Physiological functions of keratinocyte epidermal growth factor receptors and their role in the development of skin toxicity during targeted cancer therapy

Ekaterina V. Orlova

Russian Journal of Skin and Venereal Diseases ›› 2021, Vol. 24 ›› Issue (2) : 111 -118.

PDF
Russian Journal of Skin and Venereal Diseases ›› 2021, Vol. 24 ›› Issue (2) : 111 -118. DOI: 10.17816/dv63506
DERMATO-ONCOLOGY
research-article

Physiological functions of keratinocyte epidermal growth factor receptors and their role in the development of skin toxicity during targeted cancer therapy

Author information +
History +
PDF

Abstract

The binding of epidermal growth factor (EGFR) receptors is a good target for the treatment of lung, colon, pancreatic, head and neck cancers. The adverse events that develop as a result of therapy, in the form of lesions of the skin and mucous membranes, is a serious problem for the doctor to choose a long-term treatment strategy. The developing symptoms of skin toxicity, as skin problems in patients are often called, are worrisome and often affect the quality of life and compliance with the treatment regimen. Thus, it is important for doctors to know the prerequisites and ways to manage skin toxicity associated with the use of tyrosine kinase receptor inhibitors of epidermal growth factor.

The mechanism and consequences of EGF receptor activation are described to explain the development of undesirable skin toxicity associated with inhibition of the epidermal growth factor receptor.

Keywords

skin toxicity / epidermal growth factor receptor / targeted drugs / oncopathology / signaling pathways

Cite this article

Download citation ▾
Ekaterina V. Orlova. Physiological functions of keratinocyte epidermal growth factor receptors and their role in the development of skin toxicity during targeted cancer therapy. Russian Journal of Skin and Venereal Diseases, 2021, 24(2): 111-118 DOI:10.17816/dv63506

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Carpenter G, Cohen S. Epidermal growth factor. Annu Rev Biochem. 1979;48(1):193–216. doi: 10.1146/annurev.bi.48.070179.001205

[2]

Carpenter G., Cohen S. Epidermal growth factor//Annu Rev Biochem. 1979. Vol. 48, N 1. Р. 193–216. doi: 10.1146/annurev.bi.48.070179.001205

[3]

Herbst RS, Langer CJ. Epidermal growth factor receptors as a target for cancer treatment: the emerging role of IMC-C225 in the treatment of lung and head and neck cancers. Semin Oncol. 2002;29(1 Suppl 4):27–36. doi: 10.1053/sonc.2002.31525

[4]

Herbst R.S., Langer C.J. Epidermal growth factor receptors as a target for cancer treatment: the emerging role of IMC-C225 in the treatment of lung and head and neck cancers//Semin Oncol. 2002. Vol. 29, N 1, Suppl 4. Р. 27–36. doi: 10.1053/sonc.2002.31525

[5]

Ennis BW, Lippman ME, Dickson RB. The EGF receptor system as a target for antitumor therapy. Cancer Invest. 1991;9(5):553–562. doi: 10.3109/07357909109018953

[6]

Ennis B.W., Lippman M.E., Dickson R.B. The EGF receptor system as a target for antitumor therapy//Cancer Invest. 1991. Vol. 9, N 5. Р. 553–562. doi: 10.3109/07357909109018953

[7]

Kondapaka SB, Fridman R, Reddy KB. Epidermal growth factor and amphiregulin up-regulate matrix metalloproteinase-9 (MMP-9) in human breast cancer cells. Int J Cancer. 1997;70(6):722–726. doi: 10.1002/(sici)1097-0215(19970317)70:6<722::aid-ijc15>3.0.co;2-b

[8]

Kondapaka S.B., Fridman R., Reddy K.B. Epidermal growth factor and amphiregulin up-regulate matrix metalloproteinase-9 (MMP-9) in human breast cancer cells//Int J Cancer. 1997. Vol. 70, N 6. Р. 722–726. doi: 10.1002/(sici)1097-0215(19970317)70:6<722::aid-ijc15>3.0.co;2-b

[9]

Ethier SP. Signal transduction pathways: the molecular basis for targeted therapies. Semin Radiat Oncol. 2002;12(3 Suppl 2):3–10. doi: 10.1053/srao.2002.34863

[10]

Ethier S.P. Signal transduction pathways: the molecular basis for targeted therapies//Semin Radiat Oncol. 2002. Vol. 12, N 3, Suppl 2. Р. 3–10. doi: 10.1053/srao.2002.34863

[11]

Fujino S, Enokibori T, Tezuka N, et al. A comparison of epidermal growth factor receptor levels and other prognostic parameters in non-small cell lung cancer. Eur J Cancer. 1996;32(12):2070–2074. doi: 10.1016/s0959-8049(96)00243-2

[12]

Fujino S., Enokibori T., Tezuka N., et al. A comparison of epidermal growth factor receptor levels and other prognostic parameters in non-small cell lung cancer//Eur J Cancer. 1996. Vol. 32, N 12. Р. 2070–2074. doi: 10.1016/s0959-8049(96)00243-2

[13]

Pavelic K, Banjac Z, Pavelic J, Spaventi S. Evidence for a role of EGF receptor in the progression of human lung carcinoma. Anticancer Res. 1993;13(4):1133–1137.

[14]

Pavelic K., Banjac Z., Pavelic J., Spaventi S. Evidence for a role of EGF receptor in the progression of human lung carcinoma//Anticancer Res. 1993. Vol. 13, N 4. Р. 1133–1137.

[15]

Veale D, Kerr N, Gibson GJ, et al. The relationship of quantitative epidermal growth factor receptor expression in nonsmall cell lung cancer to long term survival. Br J Cancer. 1993;68:162–165. doi: 10.1038/bjc.1993.306

[16]

Veale D., Kerr N., Gibson G.J., et al. The relationship of quantitative epidermal growth factor receptor expression in nonsmall cell lung cancer to long term survival//Br J Cancer. 1993. Vol. 68. Р. 162–165. doi: 10.1038/bjc.1993.306

[17]

Volm M, Rittgen W, Drings P. Prognostic value of ERBB-1, VEGF, cyclin A, FOS, JUN and MYC in patients with squamous cell lung carcinomas. Br J Cancer. 1998;77(4):663–669. doi: 10.1038/bjc.1998.106

[18]

Volm M., Rittgen W., Drings P. Prognostic value of ERBB-1, VEGF, cyclin A, FOS, JUN and MYC in patients with squamous cell lung carcinomas//Br J Cancer. 1998. Vol. 77, N 4. Р. 663–669. doi: 10.1038/bjc.1998.106

[19]

Schneider MR, Wolf E. The epidermal growth factor receptor ligands at a glance. J Cell Physiol. 2009;218(3):460–466. doi: 10.1002/jcp.21635

[20]

Schneider M.R., Wolf E. The epidermal growth factor receptor ligands at a glance//J Cell Physiol. 2009. Vol. 218, N 3. Р. 460–466. doi: 10.1002/jcp.21635

[21]

Reiter JL, Threadgill DW, Eley GD, et al. Comparative genomic sequence analysis and isolation of human and mouse alternative EGFR transcripts encoding truncated receptor isoforms. Genomics. 2001;71(1):1–20. doi: 10.1006/geno.2000.6341

[22]

Reiter J.L., Threadgill D.W., Eley G.D., et al. Comparative genomic sequence analysis and isolation of human and mouse alternative EGFR transcripts encoding truncated receptor isoforms//Genomics. 2001. Vol. 71, N 1. Р. 1–20. doi: 10.1006/geno.2000.6341

[23]

Ceresa BP, Peterson JL. Cell and molecular biology of epidermal growth factor receptor. Int Rev Cell Mol Biol. 2014;313:145–178. doi: 10.1016/B978-0-12-800177-6.00005-0

[24]

Ceresa B.P., Peterson J.L. Cell and molecular biology of epidermal growth factor receptor//Int Rev Cell Mol Biol. 2014. Vol. 313. Р. 145–178. doi: 10.1016/B978-0-12-800177-6.00005-0

[25]

Kozuki T. Skin problems and EGFR-tyrosine kinase inhibitor. Jpn J Clin Oncol. 2016;46(4):291–298. doi: 10.1093/jjco/hyv207

[26]

Kozuki T. Skin problems and EGFR-tyrosine kinase inhibitor//Jpn J Clin Oncol. 2016. Vol. 46, N 4. Р. 291–298. doi: 10.1093/jjco/hyv207

[27]

Sahin U, Weskamp G, Kelly K, et al. Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol. 2004;164(5):769–779. doi: 10.1083/jcb.200307137

[28]

Sahin U., Weskamp G., Kelly K., et al. Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands//J Cell Biol. 2004. Vol. 164, N 5. Р. 769–779. doi: 10.1083/jcb.200307137

[29]

Franklin WA, Veve R, Hirsch FR, et al. Epidermal growth factor receptor family in lung cancer and premalignancy. Semin Oncol. 2002;29:1(Suppl 4):3–14. doi: 10.1053/sonc.2002.31520

[30]

Franklin W.A., Veve R., Hirsch F.R., et al. Epidermal growth factor receptor family in lung cancer and premalignancy//Semin Oncol. 2002. Vol. 29, N 1, Suppl 4. Р. 3–14. doi: 10.1053/sonc.2002.31520

[31]

Wang YN, Hung MC. Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family. Cell Biosci. 2012;2(1):13. doi: 10.1186/2045-3701-2-13

[32]

Wang Y.N., Hung M.C. Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family//Cell Biosci. 2012. Vol. 2, N 1. Р. 13. doi: 10.1186/2045-3701-2-13

[33]

Chan TO, Rittenhouse SE, Tsichlis PN. AKT/PKB and Other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem. 1999;68(1):965–1014. doi: 10.1146/annurev.biochem.68.1.965

[34]

Chan T.O., Rittenhouse S.E., Tsichlis P.N. AKT/PKB and Other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation//Annu Rev Biochem. 1999. Vol. 68, N 1. Р. 965–1014. doi: 10.1146/annurev.biochem.68.1.965

[35]

Goldman CK, Kim J, Wong WL, et al. Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: a model of glioblastoma multiforme pathophysiology. Mol Biol Cell. 1993;4(1):121–133. doi: 10.1091/mbc.4.1.121

[36]

Goldman C.K., Kim J., Wong W.L., et al. Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: a model of glioblastoma multiforme pathophysiology//Mol Biol Cell. 1993. Vol. 4, N 1. Р. 121–133. doi: 10.1091/mbc.4.1.121

[37]

Petit AM, Rak J, Hung MC, et al. Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of so. Am J Pathol. 1997;151(6):1523–1530.

[38]

Petit A.M., Rak J., Hung M.C., et al. Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of so//Am J Pathol. 1997. Vol. 151, N 6. Р. 1523–1530.

[39]

Herbst RS. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys. 2004;59(2 Suppl):21–26. doi: 10.1016/j.ijrobp.2003.11.041

[40]

Herbst R.S. Review of epidermal growth factor receptor biology//Int J Radiat Oncol Biol Phys. 2004. Vol. 59, N 2, Suppl. Р. 21–26. doi: 10.1016/j.ijrobp.2003.11.041

[41]

Li S, Schmitz KR, Jeffrey PD, et al. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell. 2005;7(4):301–311. doi: 10.1016/j.ccr.2005.03.003

[42]

Li S., Schmitz K.R., Jeffrey P.D., et al. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab//Cancer Cell. 2005. Vol. 7, N 4. Р. 301–311. doi: 10.1016/j.ccr.2005.03.003

[43]

Johns TG, Mellman I, Cartwright GA, et al. The antitumor monoclonal antibody 806 recognizes a high-mannose form of the EGF receptor that reaches the cell surface when cells over-express the receptor. FASEB J. 2005;19(7):780–782. doi: 10.1096/fj.04-1766fje

[44]

Johns T.G., Mellman I., Cartwright G.A., et al. The antitumor monoclonal antibody 806 recognizes a high-mannose form of the EGF receptor that reaches the cell surface when cells over-express the receptor//FASEB J. 2005. Vol. 19, N 7. Р. 780–782. doi: 10.1096/fj.04-1766fje

[45]

Giaccone G. Epidermal growth factor receptor inhibitors in the treatment of non–small-cell lung cancer. J Clin Oncol. 2005;23(14):3235–3242. doi: 10.1200/JCO.2005.08.409

[46]

Giaccone G. Epidermal growth factor receptor inhibitors in the treatment of non-small-cell lung cancer//J Clin Oncol. 2005. Vol. 23, N 14. Р. 3235–3242. doi: 10.1200/JCO.2005.08.409

[47]

Busam KJ, Capodieci P, Motzer R, et al. Cutaneous side-effects in cancer patients treated with the antiepidermal growth factor receptor antibody C225. Br J Dermatol. 2001;144(6):1169–1176. doi: 10.1046/j.1365-2133.2001.04226.x

[48]

Busam K.J., Capodieci P., Motzer R., et al. Cutaneous side-effects in cancer patients treated with the antiepidermal growth factor receptor antibody C225//Br J Dermatol. 2001. Vol. 144, N 6. Р. 1169–1176. doi: 10.1046/j.1365-2133.2001.04226.x

[49]

Jacot W, Bessis D, Jorda E, et al. Acneiform eruption induced by epidermal growth factor receptor inhibitors in patients with solid tumours. Br J Dermatol. 2004;151(1):238–241. doi: 10.1111/j.1365-2133.2004.06026.x

[50]

Jacot W., Bessis D., Jorda E., et al. Acneiform eruption induced by epidermal growth factor receptor inhibitors in patients with solid tumours//Br J Dermatol. 2004. Vol. 151, N 1. Р. 238–241. doi: 10.1111/j.1365-2133.2004.06026.x

[51]

Jatoi A, Green EM, Rowland KM, et al. Clinical predictors of severe cetuximab-induced rash: observations from 933 patients enrolled in north central cancer treatment group study N0147. Oncology. 2009;77(2):120–123. doi: 10.1159/000229751

[52]

Jatoi A., Green E.M., Rowland K.M., et al. Clinical predictors of severe cetuximab-induced rash: observations from 933 patients enrolled in north central cancer treatment group study N0147//Oncology. 2009. Vol. 77, N 2. Р. 120–123. doi: 10.1159/000229751

[53]

Moy B, Goss PE. Lapatinib-associated toxicity and practical management recommendations. Oncologist. 2007;12(7):756–765. doi: 10.1634/theoncologist.12-7-756

[54]

Moy B., Goss P.E. Lapatinib-associated toxicity and practical management recommendations//Oncologist. 2007. Vol. 12, N 7. Р. 756–765. doi: 10.1634/theoncologist.12-7-756

[55]

Van Doorn R, Kirtschig G, Scheffer E, et al. Follicular and epidermal alterations in patients treated with ZD1839 (Iressa), an inhibitor of the epidermal growth factor receptor. Br J Dermatol. 2002;147(3):598–601. doi: 10.1046/j.1365-2133.2002.04864.x

[56]

Van Doorn R., Kirtschig G., Scheffer E., et al. Follicular and epidermal alterations in patients treated with ZD1839 (Iressa), an inhibitor of the epidermal growth factor receptor//Br J Dermatol. 2002. Vol. 147, N 3. Р. 598–601. doi: 10.1046/j.1365-2133.2002.04864.x

[57]

Kimyai-Asadi A, Jih MH. Follicular toxic effects of chimeric anti-epidermal growth factor receptor antibody cetuximab used to treat human solid tumors. Arch Dermatol. 2002;138(1):129–131. doi: 10.1001/archderm.138.1.129

[58]

Kimyai-Asadi A., Jih M.H. Follicular toxic effects of chimeric anti-epidermal growth factor receptor antibody cetuximab used to treat human solid tumors//Arch Dermatol. 2002. Vol. 138, N 1. Р. 129–131. doi: 10.1001/archderm.138.1.129

[59]

Li T, Perez-Soler R. Skin toxicities associated with epidermal growth factor receptor inhibitors. Target Oncol. 2009;4(2):107–119. doi: 10.1007/s11523-009-0114-0

[60]

Li T., Perez-Soler R. Skin toxicities associated with epidermal growth factor receptor inhibitors//Target Oncol. 2009. Vol. 4, N 2. Р. 107–119. doi: 10.1007/s11523-009-0114-0

[61]

Dainichi T, Tanaka M, Tsuruta N, et al. Development of multiple paronychia and periungual granulation in patients treated with gefitinib, an inhibitor of epidermal growth factor receptor. Dermatology. 2003;207(3):324–325. doi: 10.1159/000073100

[62]

Dainichi T., Tanaka M., Tsuruta N., et al. Development of multiple paronychia and periungual granulation in patients treated with gefitinib, an inhibitor of epidermal growth factor receptor//Dermatology. 2003. Vol. 207, N 3. Р. 324–325. doi: 10.1159/000073100

[63]

Lee MW, Seo CW, Kim SW, et al. Cutaneous side effects in non-small cell lung cancer patients treated with Iressa (ZD1839), an inhibitor of epidermal growth factor. Acta Derm Venereol. 2004;84(1):23–26. doi: 10.1080/00015550310005898

[64]

Lee M.W., Seo C.W., Kim S.W., et al. Cutaneous side effects in non-small cell lung cancer patients treated with Iressa (ZD1839), an inhibitor of epidermal growth factor//Acta Derm Venereol. 2004. Vol. 84, N 1. Р. 23–26. doi: 10.1080/00015550310005898

[65]

Eames T, Grabein B, Kroth J, Wollenberg A. Microbiological analysis of epidermal growth factor receptor inhibitor therapy-associated paronychia. J Eur Acad Dermatol Venereol. 2010;24(8):958–960. doi: 10.1111/j.1468-3083.2009.03516.x

[66]

Eames T., Grabein B., Kroth J., Wollenberg A. Microbiological analysis of epidermal growth factor receptor inhibitor therapy-associated paronychia//J Eur Acad Dermatol Venereol. 2010. Vol. 24, N 8. Р. 958–960. doi: 10.1111/j.1468-3083.2009.03516.x

[67]

Dueland S, Sauer T, Lund-Johansen F, et al. Epidermal growth factor receptor inhibition induces trichomegaly. Acta Oncol. 2003;42(4):345–346. doi: 10.1080/02841860310006038

[68]

Dueland S., Sauer T., Lund-Johansen F., et al. Epidermal growth factor receptor inhibition induces trichomegaly//Acta Oncol. 2003. Vol. 42, N 4. Р. 345–346. doi: 10.1080/02841860310006038

[69]

Pascual JC, Bañuls J, Belinchon I, et al. Trichomegaly following treatment with gefitinib (ZD1839). Br J Dermatol. 2004;151(5):1111–1112. doi: 10.1111/j.1365-2133.2004.06265.x

[70]

Pascual J.C., Bañuls J., Belinchon I., et al. Trichomegaly following treatment with gefitinib (ZD1839)//Br J Dermatol. 2004. Vol. 151, N 5. Р. 1111–1112. doi: 10.1111/j.1365-2133.2004.06265.x

[71]

Luu M, Lai SE, Patel J, et al. Photosensitive rash due to the epidermal growth factor receptor inhibitor erlotinib. Photodermatol Photoimmunol Photomed. 2007;23(1):42–45. doi: 10.1111/j.1600-0781.2007.00273.x.

[72]

Luu M., Lai S.E., Patel J., et al. Photosensitive rash due to the epidermal growth factor receptor inhibitor erlotinib//Photodermatol Photoimmunol Photomed. 2007. Vol. 23, N 1. Р. 42–45. doi: 10.1111/j.1600-0781.2007.00273.x

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/