Genetic determinants of atopic dermatitis

Inna P. Grebennikova , Anna V. Morrison , Tatiana E. Lipatova , Maria G. Yeremina

Russian Journal of Skin and Venereal Diseases ›› 2024, Vol. 27 ›› Issue (1) : 27 -36.

PDF (250KB)
Russian Journal of Skin and Venereal Diseases ›› 2024, Vol. 27 ›› Issue (1) : 27 -36. DOI: 10.17816/dv607439
DERMATOLOGY
review-article

Genetic determinants of atopic dermatitis

Author information +
History +
PDF (250KB)

Abstract

Atopic dermatitis is a heterogeneous disease, the pathogenesis of which is associated with mutations of genes encoding structural proteins of the epidermis, barrier enzymes and their inhibitors.

The article analyzes data from the works of various authors on the study of gene expression in atopic dermatitis, and notes the role of genes regulating innate and adaptive immune responses, as well as environmental factors inducing the disease. Recent studies indicate a key role of epigenetic changes in the development of the disease. Epigenetic modifications are mainly mediated by DNA methylation, histone acetylation and the action of specific non-coding RNAs. It has been documented that the profile of epigenetic changes in patients with atopic dermatitis differs from that observed in healthy individuals.

Understanding epigenetic changes is critical for developing personalized treatment strategies.

Keywords

atopic dermatitis / genetics / epigenetics

Cite this article

Download citation ▾
Inna P. Grebennikova, Anna V. Morrison, Tatiana E. Lipatova, Maria G. Yeremina. Genetic determinants of atopic dermatitis. Russian Journal of Skin and Venereal Diseases, 2024, 27(1): 27-36 DOI:10.17816/dv607439

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Weidinger S, Beck LA, Bieber T, et al. Atopic dermatitis. Nat Rev Dis Prim. 2018;4(1):1. doi: 10.1038/s41572-018-0001-z

[2]

Weidinger S., Beck L.A., Bieber T., et al. Atopic dermatitis // Nat Rev Dis Prim. 2018. Vol. 4, N 1. P. 1. doi: 10.1038/s41572-018-0001-z

[3]

Silverberg JI. Atopic dermatitis in adults. Med Clin North Am. 2020;104(1):157-176. EDN: QSPCPL doi: 10.1016/j.mcna.2019.08.009

[4]

Silverberg J.I. Atopic Dermatitis in Adults // Med Clin North Am. 2020. Vol. 104, N 1. P. 157-176. EDN: QSPCPL doi: 10.1016/j.mcna.2019.08.009

[5]

Olisova OY, Svitich OA, Poddubikov AV, et al. Microbiological assessment of the effectiveness of standard therapy in atopic dermatitis. Vestnik dermatologii i venerologii. 2023;99(3):44-52. EDN: PFBDNT doi: 10.25208/vdv1364

[6]

Олисова О.Ю., Свитич О.А., Поддубиков А.В., и др. Микробиологическая оценка эффективности стандартной терапии при атопическом дерматите // Вестник дерматологии и венерологии. 2023. Т. 99, № 3. С. 44-52. EDN: PFBDNT doi: 10.25208/vdv1364

[7]

Olisova OY, Svitich OA, Potapova MB, et al. The skin microbiome and atopic dermatitis: A review. Russ J Skin Venereal Dis. 2021;24(5):443-450. EDN: EAGDKX doi: 10.17816/dv80125

[8]

Олисова О.Ю., Свитич О.А., Потапова М.Б., и др. Микробиом кожи и атопический дерматит: обзор литературы // Российский журнал кожных и венерических болезней. 2021. Т. 24, № 5. С. 443-450. EDN: EAGDKX doi: 10.17816/dv80125

[9]

Schmid P, Simon D, Simon H, et al. Epidemiology, clinical features, and immunology of the “intrinsic” (non-IgE-mediated) type of atopic dermatitis (constitutional dermatitis). Allergy. 2001;56(9):841-849. EDN: AZWRPP doi: 10.1034/j.1398-9995.2001.00144.x

[10]

Schmid P., Simon D., Simon H., et al. Epidemiology, clinical features, and immunology of the “intrinsic” (non-IgE-mediated) type of atopic dermatitis (constitutional dermatitis) // Allergy. 2001. Vol. 56, N 9. P. 841-849. EDN: AZWRPP doi: 10.1034/j.1398-9995.2001.00144.x

[11]

Flohr C, Johansson SG, Wahlgren CF, et al. How atopic is atopic dermatitis? J Allergy Clin Immunol. 2004;114(1):150-158. doi: 10.1016/j.jaci.2004.04.027

[12]

Flohr C., Johansson S.G., Wahlgren C. F., et al. How atopic is atopic dermatitis? // J Allergy Clin Immunol. 2004. Vol. 114, N 1. P. 150-158. doi: 10.1016/j.jaci.2004.04.027

[13]

Kayumova LN, Baker S, Bruskin SA, et al. Modern concepts of the epigenetic mechanisms of atopic dermatitis formation. Russ J Skin Venereal Dis. 2014;(4):42-51. EDN: SKILIT

[14]

Каюмова Л.Н., Бакер С., Брускин С.А., и др. Современные представления об эпигенетических механизмах формирования атопического дерматита // Российский журнал кожных венерических болезней. 2014. № 4. С. 42-50. EDN: SKILIT

[15]

Martin MJ, Estravís M, García-Sánchez A, et al. Genetics and epigenetics of atopic dermatitis: An updated systematic review. Genes. 2020;11(4):442. EDN: AKPALK doi: 10.3390/genes11040442

[16]

Martin M.J., Estravís M., García-Sánchez A., et al. Genetics and epigenetics of atopic dermatitis: An updated systematic review // Genes. 2020. Vol. 11, N 4. P. 442. EDN: AKPALK doi: 10.3390/genes11040442

[17]

Løset M, Brown SJ, Saunes M, et al. Genetics of atopic dermatitis: From DNA sequence to clinical relevance. Dermatology. 2019;235(5):355-364. EDN: TMRSFS doi: 10.1159/000500402

[18]

Løset M., Brown S.J., Saunes M., et al. Genetics of atopic dermatitis: From DNA sequence to clinical relevance // Dermatology. 2019. Vol. 235, N 5. P. 355-364. EDN: TMRSFS doi: 10.1159/000500402

[19]

Liang Y, Chang C, Lu Q. The genetics and epigenetics of atopic dermatitis-filaggrin and other polymorphisms. Clin Rev Allergy Immunol. 2016;51(3):315-328. EDN: XQPOPF doi: 10.1007/s12016-015-8508-5

[20]

Liang Y., Chang C., Lu Q. The genetics and epigenetics of atopic dermatitis-filaggrin and other polymorphisms // Clin Rev Allergy Immunol. 2016. Vol. 51, N 3. P. 315-328. EDN: XQPOPF doi: 10.1007/s12016-015-8508-5

[21]

Samotij D, Nedoszytko B, Bartosińska J, et al. Pathogenesis of psoriasis in the “omic” era. Part I. Epidemiology, clinical manifestation, immunological and neuroendocrine disturbances. Postepy Dermatol Alergol. 2020;37(2):135-153. doi: 10.5114/ada.2020.94832

[22]

Samotij D., Nedoszytko B., Bartosińska J., et al. Pathogenesis of psoriasis in the “omic” era. Part I. Epidemiology, clinical manifestation, immunological and neuroendocrine disturbances // Postepy Dermatol Alergol. 2020. Vol. 37, N 2. P. 135-153. doi: 10.5114/ada.2020.94832

[23]

Nedoszytko B, Szczerkowska-Dobosz A, Stawczyk-Maciej M, et al. Pathogenesis of psoriasis in the “omics” era. Part II: Genetic, genomic and epigenetic changes in psoriasis. Adv Dermatol Allergol. 2020;37(3):283-298. doi: 10.5114/ada.2020.96243

[24]

Nedoszytko B., Szczerkowska-Dobosz A., Stawczyk-Maciej M., et al. Pathogenesis of psoriasis in the “omics” era. Part II: Genetic, genomic and epigenetic changes in psoriasis // Adv Dermatol Allergol. 2020. Vol. 37, N 3. P. 283-298. doi: 10.5114/ada.2020.96243

[25]

Torres T, Ferreira EO, Gonçalo M, et al. Update on atopic dermatitis. Acta Med Port. 2019;32(9):606-613. EDN: NDTIBW doi: 10.20344/amp.11963

[26]

Torres T., Ferreira E.O., Gonçalo M., et al. Update on atopic dermatitis // Acta Med. Port. 2019. Vol. 32, N 9. P. 606-613. EDN: NDTIBW doi: 10.20344/amp.11963

[27]

Larsen FS. Atopic dermatitis: A genetic-epidemiologic study in a population-based twin sample. J Am Acad Dermatol. 1993;28(5):719-723. doi: 10.1016/0190-9622(93)70099-F

[28]

Larsen F.S. Atopic dermatitis: A genetic-epidemiologic study in a population-based twin sample // J Am Acad Dermatol. 1993. Vol. 28, N 5. P. 719-723. doi: 10.1016/0190-9622(93)70099-F

[29]

Mu Z, Zhang J. The role of genetics, the environment, and epigenetics in atopic dermatitis. Adv Exp Med Biol. 2020;1253:107-140. EDN: XPHBMO doi: 10.1007/978-981-15-3449-2_4

[30]

Mu Z., Zhang J. The role of genetics, the environment, and epigenetics in atopic dermatitis // Adv Exp Med Biol. 2020. Vol. 1253. P. 107-140. EDN: XPHBMO doi: 10.1007/978-981-15-3449-2_4

[31]

Bystritskaia EP, Murashkin NN, Olisova OY, et al. Innate immune factor gene expression profiles in patients with atopic dermatitis. Med Immunol. 2023;25(5):1037-1042. EDN: UCRKHT doi: 10.15789/1563-0625-IIF-2766

[32]

Быстрицкая Е.П., Мурашкин Н.Н., Олисова О.Ю., и др. Профили экспрессии генов факторов врожденного иммунитета у пациентов с атопическим дерматитом // Медицинская иммунология. 2023. Т. 25, № 5. С. 1037-1042. EDN: UCRKHT doi: 10.15789/1563-0625-IIF-2766

[33]

Svitich O, Kudryavtseva A, Meremianina E, et al. Association SNP (-20G/A) in the DEFB1 gene with decreased expression levels of HBD-1 in patients with atopic dermatitis. Allergy. 2021;76(S110):243. EDN: GTOQWF

[34]

Svitich O., Kudryavtseva A., Meremianina E., et al. Association SNP (-20G/A) in the DEFB1 gene with decreased expression levels of HBD-1 in patients with atopic dermatitis // Allergy. 2021. Vol. 76, S110. P. 243. EDN: GTOQWF

[35]

Stemmler S, Hoffjan S. Trying to understand the genetics of atopic dermatitis. Mol Cell Probes. 2016;30(6):374-385. EDN: YWTFYF doi: 10.1016/j.mcp.2016.10.004

[36]

Stemmler S., Hoffjan S. Trying to understand the genetics of atopic dermatitis // Mol Cell Probes. 2016. Vol. 30, N 6. P. 374-385. EDN: YWTFYF doi: 10.1016/j.mcp.2016.10.004

[37]

Hoffjan S, Stemmler S. Unravelling the complex genetic background of atopic dermatitis: From genetic association results towards novel therapeutic strategies. Arch Dermatol Res. 2015;307(8):659-670. EDN: TZQAJA doi: 10.1007/s00403-015-1550-6

[38]

Hoffjan S., Stemmler S. Unravelling the complex genetic background of atopic dermatitis: From genetic association results towards novel therapeutic strategies // Arch Dermatol Res. 2015. Vol. 307, N 8. P. 659-670. EDN: TZQAJA doi: 10.1007/s00403-015-1550-6

[39]

Totté JE, van der Feltz WT, Hennekam M, et al. Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: A systematic review and meta-analysis. Br J Dermatol. 2016;175(4):687-695. doi: 10.1111/bjd.14566

[40]

Totté J.E., van der Feltz W.T., Hennekam M., et al. Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: A systematic review and meta-analysis // Br J Dermatol. 2016. Vol. 175, N 4. P. 687-695. doi: 10.1111/bjd.14566

[41]

Palmer CN, Irvine AD, Terron-Kwiatkowski A, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38(4):441-446. doi: 10.1038/ng1767

[42]

Palmer C.N., Irvine A.D., Terron-Kwiatkowski A., et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis // Nat Genet. 2006. Vol. 38, N 4. P. 441-446. doi: 10.1038/ng1767

[43]

McLean WH. Filaggrin failure-from ichthyosis vulgaris to atopic eczema and beyond. Br J Dermatol. 2016;175(Suppl. 2):4-7. doi: 10.1111/bjd.14997

[44]

McLean W.H. Filaggrin failure-from ichthyosis vulgaris to atopic eczema and beyond // Br J Dermatol. 2016. Vol. 175, Suppl. 2. P. 4-7. doi: 10.1111/bjd.14997

[45]

Brown SJ, Kroboth K, Sandilands A, et al. Intragenic copy number variation within filaggrin contributes to the risk of atopic dermatitis with a dose-dependent effect. J Invest Dermatol. 2012;132(1):98-104. doi: 10.1038/jid.2011.342

[46]

Brown S.J., Kroboth K., Sandilands A., et al. Intragenic copy number variation within filaggrin contributes to the risk of atopic dermatitis with a dose-dependent effect // J Invest Dermatol. 2012. Vol. 132, N 1. P. 98-104. doi: 10.1038/jid.2011.342

[47]

Gutowska-Owsiak D, Schaupp AL, Salimi M, et al. IL-17 downregulates filaggrin and affects keratinocyte expression of genes associated with cellular adhesion. Exp Dermatol. 2012;21(2):104-110. doi: 10.1111/j.1600-0625.2011.01412.x

[48]

Gutowska-Owsiak D., Schaupp A.L., Salimi M., et al. IL-17 downregulates filaggrin and affects keratinocyte expression of genes associated with cellular adhesion // Exp Dermatol. 2012. Vol. 21, N 2. P. 104-110. doi: 10.1111/j.1600-0625.2011.01412.x

[49]

Kawasaki H, Nagao K, Kubo A, et al. Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice. J Allergy Clin Immunol. 2012;129(6):1538-1546. doi: 10.1016/j.jaci.2012.01.068

[50]

Kawasaki H., Nagao K., Kubo A., et al. Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice // J Allergy Clin Immunol. 2012. Vol. 129, N 6. P. 1538-1546. doi: 10.1016/j.jaci.2012.01.068

[51]

Rebane A, Akdis CA. MicroRNAs: Essential players in the regulation of inflammation. J Allergy Clin Immunol. 2013;132(1):15-26. doi: 10.1016/j.jaci.2013.04.011

[52]

Rebane A., Akdis C.A. MicroRNAs: Essential players in the regulation of inflammation // J Allergy Clin Immunol. 2013. Vol. 132, N 1. P. 15-26. doi: 10.1016/j.jaci.2013.04.011

[53]

Ziyab AH, Karmaus W, Holloway JW, et al. DNA methylation of the filaggrin gene adds to the risk of eczema associated with loss-of-function variants. J Eur Acad Dermatol Venereol. 2013;27(3):420-423. doi: 10.1111/jdv.12000

[54]

Ziyab A.H., Karmaus W., Holloway J.W., et al. DNA methylation of the filaggrin gene adds to the risk of eczema associated with loss-of-function variants // J Eur Acad Dermatol Venereol. 2013. Vol. 27, N 3. P. 420-423. doi: 10.1111/jdv.12000

[55]

Knudsen TM, Rezwan FI, Jiang Y, et al. Transgenerational and intergenerational epigenetic inheritance in allergic diseases. J Allergy Clin Immunol. 2018;142(3):765-772. doi: 10.1016/j.jaci.2018.07.007

[56]

Knudsen T.M., Rezwan F.I., Jiang Y., et al. Transgenerational and intergenerational epigenetic inheritance in allergic diseases // J Allergy Clin Immunol. 2018. Vol. 142, N 3. P. 765-772. doi: 10.1016/j.jaci.2018.07.007

[57]

Legoff L, D’Cruz SC, Tevosian S, et al. Transgenerational inheritance of environmentally induced epigenetic alterations during mammalian development. Cells. 2019;8(12):1559. doi: 10.3390/cells8121559

[58]

Legoff L., D’Cruz S.C., Tevosian S., et al. Transgenerational inheritance of environmentally induced epigenetic alterations during mammalian development // Cells. 2019. Vol. 8, N 12. P. 1559. doi: 10.3390/cells8121559

[59]

Kaiser J. The epigenetics heretic. Science. 2014;343(6169):361-363. doi: 10.1126/science.343.6169.361

[60]

Kaiser J. The epigenetics heretic // Science. 2014. Vol. 343, N 6169. P. 361-363. doi: 10.1126/science.343.6169.361

[61]

Luo Y, Zhou B, Zhao M, et al. Promoter demethylation contributes to TSLP overexpression in skin lesions of patients with atopic dermatitis. Clin Exp Dermatol. 2014;39(1):48-53. doi: 10.1111/ced.12206

[62]

Luo Y., Zhou B., Zhao M., et al. Promoter demethylation contributes to TSLP overexpression in skin lesions of patients with atopic dermatitis // Clin Exp Dermatol. 2014. Vol. 39, N 1. P. 48-53. doi: 10.1111/ced.12206

[63]

Stevens ML, Zhang Z, Johansson E, et al. Disease-associated KIF3A variants alter gene methylation and expression impacting skin barrier and atopic dermatitis risk. Nat Commun. 2020;11(1): 4092. EDN: NFDKUT doi: 10.1038/s41467-020-17895-x

[64]

Stevens M.L., Zhang Z., Johansson E., et al. Disease-associated KIF3A variants alter gene methylation and expression impacting skin barrier and atopic dermatitis risk // Nat Commun. 2020. Vol. 11, N 1. P. 4092. EDN: NFDKUT doi: 10.1038/s41467-020-17895-x

[65]

Nguyen CM, Liao W. Genomic imprinting in psoriasis and atopic dermatitis: A review. J Dermatol Sci. 2015;80(2):89-93. doi: 10.1016/j.jdermsci.2015.08.004

[66]

Nguyen C.M., Liao W. Genomic imprinting in psoriasis and atopic dermatitis: A review // J Dermatol Sci. 2015. Vol. 80, N 2. P. 89-93. doi: 10.1016/j.jdermsci.2015.08.004

[67]

Lee YA, Wahn U, Kehrt R, et al. A major susceptibility locus for atopic dermatitis maps to chromosome 3q21. Nat Genet. 2000;26(4):470-473. doi: 10.1038/82625

[68]

Lee Y.A., Wahn U., Kehrt R., et al. A major susceptibility locus for atopic dermatitis maps to chromosome 3q21 // Nat Genet. 2000. Vol. 26, N 4. P. 470-473. doi: 10.1038/82625

[69]

Yu X, Wang M, Li L, et al. MicroRNAs in atopic dermatitis: A systematic review. J Cell Mol Med. 2020;24(11):5966-5972. doi: 10.1111/jcmm.15208

[70]

Yu X., Wang M., Li L., et al. MicroRNAs in atopic dermatitis: A systematic review // J Cell Mol Med. 2020. Vol. 24, N 11. P. 5966-5972. doi: 10.1111/jcmm.15208

[71]

Rebane A, Runnel T, Aab A, et al. MicroRNA-146a alleviates chronic skin inflammation in atopic dermatitis through suppression of innate immune responses in keratinocytes. J Allergy Clin Immunol. 2014;134(2):836-847.e11. doi: 10.1016/j.jaci.2014.05.022

[72]

Rebane A., Runnel T., Aab A., et al. MicroRNA-146a alleviates chronic skin inflammation in atopic dermatitis through suppression of innate immune responses in keratinocytes // J Allergy Clin Immunol. 2014. Vol. 134, N 2. P. 836-847.e11. doi: 10.1016/j.jaci.2014.05.022

[73]

Sonkoly E, Janson P, Majuri ML, et al. MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte-associated antigen 4. J Allergy Clin Immunol. 2010;126(3):520-581. doi: 10.1016/j.jaci.2010.05.045

[74]

Sonkoly E., Janson P., Majuri M.L., et al. MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte-associated antigen 4 // J Allergy Clin Immunol. 2010. Vol. 126, N 3. P. 520-581. doi: 10.1016/j.jaci.2010.05.045

[75]

Ma L, Xue H, Wang F, et al. MicroRNA-155 may be involved in the pathogenesis of atopic dermatitis by modulating the differentiation and function of T helper type 17 (Th17) cells. Clin Exp Immunol. 2015;181(1):142-149. doi: 10.1111/cei.12624

[76]

Ma L., Xue H., Wang F., et al. MicroRNA-155 may be involved in the pathogenesis of atopic dermatitis by modulating the differentiation and function of T helper type 17 (Th17) cells // Clin Exp Immunol. 2015. Vol. 181, N 1. P. 142-149. doi: 10.1111/cei.12624

[77]

Cao S, Feehley TJ, Nagler CR. The role of commensal bacteria in the regulation of sensitization to food allergens. FEBS Lett. 2014;588(22):4258-426. doi: 10.1016/j.febslet.2014.04.0266

[78]

Cao S., Feehley T.J., Nagler C.R. The role of commensal bacteria in the regulation of sensitization to food allergens // FEBS Lett. 2014. Vol. 588, N 22. P. 4258-4266. doi: 10.1016/j.febslet.2014.04.026

[79]

Sharma M, Li Y, Stoll ML, et al. The epigenetic connection between the gut microbiome in obesity and diabetes. Front Genet. 2019;(10):1329. doi: 10.3389/fgene.2019.01329

[80]

Sharma M., Li Y., Stoll M.L., et al. The epigenetic connection between the gut microbiome in obesity and diabetes // Front Genet. 2019. N 10. P. 1329. doi: 10.3389/fgene.2019.01329

[81]

Wang IJ, Chen SL, Lu TP, et al. Prenatal smoke exposure, DNA methylation, and childhood atopic dermatitis. Clin Exp Allergy. 2013;43(5):535-543. doi: 10.1111/cea.12108

[82]

Wang I.J., Chen S.L., Lu T.P., et al. Prenatal smoke exposure, DNA methylation, and childhood atopic dermatitis // Clin Exp Allergy. 2013. Vol. 43, N 5. P. 535-543. doi: 10.1111/cea.12108

[83]

Fujimaki W, Takahashi N, Ohnuma K, et al. Comparative study of regulatory T cell function of human CD25CD4 T cells from thymocytes, cord blood, and adult peripheral blood. Clin Dev Immunol. 2008;2008:305859. doi: 10.1155/2008/305859

[84]

Fujimaki W., Takahashi N., Ohnuma K., et al. Comparative study of regulatory T cell function of human CD25CD4 T cells from thymocytes, cord blood, and adult peripheral blood // Clin Dev Immunol. 2008. Vol. 2008. P. 305859. doi: 10.1155/2008/305859

[85]

Hinz D, Bauer M, Röder S, et al. Cord blood Tregs with stable FOXP3 expression are influenced by prenatal environment and associated with atopic dermatitis at the age of one year. Allergy. 2012;67(3):380-389. doi: 10.1111/j.1398-9995.2011.02767.x

[86]

Hinz D., Bauer M., Röder S., et al. Cord blood Tregs with stable FOXP3 expression are influenced by prenatal environment and associated with atopic dermatitis at the age of one year // Allergy. 2012. Vol. 67, N 3. P. 380-389. doi: 10.1111/j.1398-9995.2011.02767.x

[87]

Oh KS, Patel H, Gottschalk RA, et al. Anti-inflammatory chromatinscape suggests alternative mechanisms of glucocorticoid receptor action. Immunity. 2017;47(2):298-309. doi: 10.1016/j.immuni.2017.07.012

[88]

Oh K.S., Patel H., Gottschalk R.A., et al. Anti-inflammatory chromatinscape suggests alternative mechanisms of glucocorticoid receptor action // Immunity. 2017. Vol. 47, N 2. P. 298-309. doi: 10.1016/j.immuni.2017.07.012

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (250KB)

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/