Brown E, et al. Pharmacological properties of nicotinic acetylcholine receptors expressed by guinea pig small intestinal myenteric neurons. J Pharmacol Exp Ther. 2002;302(3):889–897. DOI: 10.1124/jpet.102.033548

[298]

Zhou X., Ren J., Brown E., et al. Pharmacological properties of nicotinic acetylcholine receptors expressed by guinea pig small intestinal myenteric neurons // J Pharmacol Exp Ther. 2002. Vol. 302, No. 3. P. 889–897. DOI: 10.1124/jpet.102.033548

[299]

Nelson ME, Wang F, Kuryatov A, et al. Functional properties of human nicotinic AChRs expressed by IMR-32 neuroblastoma cells resemble those of alpha3beta4 AChRs expressed in permanently transfected HEK cells. J Gen Physiol. 2001;118(5):563–582. DOI: 10.1085/jgp.118.5.563

[300]

Nelson M.E., Wang F., Kuryatov A., et al. Functional properties of human nicotinic AChRs expressed by IMR-32 neuroblastoma cells resemble those of alpha3beta4 AChRs expressed in permanently transfected HEK cells // J Gen Physiol. 2001. Vol. 118, No. 5. P. 563–582. DOI: 10.1085/jgp.118.5.563

[301]

Kuryatov A, Olale F, Cooper J, et al. Human α6AChR subtypes: subunit composition, assembly, and pharmacological responses. Neuropharmacology. 2000;39(13):2570–2590. DOI: 10.1016/s0028-3908(00)00144-1

[302]

Kuryatov A., Olale F., Cooper J., et al. Human α6AChR subtypes: subunit composition, assembly, and pharmacological responses // Neuropharmacology. 2000. Vol. 39, No. 13. P. 2570–2590. DOI: 10.1016/s0028-3908(00)00144-1

[303]

Alkondon M, Pereira EF, Albuquerque EX. NMDA and AMPA receptors contribute to the nicotinic cholinergic excitation of CA1 interneurons in the rat hippocampus. J Neurophysiol. 2003;90(3):1613–1625. DOI: 10.1152/jn.00214.2003

[304]

Alkondon M., Pereira E.F., Albuquerque E.X. NMDA and AMPA receptors contribute to the nicotinic cholinergic excitation of CA1 interneurons in the rat hippocampus // J Neurophysiol. 2003. Vol. 90, No. 3. P. 1613–1625. DOI: 10.1152/jn.00214.2003

[305]

Alkondon M, Albuquerque EX. The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex. Prog Brain Res. 2004;145:109–120. DOI: 10.1016/S0079-6123(03)45007-3

[306]

Alkondon M., Albuquerque E.X. The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex // Prog Brain Res. 2004. Vol. 145. P. 109–120. DOI: 10.1016/S0079-6123(03)45007-3

[307]

Glick SD, Maisonneuve IM, Kitchen BA, Fleck MW. Antagonism of α3β4 nicotinic receptors as a strategy to reduce opioid and stimulant self-administration. Eur J Pharmacol. 2002;438(1-2):99–105. DOI: 10.1016/s0014-2999(02)01284-0

[308]

Glick S.D., Maisonneuve I.M., Kitchen B.A., Fleck M.W. Antagonism of α3β4 nicotinic receptors as a strategy to reduce opioid and stimulant self-administration // Eur J Pharmacol. 2002. Vol. 438, No. 1-2. P. 99–105. DOI: 10.1016/s0014-2999(02)01284-0

[309]

Glick SD, Maisonneuve IM, Kitchen BA. Modulation of nicotine self-administration in rats by combination therapy with agents blocking α3β4 nicotinic receptors. Eur J Pharmacol. 2002;448(2-3):185–191. DOI: 10.1016/s0014-2999(02)01944-1

[310]

Glick S.D., Maisonneuve I.M., Kitchen B.A. Modulation of nicotine self-administration in rats by combination therapy with agents blocking α3β4 nicotinic receptors // Eur J Pharmacol. 2002. Vol. 448, No. 2-3. P. 185–191. DOI: 10.1016/s0014-2999(02)01944-1

[311]

Serdyuk SE, Gmiro VE. Blockade of the α3β4 N-cholinoreceptors and GluR1 AMPA receptors eliminates clonic-tonic nicotinic and kainate seizures. Experimental and clinical pharmacology. 2008;71(4):14–17. (In Russ.) DOI: 10.30906/0869-2092-2008-71-4-14-17

[312]

Сердюк С.Е., Гмиро В.Е. Блокада α3β4 H-холинорецепторов и GluR1 АМРА рецепторов устраняет клонико-тонические никотиновые и каинатные судороги // Экспериментальная и клиническая фармакология. 2008. Т. 71, № 4. С. 14–17. DOI: 10.30906/0869-2092-2008-71-4-14-17

[313]

Antonov SM, Johnson JW, Lukomskaya NY, et al. Novel adamantane derivatives act as blockers of open ligand-gated channels and as anticonvulsants. Mol Pharmacol. 1995;47(3):558–567.

[314]

Antonov S.M., Johnson J.W., Lukomskaya N.Y., et al. Novel adamantane derivatives act as blockers of open ligand-gated channels and as anticonvulsants // Mol Pharmacol. 1995. Vol. 47, No. 3. P. 558–567.

[315]

Tikhonov DB, Samoilova MV, Buldakova SL, et al. Voltage-dependent block of native AMPA receptor channels by dicationic compounds. Br J Pharmacol. 2000;129(2):265–274. DOI: 10.1038/sj.bjp.0703043

[316]

Tikhonov D.B., Samoilova M.V., Buldakova S.L., et al. Voltage-dependent block of native AMPA receptor channels by dicationic compounds // Br J Pharmacol. 2000. Vol. 129, No. 2. P. 265–274. DOI: 10.1038/sj.bjp.0703043

[317]

Gmiro VE, Zhuravskii AV, Komissarov IV, Tikhonov VN. A comparative study of the antiamnesic properties of fast NMDA channel blockers and polyamines. Experimental and clinical pharmacology. 2002;65(1):11–14. (In Russ.) DOI: 10.30906/0869-2092-2002-65-1-11-14

[318]

Гмиро В.Е., Журавский А.В., Комиссаров И.В., Тихонов В.Н. Сравнительная оценка антиамнестических свойств «быстрых» блокаторов NMDA-рецепторов и полиаминов // Экспериментальная и клиническая фармакология. 2002. Т. 65, № 1. С. 11–14. DOI: 10.30906/0869-2092-2002-65-1-11-14

[319]

Tzschentke TM, Schmidt WJ. Glutamatergic mechanisms in addiction. Mol Psychiatry. 2003;8(4):373–382. DOI: 10.1038/sj.mp.4001269

[320]

Tzschentke T.M., Schmidt W.J. Glutamatergic mechanisms in addiction // Mol Psychiatry. 2003. Vol. 8, No. 4. P. 373–382. DOI: 10.1038/sj.mp.4001269

[321]

Chen SR, Zhang J, Chen H, Pan H-L. Streptozotocin-Induced Diabetic Neuropathic Pain Is Associated with Potentiated Calcium-Permeable AMPA Receptor Activity in the Spinal Cord. J Pharmacol Exp Ther. 2019;371(2):242–249. DOI: 10.1124/jpet.119.261339

[322]

Chen S.R., Zhang J., Chen H., Pan H.-L. Streptozotocin-Induced Diabetic Neuropathic Pain Is Associated with Potentiated Calcium-Permeable AMPA Receptor Activity in the Spinal Cord // J Pharmacol Exp Ther. 2019. Vol. 371, No. 2. P. 242–249. DOI: 10.1124/jpet.119.261339

[323]

Rosenberg EC, Lippman-Bell JJ, Handy M, et al. Regulation of seizure-induced MeCP2 Ser421 phosphorylation in the developing brain. Neurobiol Dis. 2018;116:120–130. DOI: 10.1016/j.nbd.2018.05.001

[324]

Rosenberg E.C., Lippman-Bell J.J., Handy M., et al. Regulation of seizure-induced MeCP2 Ser421 phosphorylation in the developing brain // Neurobiol Dis. 2018. Vol. 116. P. 120–130. DOI: 10.1016/j.nbd.2018.05.001

[325]

Potapkin AM, Lebedev AA, Gmiro VE, et al. Study of reinforcing properties of new antagonists of glutamate receptors. Reviews on Clinical Pharmacology and Drug Therapy. 2015;15(1):41–47. (In Russ.) DOI: 10.17816/RCF15141-47

[326]

Потапкин А.М., Лебедев А.А., Гмиро В.Е., и др. Исследование подкрепляющих свойств новых антагонистов глутаматных рецепторов // Обзоры по клинической фармакологии и лекарственной терапии. 2015. Т. 15, № 1. С. 41–47. DOI: 10.17816/RCF15141-47

[327]

Hu N, Rutherford MA, Green SH. Protection of cochlear synapses from noise-induced excitotoxic trauma by blockade of Ca2+-permeable AMPA receptors. PNAS. 2020;117(7):3828–3838. DOI: 10.1073/pnas.1914247117

[328]

Hu N., Rutherford M.A., Green S.H. Protection of cochlear synapses from noise-induced excitotoxic trauma by blockade of Ca2+-permeable AMPA receptors // PNAS. 2020. Vol. 117, No. 7. P. 3828–3838. DOI: 10.1073/pnas.1914247117

[329]

Xia Y, Portugal GS, Fakira AK, et al. Hippocampal GluA1-containing AMPA receptors mediate context-dependent sensitization to morphine. J Neurosci. 2011;31(45):16279–16291. DOI: 10.1523/JNEUROSCI.3835-11.2011

[330]

Xia Y., Portugal G.S., Fakira A.K., et al. Hippocampal GluA1-containing AMPA receptors mediate context-dependent sensitization to morphine // J Neurosci. 2011. Vol. 31, No. 45. P. 16279–16291. DOI: 10.1523/JNEUROSCI.3835-11.2011

[331]

Gryder DS, Rogawsk MA. Selective antagonism of GluR5 kainate-receptormediated synaptic currents by topiramate in rat basolateral amygdala neurons. J Neurosci. 2003;23(18):7069–7074. DOI: 10.1523/JNEUROSCI.23-18-07069.2003

[332]

Gryder D.S., Rogawsk M.A. Selective antagonism of GluR5 kainate-receptormediated synaptic currents by topiramate in rat basolateral amygdala neurons // J Neurosci. 2003. Vol. 23, No. 18. P. 7069–7074. DOI: 10.1523/JNEUROSCI.23-18-07069.2003

[333]

Guglielmo R, Martinotti G, Quatrale M, et al. Topiramate in alcohol use disorders: Review and update. CNS Drugs. 2015;29(5):383–395. DOI: 10.1007/s40263-015-0244-0

[334]

Guglielmo R., Martinotti G., Quatrale M., et al. Topiramate in alcohol use disorders: Review and update // CNS Drugs. 2015. Vol. 29, No. 5. P. 383–395. DOI: 10.1007/s40263-015-0244-0

[335]

Blodgett JC, Del RAC, Maisel NC, Finney JW. A meta-analysis of topiramate’s effects for individuals with alcohol use disorders. Alcoholism: Clin Exp Res. 2014;38(6):1481–1488. DOI: 10.1111/acer.12411

[336]

Blodgett J.C., Del R.A.C., Maisel N.C., Finney J.W. A meta-analysis of topiramate’s effects for individuals with alcohol use disorders // Alcoholism: Clin Exp Res. 2014. Vol. 38, No. 6. P. 1481–1488. DOI: 10.1111/acer.12411

[337]

Shinn AK, Greenfield SF. Topiramate in the treatment of substancerelated disorders: A critical review of the literature. J Clin Psychiatry. 2010;71(5):634–648. DOI: 10.4088/JCP.08r04062gry.

[338]

Shinn A.K., Greenfield S.F. Topiramate in the treatment of substancerelated disorders: A critical review of the literature // J Clin Psychiatry. 2010. Vol. 71, No. 5. P. 634–648. DOI: 10.4088/JCP.08r04062gry.

[339]

Johnson BA, Roache JD, Ait-Daoud N, et al. Topiramate’s effects on cocaine-induced subjective mood, craving and preference for money over drug taking. Addict Biol. 2013;18(3):405–416. DOI: 10.1111/j.1369-1600.2012.00499.x

[340]

Johnson B.A., Roache J.D., Ait-Daoud N., et al. Topiramate’s effects on cocaine-induced subjective mood, craving and preference for money over drug taking // Addict Biol. 2013. Vol. 18, No. 3. P. 405–416. DOI: 10.1111/j.1369-1600.2012.00499.x

[341]

Kim JH, Lawrence AJ. Drugs currently in Phase II clinical trials for cocaine addiction. Expert Opinion on Investigational. Drugs. 2014;23(8):1105–1122. DOI: 10.1517/13543784.2014.915312

[342]

Kim J.H., Lawrence A.J. Drugs currently in Phase II clinical trials for cocaine addiction. Expert Opinion on Investigational // Drugs. 2014. Vol. 23, No. 8. P. 1105–1122. DOI: 10.1517/13543784.2014.915312

[343]

Elkashef A, Kahn R, Yu E, et al. Topiramate for the treatment of methamphetamine addiction: A multi-centerplacebo-controlled trial. Addiction. 2012;107(7):1297–1306. DOI: 10.1111/j.1360-0443.2011.03771.x

[344]

Elkashef A., Kahn R., Yu E., et al. Topiramate for the treatment of methamphetamine addiction: A multi-centerplacebo-controlled trial // Addiction. 2012. Vol. 107, No. 7. P. 1297–1306. DOI: 10.1111/j.1360-0443.2011.03771.x

[345]

Plosker GL. Acamprosate: A Review of Its Use in Alcohol Dependence. Drugs. 2015;75(11):1255–1268. DOI: 10.1007/s40265-015-0423-9

[346]

Plosker G.L. Acamprosate: A Review of Its Use in Alcohol Dependence // Drugs. 2015. Vol. 75, No. 11. P. 1255–1268. DOI: 10.1007/s40265-015-0423-9

[347]

De Witte P, Littleton J, Parot P, Koob G. Neuroprotective and abstinence-promoting effects of acamprosate: elucidating the mechanism of action. CNS Drugs. 2005;19(6):517–537. DOI: 10.2165/00023210-200519060-00004

[348]

De Witte P., Littleton J., Parot P., Koob G. Neuroprotective and abstinence-promoting effects of acamprosate: elucidating the mechanism of action // CNS Drugs. 2005. Vol. 19, No. 6. P. 517–537. DOI: 10.2165/00023210-200519060-00004

[349]

Kalk NJ, Lingford-Hughes AR. The clinical pharmacology of acamprosate. Br J Clin Pharmacol. 2014;77(2):315–323. DOI: 10.1111/bcp.12070

[350]

Kalk N.J., Lingford-Hughes A.R. The clinical pharmacology of acamprosate // Br J Clin Pharmacol. 2014. Vol. 77, No. 2. P. 315–323. DOI: 10.1111/bcp.12070

[351]

Montemitro C, Angebrandt A, Wang T-Y, et al. Mechanistic insights into the efficacy of memantine in treating certain drug addict. Prog Neuropsychopharmacol Biol Psychiatry. 2021;111:110409. DOI: 10.1016/j.pnpbp.2021.110409

[352]

Montemitro C., Angebrandt A., Wang T.-Y., et al. Mechanistic insights into the efficacy of memantine in treating certain drug addict // Prog Neuropsychopharmacol Biol Psychiatry. 2021. Vol. 111. ID 110409. DOI: 10.1016/j.pnpbp.2021.110409

[353]

Gmiro VE, Zhigulin AS. Search for selective Glua1 AMPA receptor antagonists in a series of dicationic compounds. Pharmaceutical Chemistry Journal. 2022;56(3):8–14. (In Russ.) DOI: 10.30906/0023-1134-2022-56-3-8-14

[354]

Гмиро В.Е., Жигулин А.С. Поиск избирательных GluA1 AMPA-блокаторов в ряду дикатионных соединений // Химико-фармацевтический журнал. 2022. Т. 56, № 3. С. 8–14. DOI: 10.30906/0023-1134-2022-56-3-8-14

RIGHTS & PERMISSIONS

Potapkin A.M., Gmiro V.E., Shabanov P.D.

AI Summary AI Mindmap
PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/