Antibiotic therapy of acne and antibiotic resistance: State of the art

Irina O. Smirnova , Kristina D. Khazhomiya , Yanina G. Petunova , Natalia V. Shin , Olga N. Smirnova , Polina D. Ptashnikova

Russian Journal of Skin and Venereal Diseases ›› 2023, Vol. 26 ›› Issue (5) : 449 -464.

PDF
Russian Journal of Skin and Venereal Diseases ›› 2023, Vol. 26 ›› Issue (5) : 449 -464. DOI: 10.17816/dv569350
DERMATOLOGY
research-article

Antibiotic therapy of acne and antibiotic resistance: State of the art

Author information +
History +
PDF

Abstract

Acne is one of the most common dermatoses, with 117 million people diagnosed with the disease each year. Acne has a complex multifactorial genesis, including genetic predisposition and the influence of exposome factors. The direct mechanisms of the disease are associated with increased sensitivity of sebaceous glands to androgens, sebum hyperproduction, impaired keratinization at the mouth of hair follicles, and inflammation, in the induction of which Propionobacterium acnes is involved.

The treatment of acne is complex, and one of its strategies is to regulate the number and activity of P. acnes through the use of antibacterial therapy. Antibacterial drugs have been used in the treatment of acne since the 1950s. They are included in a number of clinical guidelines and expert consensus documents for the treatment of the disease. However, the use of antibacterial drugs is limited by the formation of antibiotic resistance. Antibacterial drugs resistance in acne was first noted in the 1970s and was labeled as a global problem in the 2000s. The rapid increase in antibiotic resistance has prompted the development of strategies to prevent it and limit the use of antibacterial drugs in acne.

This review presents information on the efficacy and place of antibacterial drugs in the treatment of acne, the epidemiology and mechanisms of antibiotic resistance, and strategies to overcome it. The authors consider and substantiate the effectiveness of a fixed combination of adapalene 0.1% and benzoyl peroxide 2.5%, based on the effect on the key links in the pathogenesis of acne, synergism of action and suppression of even antibiotic-resistant strains of P. acnes.

Keywords

Propionobacterium acnes / antibiotic therapy / antibiotic resistance / literature review / fixed-dose combination of adapalene 0.1% and benzoyl peroxide 2.5% / gel Effezel (Epiduo)

Cite this article

Download citation ▾
Irina O. Smirnova, Kristina D. Khazhomiya, Yanina G. Petunova, Natalia V. Shin, Olga N. Smirnova, Polina D. Ptashnikova. Antibiotic therapy of acne and antibiotic resistance: State of the art. Russian Journal of Skin and Venereal Diseases, 2023, 26(5): 449-464 DOI:10.17816/dv569350

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen H, Zhang TC, Yin XL, et al. Magnitude and temporal trend of acne vulgaris burden in 204 countries and territories from 1990 to 2019: An analysis from the global burden of disease study 2019. Br J Dermatol. 2022;186(4):673–683. doi: 10.1111/bjd.20882

[2]

Chen H., Zhang T.C., Yin X.L., et al. Magnitude and temporal trend of acne vulgaris burden in 204 countries and territories from 1990 to 2019: An analysis from the global burden of disease study 2019 // Br J Dermatol. 2022. Vol. 186, N 4. P. 673–683. doi: 10.1111/bjd.20882

[3]

Sutaria AH, Masood S, Schlessinger J. Acne Vulgaris. Treasure Island (FL): StatPearls Publishing; 2023.

[4]

Sutaria A.H., Masood S., Schlessinger J. Acne Vulgaris. Treasure Island (FL): StatPearls Publishing, 2023.

[5]

Clinical recommendations of Acne vulgar, 2021–2022, developers of the Russian Society of Dermatovenerologists and Cosmetologists, the Russian Association of Allergologists and Clinical Immunologists, the Union of Pediatricians of Russia, the National Alliance of Dermatovenerologists and Cosmetologists Approved by the Ministry of Health of the Russian Federation; 2023. (In Russ).

[6]

Акне вульгарные. Клинические рекомендации, 2021–2022 (утв. Минздравом России). Разработчики: Российское общество дерматовенерологов и косметологов, Российская ассоциация аллергологов и клинических иммунологов, Союз педиатров России, Национальный альянс дерматовенерологов и косметологов, 2023.

[7]

Baldwin HE, Ward DB. Fifty years of minocycline and its evolution: A dermatological perspective. J Drugs Dermatol. 2021;20(10):1031–1036. doi: 10.36849/JDD.6370

[8]

Baldwin H.E., Ward D.B. Fifty years of minocycline and its evolution: A dermatological perspective // J Drugs Dermatol. 2021. Vol. 20, N 10. P. 1031–1036. doi: 10.36849/JDD.6370

[9]

Coates P, Vyakrnam S, Eady EA, et al. Prevalence of antibiotic-resistant propionibacteria on the skin of acne patients: 10-year surveillance data and snapshot distribution study. Br J Dermatol. 2002;146(5):840–848. doi: 10.1046/j.1365-2133.2002.04690.x

[10]

Coates P., Vyakrnam S., Eady E.A., et al. Prevalence of antibiotic-resistant propionibacteria on the skin of acne patients: 10-year surveillance data and snapshot distribution study // Br J Dermatol. 2002. Vol. 146, N 5. P. 840–848. doi: 10.1046/j.1365-2133.2002.04690.x

[11]

Leyden JJ, McGinley KJ, Cavalieri S, et al. Propionibacterium acnes resistance to antibiotics in acne patients. J Am Acad Dermatol. 1983;8(1):41–45. doi: 10.1016/s0190-9622(83)70005-8

[12]

Leyden J.J., McGinley K.J., Cavalieri S., et al. Propionibacterium acnes resistance to antibiotics in acne patients // J Am Acad Dermatol. 1983. Vol. 8, N 1. P. 41–45. doi: 10.1016/s0190-9622(83)70005-8

[13]

Ross JI, Snelling AM, Carnegie E, et al. Antibiotic-resistant acne: Lessons from Europe. Br J Dermatol. 2003;148(3):467–478. doi: 10.1046/j.1365-2133.2003.05067.x

[14]

Ross J.I., Snelling A.M., Carnegie E., et al. Antibiotic-resistant acne: Lessons from Europe // Br J Dermatol. 2003. Vol. 148, N 3. P. 467–478. doi: 10.1046/j.1365-2133.2003.05067.x

[15]

Araviyskaya ER, Murashkin NN, Namazova-Baranova LS, Ivanov RA. Modern ideas about the pathogenesis, features of the clinical picture, diagnosis and therapeutic tactics of vulgar acne in children and adolescents. Questions Modern Pediatrics. 2020;19(6):408–419. (In Russ). doi: 10.15690/vsp.v19i6.2141

[16]

Аравийская Е.Р., Мурашкин Н.Н., Намазова-Баранова Л.С., Иванов Р.А. Современные представления о патогенезе, особенностях клинической картины, диагностике и терапевтической тактике вульгарных акне у детей и подростков // Вопросы современной педиатрии. 2020. Т. 19, № 6. С. 408–419. doi: 10.15690/vsp.v19i6.2141

[17]

Thiboutot D, Gollnick H, Bettoli V, et al.; Global Alliance To Improve Outcomes in Acne. New insights into the management of acne: An update from the Global Alliance to Improve Outcomes in Acne group. J Am Acad Dermatol. 2009;(60):1–50. doi: 10.1016/j.jaad.2009.01.019

[18]

Thiboutot D., Gollnick H., Bettoli V., et al. Global alliance to improve outcomes in acne. New insights into the management of acne: An update from the global alliance to improve outcomes in acne group // J Am Acad Dermatol. 2009. N 60. P. 1–50. doi: 10.1016/j.jaad.2009.01.019

[19]

Nast A, Dréno B, Bettoli V, et al.; European Dermatology Forum. European evidence-based (S3) guidelines for the treatment of acne. J Eur Acad Dermatol Venereol. 2012;(26):1–29. doi: 10.1111/j.1468-3083.2011.04374.x

[20]

Nast A., Dréno B., Bettoli V., et al. European dermatology forum. European evidence-based (S3) guidelines for the treatment of acne // J Eur Acad Dermatol Venereol. 2012. N 26. P. 1–29. doi: 10.1111/j.1468-3083.2011.04374.x

[21]

Thiboutot D, Dreno B, Gollnick H, et al. Global alliance to improve outcomes in acne. A call to limit antibiotic use in acne. J Drugs Dermatol. 2013;12(12):1331–1332.

[22]

Thiboutot D., Dreno B., Gollnick H., et al. Global alliance to improve outcomes in acne. A call to limit antibiotic use in acne // J Drugs Dermatol. 2013. Vol. 12, N 12. P. 1331–1332.

[23]

Walsh TR, Efthimiou J, Dréno B. Systematic review of antibiotic resistance in acne: An increasing topical and oral threat. Lancet Infect Dis. 2016;16(3):e23–33. doi: 10.1016/S1473-3099(15)00527-7

[24]

Walsh T.R., Efthimiou J., Dréno B. Systematic review of antibiotic resistance in acne: An increasing topical and oral threat // Lancet Infect Dis. 2016. Vol. 16, N 3. Р. e23–33. doi: 10.1016/S1473-3099(15)00527-7

[25]

Ozolins M, Eady EA, Avery A, et al. Randomised controlled multiple treatment comparison to provide a cost-effectiveness rationale for the selection of antimicrobial therapy in acne. Health Technol Assess. 2005;9(1):206–212. doi: 10.3310/hta9010

[26]

Ozolins M., Eady E.A., Avery A., et al. Randomised controlled multiple treatment comparison to provide a cost-effectiveness rationale for the selection of antimicrobial therapy in acne // Health Technol Assess. 2005. Vol. 9, N 1. P. 206–212. doi: 10.3310/hta9010

[27]

Algburi A, Zehm S, Netrebov V, et al. Benzoyl peroxide inhibits quorum sensing and biofilm formation by gardnerella vaginalis 14018. Infect Dis Obstet Gynecol. 2018;(2):1426109. doi: 10.1155/2018/1426109

[28]

Algburi A., Zehm S., Netrebov V., et al. Benzoyl peroxide inhibits quorum sensing and biofilm formation by gardnerella vaginalis 14018 // Infect Dis Obstet Gynecol. 2018. N 2. P. 1426109. doi: 10.1155/2018/1426109

[29]

Patrick S, McDowell A. The Propionibacteriaceae. In: Goodfellow M., Kämpfer P., Busse H.J., et al., editors. Bergey’s Manual of Systematic Bacteriology. 2nd ed. New York: Springer; 2011.

[30]

Patrick S., McDowell A. The Propionibacteriaceae. In: Goodfellow M., Kämpfer P., Busse H.J., et al., editors. Bergey’s Manual of Systematic Bacteriology. 2nd ed. New York: Springer, 2011.

[31]

Achermann Y, Goldstein EJ, Coenye T, Shirtliff ME. Propionibacterium acnes: From commensal to opportunistic biofilm-associated implant pathogen. Clin Microbiol Rev. 2014;27(3):419–440. doi: 10.1128/CMR.00092-13

[32]

Achermann Y., Goldstein E.J., Coenye T., Shirtliff M.E. Propionibacterium acnes: From commensal to opportunistic biofilm-associated implant pathogen // Clin Microbiol Rev. 2014. Vol. 27, N 3. P. 419–440. doi: 10.1128/CMR.00092-13

[33]

Aubin GG, Portillo ME, Trampuz A, Corvec S. Propionibacterium acnes, an emerging pathogen: From acne to implant-infections, from phylotype to resistance. Med Mal Infect. 2014;44(6):241–250. doi: 10.1016/j.medmal.2014.02.004

[34]

Aubin G.G., Portillo M.E., Trampuz A., Corvec S. Propionibacterium acnes, an emerging pathogen: From acne to implant-infections, from phylotype to resistance // Med Mal Infect. 2014. Vol. 44, N 6. Р. 241–250. doi: 10.1016/j.medmal.2014.02.004

[35]

Tunney MM, Patrick S, Curran MD, et al. Detection of prosthetic hip infection at revision arthroplasty by immunofluorescence microscopy and PCR amplification of the bacterial 16S rRNA gene. J Clin Microbiol. 1999;37(10):3281–3290. doi: 10.1128/JCM.37.10.3281-3290.1999

[36]

Tunney M.M., Patrick S., Curran M.D., et al. Detection of prosthetic hip infection at revision arthroplasty by immunofluorescence microscopy and PCR amplification of the bacterial 16S rRNA gene // J Clin Microbiol. 1999. Vol. 37, N 10. P. 3281–3290. doi: 10.1128/JCM.37.10.3281-3290.1999

[37]

Batten TJ, Gallacher S, Thomas WJ, et al. C. acnes in the joint, is it all just a false positive? Eur J Orthop Surg Traumatol. 2023;33(2):315–320. doi: 10.1007/s00590-021-03186-8

[38]

Batten T.J., Gallacher S., Thomas W.J., et al. C. acnes in the joint, is it all just a false positive? // Eur J Orthop Surg Traumatol. 2023. Vol. 33, N 2. P. 315–320. doi: 10.1007/s00590-021-03186-8

[39]

Xu H, Li H. Acne, the skin microbiome, and antibiotic treatment. Am J Clin Dermatol. 2019;20(3):335–344. doi: 10.1007/s40257-018-00417-3

[40]

Xu H., Li H. Acne, the skin microbiome, and antibiotic treatment // Am J Clin Dermatol. 2019. Vol. 20, N 3. P. 335–344. doi: 10.1007/s40257-018-00417-3

[41]

Unna PG. The histopathology of the diseases of the skin (translated by N. Walker). New York: Macmillan & Co; 1896.

[42]

Unna P.G. The histopathology of the diseases of the skin (translated by N. Walker). New York: Macmillan & Co, 1896.

[43]

Sabouraud H. La seborrhee grasse et la pelade. Ann Inst Pasteur Lilly. 1897;(11):134.

[44]

Sabouraud H. La seborrhee grasse et la pelade // Ann Inst Pasteur Lilly. 1897. N 11. P. 134.

[45]

Douglas HC, Gunter SE. The taxonomic position of Corynebacterium acnes. J Bacteriol. 1946;(52):15–23. doi: 10.1128/JB.52.1.15-23.1946

[46]

Douglas H.C., Gunter S.E. The taxonomic position of Corynebacterium acnes // J Bacteriol. 1946. N 52. P. 15–23. doi: 10.1128/JB.52.1.15-23.1946

[47]

McDowell A, Valanne S, Ramage G, et al. Propionibacterium acnes types I and II represent phylogenetically distinct groups. J Clin Microbiol. 2005;43(1):326–334. doi: 10.1128/JCM.43.1.326-334.2005

[48]

McDowell A., Valanne S., Ramage G., et al. Propionibacterium acnes types I and II represent phylogenetically distinct groups // J Clin Microbiol. 2005. Vol. 43, N 1. P. 326–334. doi: 10.1128/JCM.43.1.326-334.2005

[49]

McDowell A, Barnard E, Liu J, et al. Emendation of propionibacterium acnes subs P. acnes (Deiko et al., 2015) and proposal of Propionibacterium acnes type II as Propionibacterium acnes subsp. defendens subsp. nov. Int J Syst Evol Microbiol. 2016;66(12):5358–5365. doi: 10.1099/ijsem.0.001521

[50]

McDowell A., Barnard E., Liu J., et al. Emendation of propionibacterium acnes subs P. acnes (Deiko et al., 2015) and proposal of Propionibacterium acnes type II as Propionibacterium acnes subsp. defendens subsp. nov. // Int J Syst Evol Microbiol. 2016. Vol. 66, N 12. P. 5358–5365. doi: 10.1099/ijsem.0.001521

[51]

Scholz CF, Kilian M. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. Int J Syst Evol Microbiol. 2016;66(11):4422–4432. doi: 10.1099/ijsem.0.001367

[52]

Scholz C.F., Kilian M. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. // Int J Syst Evol Microbiol. 2016. Vol. 66, N 11. P. 4422–4432. doi: 10.1099/ijsem.0.001367

[53]

Alexeyev OA, Dekio I, Layton AM, et al. Why we continue to use the name Propionibacterium acnes. Br J Dermatol. 2018;179(5):1227. doi: 10.1111/bjd.17085

[54]

Alexeyev O.A., Dekio I., Layton A.M., et al. Why we continue to use the name Propionibacterium acnes // Br J Dermatol. 2018. Vol. 179, N 5. P. 1227. doi: 10.1111/bjd.17085

[55]

Barnard E, Shi B, Kang D, et al. The balance of metagenomic elements shapes the skin microbiome in acne and health. Sci Rep. 2016(6):39491. doi: 10.1038/srep39491

[56]

Barnard E., Shi B., Kang D., et al. The balance of metagenomic elements shapes the skin microbiome in acne and health // Sci Rep. 2016, N 6. P. 39491. doi: 10.1038/srep39491

[57]

Fitz-Gibbon S, Tomida S, Chiu BH, et al. Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J Invest Dermatol. 2013;133(9):2152–2160. doi: 10.1038/jid.2013.21

[58]

Fitz-Gibbon S., Tomida S., Chiu B.H., et al. Propionibacterium acnes strain populations in the human skin microbiome associated with acne // J Invest Dermatol. 2013. Vol. 133, N 9. P. 2152–2160. doi: 10.1038/jid.2013.21

[59]

Omer H, McDowell A, Alexeyev OA. Understanding the role of propionibacterium acnes in acne vulgaris: The critical importance of skin sampling methodologies. Clin Dermatol. 2017;35(2):118–129. doi: 10.1016/j.clindermatol.2016.10.003

[60]

Omer H., McDowell A., Alexeyev O.A. Understanding the role of Propionibacterium acnes in acne vulgaris: The critical importance of skin sampling methodologies // Clin Dermatol. 2017. Vol. 35, N 2. P. 118–129. doi: 10.1016/j.clindermatol.2016.10.003

[61]

Tian GX, Peng KP, Yu Y, et al. Propionic acid regulates immune tolerant properties in B Cells. J Cell Mol Med. 2022;26(10):2766–2776. doi: 10.1111/jcmm.17287

[62]

Tian G.X., Peng K.P., Yu Y., et al. Propionic acid regulates immune tolerant properties in B Cells // J Cell Mol Med. 2022. Vol. 26, N 10. P. 2766–2776. doi: 10.1111/jcmm.17287

[63]

Kao HJ, Wang YH, Keshari S, et al. Propionic acid produced by cutibacterium acnes fermentation ameliorates ultraviolet B-induced melanin synthesis. Sci Rep. 2021;11(1):11980. doi: 10.1038/s41598-021-91386-x

[64]

Kao H.J., Wang Y.H., Keshari S., et al. Propionic acid produced by Cutibacterium acnes fermentation ameliorates ultraviolet B-induced melanin synthesis // Sci Rep. 2021. Vol. 11, N 1. P. 11980. doi: 10.1038/s41598-021-91386-x

[65]

Hall JB, Cong Z, Imamura-Kawasawa Y, et al. Isolation and identification of the follicular microbiome: Implications for acne research. J Invest Dermatol. 2018;138(9):2033–2040. doi: 10.1016/j.jid.2018.02.038

[66]

Hall J.B., Cong Z., Imamura-Kawasawa Y., et al. Isolation and identification of the follicular microbiome: Implications for acne research // J Invest Dermatol. 2018. Vol. 138, N 9. P. 2033–2040. doi: 10.1016/j.jid.2018.02.038

[67]

Shu M, Wang Y, Yu J, et al. Fermentation of propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS One. 2013;8(2):e55380. doi: 10.1371/journal.pone.0055380

[68]

Shu M., Wang Y., Yu J., et al. Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant staphylococcus aureus // PLoS One. 2013. Vol. 8, N 2. Р. e55380. doi: 10.1371/journal.pone.0055380

[69]

Dréno B, Pécastaings S, Corvec S, et al. Cutibacterium acnes (propionibacterium acnes) and acne vulgaris: A brief look at the latest updates. J Eur Acad Dermatol Venereol. 2018;(32 Suppl 2):5–14. doi: 10.1111/jdv.15043

[70]

Dréno B., Pécastaings S., Corvec S., et al. Cutibacterium acnes (propionibacterium acnes) and acne vulgaris: A brief look at the latest updates // J Eur Acad Dermatol Venereol. 2018. N 32, Suppl. 2. P. 5–14. doi: 10.1111/jdv.15043

[71]

Jahns AC, Eilers H, Ganceviciene R, Alexeyev OA. Propionibacterium species and follicular keratinocyte activation in acneic and normal skin. Br J Dermatol. 2015;172(4):981–987. doi: 10.1111/bjd.13436

[72]

Jahns A.C., Eilers H., Ganceviciene R., Alexeyev O.A. Propionibacterium species and follicular keratinocyte activation in acneic and normal skin // Br J Dermatol. 2015. Vol. 172, N 4. P. 981–987. doi: 10.1111/bjd.13436

[73]

Tsai HH, Lee WR, Wang PH, et al. Propionibacterium acnes-induced iNOS and COX-2 protein expression via ROS-dependent NF-κB and AP-1 activation in macrophages. J Dermatol Sci. 2013;69(2):122–131. doi: 10.1016/j.jdermsci.2012.10.009

[74]

Tsai H.H., Lee W.R., Wang P.H., et al. Propionibacterium acnes-induced iNOS and COX-2 protein expression via ROS-dependent NF-κB and AP-1 activation in macrophages // J Dermatol Sci. 2013. Vol. 69, N 2. P. 122–131. doi: 10.1016/j.jdermsci.2012.10.009

[75]

Huang YC, Yang CH, Li TT, et al. Cell-free extracts of propionibacterium acnes stimulate cytokine production through activation of p38 MAPK and Toll-like receptor in SZ95 sebocytes. Life Sci. 2015;(139):123–131. doi: 10.1016/j.lfs.2015.07.028

[76]

Huang Y.C., Yang C.H., Li T.T., et al. Cell-free extracts of propionibacterium acnes stimulate cytokine production through activation of p38 MAPK and Toll-like receptor in SZ95 sebocytes // Life Sci. 2015. N 139. P. 123–131. doi: 10.1016/j.lfs.2015.07.028

[77]

Williams HC, Dellavalle RP, Garner S. Acne vulgaris. Lancet. 2012;379(9813):361–372. doi: 10.1016/S0140-6736(11)60321-8

[78]

Williams H.C., Dellavalle R.P., Garner S. Acne vulgaris // Lancet. 2012. Vol. 379, N 9813. P. 361–372. doi: 10.1016/S0140-6736(11)60321-8

[79]

Zhu W, Wang HL, Bu XL, et al. A narrative review of research progress on the role of NLRP3 inflammasome in acne vulgaris. Ann Transl Med. 2022;10(11):645. doi: 10.21037/atm-21-5924

[80]

Zhu W., Wang H.L., Bu X.L., et al. A narrative review of research progress on the role of NLRP3 inflammasome in acne vulgaris // Ann Transl Med. 2022. Vol. 10, N 11. P. 645. doi: 10.21037/atm-21-5924

[81]

Jahns AC, Lundskog B, Ganceviciene R, et al. An increased incidence of Propionibacterium acnes biofilms in acne vulgaris: A case-control study. Br J Dermatol. 2012;167(1):50–58. doi: 10.1111/j.1365-2133.2012.10897.x

[82]

Jahns A.C., Lundskog B., Ganceviciene R., еt al. An increased incidence of Propionibacterium acnes biofilms in acne vulgaris: A case-control study // Br J Dermatol. 2012. Vol. 167, N 1. P. 50–58. doi: 10.1111/j.1365-2133.2012.10897.x

[83]

Isard O, Knol AC, Ariès MF, et al. Propionibacterium acnes activates the IGF-1/IGF-1R system in the epidermis and induces keratinocyte proliferation. J Invest Dermatol. 2011;131(1):59–66. doi: 10.1038/jid.2010.281

[84]

Isard O., Knol A.C., Ariès M.F., et al. Propionibacterium acnes activates the IGF-1/IGF-1R system in the epidermis and induces keratinocyte proliferation // J Invest Dermatol. 2011. Vol. 131, N 1. P. 59–66. doi: 10.1038/jid.2010.281

[85]

Saint-Leger D, Bague A, Cohen E, Chivot M. A possible role for squalene in the pathogenesis of acne. I. In vitro study of squalene oxidation. Br J Dermatol. 1986;114(5):535–542. doi: 10.1111/j.1365-2133.1986.tb04060.x

[86]

Saint-Leger D., Bague A., Cohen E., Chivot M. A possible role for squalene in the pathogenesis of acne. I. In vitro study of squalene oxidation // Br J Dermatol. 1986. Vol. 114, N 5. P. 535–542. doi: 10.1111/j.1365-2133.1986.tb04060.x

[87]

Adawiyah J, Priya G, Roshidah B. Oral antibiotics in acne vulgaris: Therapeutic response over 5 years. Malays Fam Physician. 2010;5(3):130–133.

[88]

Adawiyah J., Priya G., Roshidah B. Oral antibiotics in acne vulgaris: Therapeutic response over 5 years // Malays Fam Physician. 2010. Vol. 5, N 3. P. 130–133.

[89]

Dreno B, Thiboutot D, Gollnick H, et al.; Global Alliance to Improve Outcomes in Acne. Antibiotic stewardship in dermatology: limiting antibiotic use in acne. Eur J Dermatol. 2014;24(3):330–334. doi: 10.1684/ejd.2014.2309

[90]

Dreno B., Thiboutot D., Gollnick H., et al.; Global Alliance to Improve Outcomes in Acne. Antibiotic stewardship in dermatology: Limiting antibiotic use in acne // Eur J Dermatol. 2014. Vol. 24, N 3. P. 330–334. doi: 10.1684/ejd.2014.2309

[91]

Kolli SS, Pecone D, Pona A, et al. Topical retinoids in acne vulgaris: A systematic review. Am J Clin Dermatol. 2019;20(3):345–365. doi: 10.1007/s40257-019-00423-z

[92]

Kolli S.S., Pecone D., Pona A., et al. Topical retinoids in acne vulgaris: A systematic review // Am J Clin Dermatol. 2019. Vol. 20, N 3. P. 345–365. doi: 10.1007/s40257-019-00423-z

[93]

Araviyskaya ER, Samtsov AV. Acne and rosacea. Moscow: Pharmtek; 2021. 400 р. (In Russ).

[94]

Аравийская Е.Р., Самцов А.В. Акне и розацеа. Москва: Фармтек, 2021. 400 с.

[95]

Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol. 2016;14(5):320–330. doi: 10.1038/nrmicro.2016.34

[96]

Brauner A., Fridman O., Gefen O., Balaban N.Q. Distinguishing between resistance, tolerance and persistence to antibiotic treatment // Nat Rev Microbiol. 2016. Vol. 14, N 5. P. 320–330. doi: 10.1038/nrmicro.2016.34

[97]

Tanwar J, Das S, Fatima Z, Hameed S. Multidrug resistance: An emerging crisis. Interdiscip Perspect Infect Dis. 2014;2014:541340. doi: 10.1155/2014/541340

[98]

Tanwar J., Das S., Fatima Z., Hameed S. Multidrug resistance: An emerging crisis // Interdiscip Perspect Infect Dis. 2014. Vol. 2014. P. 541340. doi: 10.1155/2014/541340

[99]

Davidson DJ, Spratt D, Liddle AD. Implant materials and prosthetic joint infection: The battle with the biofilm. EFORT Open Rev. 2019;4(11):633–639. doi: 10.1302/2058-5241.4.180095

[100]

Davidson D.J., Spratt D., Liddle A.D. Implant materials and prosthetic joint infection: The battle with the biofilm // EFORT Open Rev. 2019. Vol. 4, N 11. P. 633–639. doi: 10.1302/2058-5241.4.180095

[101]

Gollan B, Grabe G, Michaux C, Helaine S. Bacterial persisters and infection: Past, present, and progressing. Annu Rev Microbiol. 2019;(73):359–385. doi: 10.1146/annurev-micro-020518-115650

[102]

Gollan B., Grabe G., Michaux C., Helaine S. Bacterial persisters and infection: Past, present, and progressing // Annu Rev Microbiol. 2019. N 73. P. 359–385. doi: 10.1146/annurev-micro-020518-115650

[103]

Balaban NQ, Helaine S, Lewis K, et al. Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol. 2019;17(7):441–448. doi: 10.1038/s41579-019-0196-3

[104]

Balaban N.Q., Helaine S., Lewis K., et al. Definitions and guidelines for research on antibiotic persistence // Nat Rev Microbiol. 2019. Vol. 17, N 7. P. 441–448. doi: 10.1038/s41579-019-0196-3

[105]

O’Neill J. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. Rev Antimicrobial Resistance.2014(20):1–16.

[106]

O’Neill J. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations // The Review on Antimicrobial Resistance. 2014, N 20. P. 1–16.

[107]

Huemer M, Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Rep. 2020;21(12):e51034. doi: 10.15252/embr.202051034

[108]

Huemer M., Shambat S., Brugger S.D., Zinkernagel A.S. Antibiotic resistance and persistence-Implications for human health and treatment perspectives // EMBO Rep. 2020. Vol. 21, N 12. P. e51034. doi: 10.15252/embr.202051034

[109]

World Economic Forum [Internet]. The Global Risks Report. 2019. Available from: http://www3.weforum.org/docs/WEF_Global_Risks_Report_2019.pdf. Accepted: 15.08.2023.

[110]

World Economic Forum [интернет]. The Global Risks Report. 2019. Режим доступа: http://www3.weforum.org/docs/WEF_Global_Risks_Report_2019.pdf. Дата обращения: 15.08.2023.

[111]

Burtseva GN, Sergeev AY, Arzumanyan VG. Antibiotic resistance and prospects of antimicrobial therapy of acne. Immunopathol Allergol Infectol. 2017;(S1):16. (In Russ).

[112]

Бурцева Г.Н., Сергеев А.Ю., Арзуманян В.Г. Антибиотикорезистентность и перспективы противомикробной терапии акне // Иммунопатология, аллергология, инфектология. 2017. № S1. С. 16.

[113]

Murashkin NN. Antibiotic resistance P. acnes in acne therapy. Ways to solve the problem. Bulletin Dermatol Venereol. 2013;(6):128–131. (In Russ).

[114]

Мурашкин Н.Н. Антибиотикорезистентность P. acnes в терапии акне. Пути решения проблемы // Вестник дерматологии и венерологии. 2013. № 6. С. 128–131.

[115]

Aslan Kayiran M, Karadag AS, Al-Khuzaei S, et al. Antibiotic resistance in acne: Mechanisms, complications and management. Am J Clin Dermatol. 2020;21(6):813–819. doi: 10.1007/s40257-020-00556-6

[116]

Kayiran M., Karadag A.S., Al-Khuzaei S., et al. Antibiotic resistance in acne: Mechanisms, complications and management // Am J Clin Dermatol. 2020. Vol. 21, N 6. P. 813–819. doi: 10.1007/s40257-020-00556-6

[117]

Zhu T, Zhu W, Wang Q, et al. Antibiotic susceptibility of propionibacterium acnes isolated from patients with acne in a public hospital in Southwest China: Prospective cross-sectional study. BMJ Open. 2019;9(2):e022938. doi: 10.1136/bmjopen-2018-022938

[118]

Zhu T., Zhu W., Wang Q., et al. Antibiotic susceptibility of propionibacterium acnes isolated from patients with acne in a public hospital in Southwest China: Prospective cross-sectional study // BMJ Open. 2019. Vol. 9, N 2. Р. e022938. doi: 10.1136/bmjopen-2018-022938

[119]

Fan Y, Hao F, Wang W, et al. Multicenter cross-sectional observational study of antibiotic resistance and the genotypes of propionibacterium acnes isolated from Chinese patients with acne vulgaris. J Dermatol. 2016;43(4):406–413. doi: 10.1111/1346-8138.13149

[120]

Fan Y., Hao F., Wang W., et al. Multicenter cross-sectional observational study of antibiotic resistance and the genotypes of propionibacterium acnes isolated from Chinese patients with acne vulgaris // J Dermatol. 2016. Vol. 43, N 4. P. 406–413. doi: 10.1111/1346-8138.13149

[121]

Alkhawaja E, Hammadi S, Abdelmalek M, et al. Antibiotic resistant Cutibacterium acnes among acne patients in Jordan: A cross sectional study. BMC Dermatol. 2020;20(1):17. doi: 10.1186/s12895-020-00108-9

[122]

Alkhawaja E., Hammadi S., Abdelmalek M., et al. Antibiotic resistant Cutibacterium acnes among acne patients in Jordan: A cross sectional study // BMC Dermatol. 2020. Vol. 20, N 1. P. 17. doi: 10.1186/s12895-020-00108-9

[123]

Zhang N, Yuan R, Xin KZ, et al. Antimicrobial susceptibility, biotypes and phylotypes of clinical cutibacterium (formerly propionibacterium) acnes strains isolated from acne patients: An observational study. Dermatol Ther (Heidelb). 2019;9(4):735–746. doi: 10.1007/s13555-019-00320-7

[124]

Zhang N., Yuan R., Xin K.Z., et al. Antimicrobial susceptibility, biotypes and phylotypes of clinical cutibacterium (formerly propionibacterium) acnes strains isolated from acne patients: An observational study // Dermatol Ther (Heidelb). 2019. Vol. 9, N 4. P. 735–746. doi: 10.1007/S13555-019-00320-7

[125]

Dessinioti C, Katsambas A. Antibiotics and antimicrobial resistance in acne: Epidemiological trends and clinical practice considerations. Yale J Biol Med. 2022;95(4):429–443.

[126]

Dessinioti C., Katsambas A. Antibiotics and antimicrobial resistance in acne: Epidemiological trends and clinical practice considerations // Yale J Biol Med. 2022. Vol. 95, N 4. P. 429–443.

[127]

Rakhmanova SN, Yutskovsky A, Nakoryakova L. Sensitivity of the skin microflora to antibiotics in patients with acne. Pacific Med J. 2009;(1):92–94. (In Russ).

[128]

Рахманова С.Н., Юцковский А., Накорякова Л. Чувствительность микрофлоры кожи к антибиотикам у пациентов с угревой болезнью // Тихоокеанский медицинский журнал. 2009. № 1. С. 92–94.

[129]

Polyudova TV, Yaroshenko DV, Korobov VP. Biofilms of antibiotic-resistant Propionibacterium acnes and their sensitivity to antibacterial peptides of staphylococci. Antibiotics Chemotherapy. 2018;63(5-6):3–9. (In Russ).

[130]

Полюдова Т.В., Ерошенко Д.В., Коробов В.П. Биоплёнки антибиотикорезистентных Propionibacterium acnes и их чувствительность к антибактериальным пептидам стафилококков // Антибиотики и химиотерапия. 2018. Т. 63. № 5-6. С. 3–9.

[131]

Zakharova OI, Liskova BA, Mikhaleva TV, Blokhin AA. Antibiotic resistance: Evolutionary prerequisites, mechanisms, consequences. Agrarian Sci Euro-North-East. 2018;(64):13–21. (In Russ).

[132]

Захарова О.И., Лискова Б.А., Михалева Т.В., Блохин А.А. Антибиотикорезистентность: эволюционные предпосылки, механизмы, последствия // Аграрная наука Евро-Северо-Востока. 2018. № 64. С. 13–21.

[133]

Ilina TS, Romanova YM. Bacterial biofilms: The role in chronic infectious processes and the search for means to combat them. Mol Genetics Microbiol Virol. 2021;39(2):14–24. (In Russ).

[134]

Ильина Т.С., Романова Ю.М. Бактериальные биоплёнки: роль в хронических инфекционных процессах и поиск средств борьбы с ними // Молекулярная генетика, микробиология и вирусология. 2021. Т. 39, № 2. С. 14–24.

[135]

Blair JM, Webber MA, Baylay AJ, et al. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42–51. doi: 10.1038/nrmicro3380

[136]

Blair J.M., Webber M.A., Baylay A.J., et al. Molecular mechanisms of antibiotic resistance // Nat Rev Microbiol. 2015. Vol. 13, N 1. P. 42–51. doi: 10.1038/nrmicro3380

[137]

Eady EA, Ross JI, Cove JH. Multiple mechanisms of erythromycin resistance. J Antimicrob Chemother. 1990;26(4):461–465. doi: 10.1093/jac/26.4.461

[138]

Eady E.A., Ross J.I., Cove J.H. Multiple mechanisms of erythromycin resistance // J Antimicrob Chemother. 1990. Vol. 26, N 4. P. 461–465. doi: 10.1093/jac/26.4.461

[139]

Ross JI, Snelling AM, Eady EA, et al. Phenotypic and genotypic characterization of antibiotic-resistant propionibacterium acnes isolated from acne patients attending dermatology clinics in Europe, the USA, Japan and Australia. Br J Dermatol. 2001;144(2):339–346. doi: 10.1046/j.1365-2133.2001.03956.x

[140]

Ross J.I., Snelling A.M., Eady E.A., et al. Phenotypic and genotypic characterization of antibiotic-resistant Propionibacterium acnes isolated from acne patients attending dermatology clinics in Europe, the USA, Japan and Australia // Br J Dermatol. 2001. Vol. 144, N 2. P. 339–346. doi: 10.1046/j.1365-2133.2001.03956.x

[141]

Ross JI, Eady EA, Carnegie E, Cove JH. Detection of transposon Tn5432-mediated macrolide-lincosamide-streptogramin B (MLSB) resistance in cutaneous propionibacteria from six European cities. J Antimicrob Chemother. 2002;49(1):165–168. doi: 10.1093/jac/49.1.165

[142]

Ross J.I., Eady E.A., Carnegie E., Cove J.H. Detection of transposon Tn5432-mediated macrolide-lincosamide-streptogramin B (MLSB) resistance in cutaneous propionibacteria from six European cities // J Antimicrob Chemother. 2002. Vol. 49, N 1. P. 165–168. doi: 10.1093/jac/49.1.165

[143]

Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol Spectr. 2016;4(2):10.1128/microbiolspec.VMBF-0016-2015. doi: 10.1128/microbiolspec.VMBF-0016-2015

[144]

Munita J.M., Arias C.A. Mechanisms of antibiotic resistance // Microbiol Spectr. 2016. Vol. 4, N 2. P. 10.1128/microbiolspec.VMBF-0016-2015. doi: 10.1128/microbiolspec.VMBF-0016-2015

[145]

Brzuszkiewicz E, Weiner J, Wollherr A, et al. Comparative genomics and transcriptomics of propionibacterium acnes. PLoS One. 2011;6(6):e21581. doi: 10.1371/journal.pone.0021581

[146]

Brzuszkiewicz E., Weiner J., Wollherr A., et al. Comparative genomics and transcriptomics of Propionibacterium acnes // PLoS One. 2011. Vol. 6, N 6. Р. e21581. doi: 10.1371/journal.pone.0021581

[147]

Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018;9(1):522–554. doi: 10.1080/21505594.2017.1313372

[148]

Roy R., Tiwari M., Donelli G., Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action // Virulence. 2018. Vol. 9, N 1. P. 522–554. doi: 10.1080/21505594.2017.1313372

[149]

Archer NK, Mazaitis MJ, Costerton JW, et al. Staphylococcus aureus biofilms: Properties, regulation, and roles in human disease. Virulence. 2011;2(5):445–459. doi: 10.4161/viru.2.5.17724

[150]

Archer N.K., Mazaitis M.J., Costerton J.W., et al. Staphylococcus aureus biofilms: Roperties, regulation, and roles in human disease // Virulence. 2011. Vol. 2, N 5. P. 445–459. doi: 10.4161/viru.2.5.17724

[151]

Vert M, Doi Y, Hellwich KH, et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl Chem. 2012(84):377–410.

[152]

Vert M., Doi Y., Hellwich K.H., et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012) // Pure Appl Chem. 2012. N 84. P. 377–410.

[153]

Dréno B. What is new in the pathophysiology of acne, an overview. J Eur Acad Dermatol Venereol. 2017;(31 Suppl 5):8–12. doi: 10.1111/jdv.14374

[154]

Dréno B. What is new in the pathophysiology of acne, an overview // J Eur Acad Dermatol Venereol. 2017, N 31, Suppl. 5. P. 8–12. doi: 10.1111/jdv.14374

[155]

Burkhart CG, Burkhart CN. Expanding the microcomedone theory and acne therapeutics: propionibacterium acnes biofilm produces biological glue that holds corneocytes together to form plug. J Am Acad Dermatol. 2007;57(4):722–724. doi: 10.1016/j.jaad.2007.05.013

[156]

Burkhart C.G., Burkhart C.N. Expanding the microcomedone theory and acne therapeutics: Propionibacterium acnes biofilm produces biological glue that holds corneocytes together to form plug // J Am Acad Dermatol. 2007. Vol. 57, N 4. P. 722–724. doi: 10.1016/j.jaad.2007.05.013

[157]

Flemming HC, Wingender J, Szewzyk U, et al. Biofilms: An emergent form of bacterial life. Nat Rev Microbiol. 2016;14(9):563–575. doi: 10.1038/nrmicro.2016.94

[158]

Flemming H.C., Wingender J., Szewzyk U., et al. Biofilms: An emergent form of bacterial life // Nat Rev Microbiol. 2016. Vol. 14, N 9. P. 563–575. doi: 10.1038/nrmicro.2016.94

[159]

Cove JH, Holland KT. The effect of benzoyl peroxide on cutaneous micro-organisms in vitro. J Appl Bacteriol. 1983;54(3):379–382. doi: 10.1111/j.1365-2672.1983.tb02631.x

[160]

Cove J.H., Holland K.T. The effect of benzoyl peroxide on cutaneous micro-organisms in vitro // J Appl Bacteriol. 1983. Vol. 54, N 3. P. 379–382. doi: 10.1111/j.1365-2672.1983.tb02631.x

[161]

Nachin L, Loiseau L, Expert D, Barras F. SufC: An unorthodox cytoplasmic ABC/ATPase required for [Fe-S] biogenesis under oxidative stress. EMBO J. 2003;22(3):427–437. doi: 10.1093/emboj/cdg061

[162]

Nachin L., Loiseau L., Expert D., Barras F. SufC: An unorthodox cytoplasmic ABC/ATPase required for [Fe-S] biogenesis under oxidative stress // EMBO J. 2003. Vol. 22, N 3. P. 427–437. doi: 10.1093/emboj/cdg061

[163]

Lou Z, Tang Y, Song X, Wang H. Metabolomics-based screening of biofilm-inhibitory compounds against pseudomonas aeruginosa from burdock leaf. Molecules. 2015;20(9):16266–16277. doi: 10.3390/molecules200916266

[164]

Lou Z., Tang Y., Song X., Wang H. Metabolomics-based screening of biofilm-inhibitory compounds against pseudomonas aeruginosa from burdock leaf // Molecules. 2015. Vol. 20, N 9. P. 16266–16277. doi: 10.3390/molecules200916266

[165]

Kuczyńska-Wiśnik D, Matuszewska E, Furmanek-Blaszk B, et al. Antibiotics promoting oxidative stress inhibit formation of Escherichia coli biofilm via indole signalling. Res Microbiol. 2010;161(10):847–853. doi: 10.1016/j.resmic.2010.09.012

[166]

Kuczyńska-Wiśnik D., Matuszewska E., Furmanek-Blaszk B., et al. Antibiotics promoting oxidative stress inhibit formation of Escherichia coli biofilm via indole signalling // Res Microbiol. 2010. Vol. 161, N 10. P. 847–853. doi: 10.1016/j.resmic.2010.09.012

[167]

Panther EJ, Hao KA, Wright JO, et al. Techniques for decreasing bacterial load for open shoulder surgery. JBJS Rev. 2022;10(11). doi: 10.2106/JBJS.RVW.22.00141

[168]

Panther E.J., Hao K.A., Wright J.O., et al. Techniques for decreasing bacterial load for open shoulder surgery // JBJS Rev. 2022. Vol. 10, N 11. doi: 10.2106/JBJS.RVW.22.00141

[169]

Gollnick H, Cunliffe W, Berson D, et al. Management of acne: A report from a global alliance to improve outcomes in acne. J Am Acad Dermatol. 2003;49(1, Suppl):1–37. doi: 10.1067/mjd.2003.618

[170]

Gollnick H., Cunliffe W., Berson D., et al. Management of acne: A report from a global alliance to improve outcomes in acne // J Am Acad Dermatol. 2003. Vol. 49, N 1, Suppl. P. 1–37. doi: 10.1067/mjd.2003.618

[171]

Gollnick HP, Funke G, Kors C, et al. Efficacy of adapalene/benzoyl peroxide combination in moderate inflammatory acne and its impact on patient adherence. J Dtsch Dermatol Ges. 2015;13(6):557–565. doi: 10.1111/ddg.12613

[172]

Gollnick H.P., Funke G., Kors C., et al. Efficacy of adapalene/benzoyl peroxide combination in moderate inflammatory acne and its impact on patient adherence // J Dtsch Dermatol Ges. 2015. Vol. 13, N 6. P. 557–565. doi: 10.1111/ddg.12613

[173]

Gollnick HP, Friedrich M, Peschen M, et al. Safety and efficacy of adapalene 0.1%/benzoyl peroxide 2.5% in the long-term treatment of predominantly moderate acne with or without concomitant medication: Results from the non-interventional cohort study ELANG. J Eur Acad Dermatol Venereol. 2015;(29, Suppl 4):15–22. doi: 10.1111/jdv.13194

[174]

Gollnick H.P., Friedrich M., Peschen M., et al. Safety and efficacy of adapalene 0.1% / benzoyl peroxide 2.5% in the long-term treatment of predominantly moderate acne with or without concomitant medication: Results from the non-interventional cohort study ELANG // J Eur Acad Dermatol Venereol. 2015. N 29, Suppl. 4. P. 15–22. doi: 10.1111/jdv.13194

[175]

Dreno B, Tan J, Rivier M, et al. Adapalene 0.1%/benzoyl peroxide 2.5% gel reduces the risk of atrophic scar formation in moderate inflammatory acne: A split-face randomized controlled trial. J Eur Acad Dermatol Venereol. 2017;31(4):737–742. doi: 10.1111/jdv.14026

[176]

Dreno B., Tan J., Rivier M., et al. Adapalene 0.1%/benzoyl peroxide 2.5% gel reduces the risk of atrophic scar formation in moderate inflammatory acne: A split-face randomized controlled trial // J Eur Acad Dermatol Venereol. 2017. Vol. 31, N 4. P. 737–742. doi: 10.1111/jdv.14026

[177]

Thiboutot DM, Dréno B, Abanmi A, et al. Practical management of acne for clinicians: An international consensus from the global alliance to improve outcomes in acne. J Am Acad Dermatol. 2018;78(2, Suppl 1):1–23. doi: 10.1016/j.jaad.2017.09.078

[178]

Thiboutot D.M., Dréno B., Abanmi A., et al. Practical management of acne for clinicians: An international consensus from the global alliance to improve outcomes in acne // J Am Acad Dermatol. 2018. Vol. 78, N 2, Suppl. 1. P. 1–23. doi: 10.1016/j.jaad.2017.09.078

[179]

Leyden JJ, Preston N, Osborn C, Gottschalk RW. In-vivo effectiveness of adapalene 0.1%/benzoyl peroxide 2.5% gel on antibiotic-sensitive and resistant propionibacterium acnes. J Clin Aesthet Dermatol. 2011;4(5):22–26.

[180]

Leyden J.J., Preston N., Osborn C., Gottschalk R.W. In-vivo effectiveness of adapalene 0.1%/benzoyl peroxide 2.5% gel on antibiotic-sensitive and resistant propionibacterium acnes // J Clin Aesthet Dermatol. 2011. Vol. 4, N 5. P. 22–26.

[181]

Meister H, Silverberg N. The potential role for phage therapy for genetic modification of cutaneous diseases. Clin Dermatol. 2022;40(4):383–387. doi: 10.1016/j.clindermatol.2022.02.011

[182]

Meister H., Silverberg N. The potential role for phage therapy for genetic modification of cutaneous diseases // Clin Dermatol. 2022. Vol. 40, N 4. P. 383–387. doi: 10.1016/j.clindermatol.2022.02.011

[183]

Castillo DE, Nanda S, Keri JE. Propionibacterium (cutibacterium) acnes bacteriophage therapy in acne: Current evidence and future perspectives. Dermatol Ther (Heidelb). 2019;9(1):19–31. doi: 10.1007/s13555-018-0275-9

[184]

Castillo D.E., Nanda S., Keri J.E. Propionibacterium (Cutibacterium) acnes bacteriophage therapy in acne: Current evidence and future perspectives // Dermatol Ther (Heidelb). 2019. Vol. 9, N 1. P. 19–31. doi: 10.1007/s13555-018-0275-9

[185]

Cebrián R, Arévalo S, Rubiño S, et al. Control of Propionibacterium acnes by natural antimicrobial substances: Role of the bacteriocin AS-48 and lysozyme. Sci Rep. 2018;8(1):11766. doi: 10.1038/s41598-018-29580-7

[186]

Cebrián R., Arévalo S., Rubiño S., et al. Control of propionibacterium acnes by natural antimicrobial substances: Role of the bacteriocin as-48 and lysozyme // Sci Rep. 2018. Vol. 8, № 1. P. 11766. doi: 10.1038/s41598-018-29580-7

[187]

Ryu S, Han HM, Song PI, et al. Suppression of propionibacterium acnes infection and the associated inflammatory response by the antimicrobial peptide p5 in mice. PLoS One. 2015;10(7):e0132619. doi: 10.1371/journal.pone.0132619

[188]

Ryu S., Han H.M., Song P.I., et al. Suppression of propionibacterium acnes infection and the associated inflammatory response by the antimicrobial peptide P5 in mice // PLoS One. 2015. Vol. 10, N 7. Р. e0132619. doi: 10.1371/journal.pone.0132619

[189]

Schmidt NW, Agak GW, Deshayes S, et al. Pentobra: A potent antibiotic with multiple layers of selective antimicrobial mechanisms against propionibacterium acnes. J Invest Dermatol. 2015;135(6):1581–1589. doi: 10.1038/jid.2015.40

[190]

Schmidt N.W., Agak G.W., Deshayes S., et al. Pentobra: A potent antibiotic with multiple layers of selective antimicrobial mechanisms against propionibacterium acnes // J Invest Dermatol. 2015. Vol. 135, N 6. P. 1581–1589. doi: 10.1038/jid.2015.40

[191]

McInturff JE, Wang SJ, Machleidt T, et al. Granulysin-derived peptides demonstrate antimicrobial and anti-inflammatory effects against propionibacterium acnes. J Invest Dermatol. 2005;125(2):256–263. doi: 10.1111/j.0022-202X.2005.23805.x

[192]

McInturff J.E., Wang S.J., Machleidt T., et al. Granulysin-derived peptides demonstrate antimicrobial and anti-inflammatory effects against propionibacterium acnes // J Invest Dermatol. 2005. Vol. 125, N 2. P. 256–263. doi: 10.1111/j.0022-202X.2005.23805.x

[193]

Songca SP, Adjei Y. Applications of antimicrobial photodynamic therapy against bacterial biofilms. Int J Mol Sci. 2022;23(6):3209. doi: 10.3390/ijms23063209

[194]

Songca S.P., Adjei Y. Applications of antimicrobial photodynamic therapy against bacterial biofilms // Int J Mol Sci. 2022. Vol. 23, N 6. P. 3209. doi: 10.3390/ijms23063209

[195]

Qi M, Chi M, Sun X, et al. Novel nanomaterial-based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases. Int J Nanomedicine. 2019;(14):6937–6956. doi: 10.2147/IJN.S212807

[196]

Qi M., Chi M., Sun X., et al. Novel nanomaterial-based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases // Int J Nanomedicine. 2019. N 14. Р. 6937–6956. doi: 10.2147/IJN.S212807

[197]

Ito Y, Amagai M. Controlling skin microbiome as a new bacteriotherapy for inflammatory skin diseases. Inflamm Regen. 2022;42(1):26. doi: 10.1186/s41232-022-00212-y

[198]

Ito Y., Amagai M. Controlling skin microbiome as a new bacteriotherapy for inflammatory skin diseases // Inflamm Regen. 2022. Vol. 42, N 1. P. 26. doi: 10.1186/s41232-022-00212-y

[199]

Perin B, Addetia A, Qin X. Transfer of skin microbiota between two dissimilar autologous microenvironments: A pilot study. PLoS One. 2019;14(12):e0226857. doi: 10.1371/journal.pone.0226857

[200]

Perin B., Addetia A., Qin X. Transfer of skin microbiota between two dissimilar autologous microenvironments: A pilot study // PLoS One. 2019. Vol. 14, N 12. P. e0226857. doi: 10.1371/journal.pone.0226857

[201]

Lee YB, Byun EJ, Kim HS. Potential role of the microbiome in acne: A comprehensive review. J Clin Med. 2019;8(7):987. doi: 10.3390/jcm8070987

[202]

Lee Y.B., Byun E.J., Kim H.S. Potential role of the microbiome in acne: A comprehensive review // J Clin Med. 2019. Vol. 8, N 7. P. 987. doi: 10.3390/jcm8070987

Funding

ООО «ГАЛДЕРМА»GALDERMA

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

174

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/