Invasive capacity and proliferative activity of cutaneous melanoma and the epigenetic factor

M. B Aksenenko , Tatyana G. Ruksha

Russian Journal of Skin and Venereal Diseases ›› 2014, Vol. 17 ›› Issue (5) : 4 -8.

PDF
Russian Journal of Skin and Venereal Diseases ›› 2014, Vol. 17 ›› Issue (5) : 4 -8. DOI: 10.17816/dv36881
Articles
research-article

Invasive capacity and proliferative activity of cutaneous melanoma and the epigenetic factor

Author information +
History +
PDF

Abstract

The invasive capacity and proliferative activity of the tumor are evaluated by immunohistochemical measurement of N-cadherin and Ki-67 expression in patients with cutaneous melanoma with and without BRAF oncogene V600E mutation. The B-Raf is a serine/threonine kinase involved in the Ras-Raf-MEK-MAPK signal pathway. This signal cascade normally regulates the cell proliferation andfunctioning, controlled by growth factors and hormones. The BRAF gene mutation is detected in 40-60% melanomas, predominantly in the tumors located in the closed parts of the body. The expression of N-cadherin is liable to increase in BRAF+ patients, this, in turn, presumably indicating more marked invasive characteristics of tumors in this patient population. The expression of Ki-67 virtually does not differ in patients with different BRAF status (p>0.05), this indicating no differences in the proliferative activity in these patients.

Keywords

Ki-67 / melanoma / cell proliferation / tumor invasion / N-cadherin

Cite this article

Download citation ▾
M. B Aksenenko, Tatyana G. Ruksha. Invasive capacity and proliferative activity of cutaneous melanoma and the epigenetic factor. Russian Journal of Skin and Venereal Diseases, 2014, 17(5): 4-8 DOI:10.17816/dv36881

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kashima T., Nakamura K., Kawaguchi J., Takanashi M., Ishida T., Aburatani H., et al. Overexpression of cadherins suppresses pulmonary metastasis of osteosarcoma in vivo. Int. J. Cancer. 2003; 104(2): 147-54.

[2]

Hazan R.B., Qiao R., Keren R., Badano I., Suyama K. Cadherin switch in tumor progression. Ann. NY Acad. Sci. 2004; 1014: 155-63.

[3]

Haass N.K., Herlyn M. Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J. Investig. Dermatol. Symp. Proc. 2005; 10(2): 153-63.

[4]

Bonitsis N., Batistatou A., Karantima S., Charalabopoulos K. The role of cadherin/catenin complex in malignant melanoma. Exp. Oncol. 2006; 28(3):187-93.

[5]

Grass C., Herlyn M. Role of cadherins and matrixins in melanoma. Curr. Opin. Oncol. 2001; 13(2): 117-23.

[6]

Rogers C.D., Saxena A., Bronner M.E. Sip1 mediates an E-cadherin-to-N-cadherin switch during cranial neural crest EMT. J. Cell Biol. 2013; 203(5): 835-47.

[7]

Nakajima S., Doi R., Toyoda E., Tsuji S., Wada M., Koizumi M., et al. N-Cadherin expression and epithelial-mesenchymal transition in pancreatic carcinoma. Clin. Cancer Res. 2004; 10 (12, Pt 1): 4125-33.

[8]

Freeman A.K., Ritt D.A., Morrison D.K. Effects of Raf dimerization and its inhibition on normal and disease-associated Raf signaling. Mol. Cell. 2013; 49(4):751-8.

[9]

Damsky W.E., Curley D.R., Santhanakrishnan M., Rosenbaum L.E., Platt J.T., Gould Rothberg B.E. B-catenin signaling controls metastasis in braf-activated pten-deficient melanomas. Cancer Cell. 2011; 20(6): 741-54.

[10]

Florenes V.A., Maelandsmo G.M., Faye R., Nesland J.M., Holm R. Cyclin A expression in superficial spreading malignant melanomas correlates with clinical outcome. J. Pathol. 2001; 195(5): 530-6.

[11]

Ohsie S.J., Sarantopoulos G.P., Cochran A.J. , Binder S.W. Immunohistochemical characteristics of melanoma. J. Cutan. Pathol. 2008; 35(5): 433-44.

[12]

Ilmonen S., Vaheri A., Asko-Seljavaara S., Carpen O. Ezrin in primary cutaneous melanoma. Mod. Pathol. 2005; 18 (4): 503-510.

[13]

Ben-Izhak O., Bar-Chana M., Sussman L., Dobiner V., Sandbank J., Cagnano M., et al. Ki67 antigen and PCNA proliferation markers predict survival in anorectal malignant melanoma. Histopathology. 2002; 41(6): 519-25.

[14]

Monaghan-Benson E., Burridge K. Mutant B-RAF regulates a Rac-dependent cadherin switch in melanoma. Oncogene. 2013; 32(40): 4836-44.

[15]

Buongiorno P., Pethe V.V., Charames G.S., Esufali S., Bapat B. Rac1 GTPase and the Rac1 exchange factor Tiam1 associate with Wnt-responsive promoters to enhance beta-catenin/TCF-dependent transcription in colorectal cancer cells. Mol. Cancer. 2008; 73(7): 1-15.

[16]

Joneson T., Bar-Sagi D. Suppression of Ras-induced apoptosis by the Rac GTPase. Mol. Cell Biol. 1999; 19(9): 5892-901.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/