The dynamics of morphological and functional changes of face neck skin at using injectables
Isita A. Khanalieva
Russian Journal of Skin and Venereal Diseases ›› 2022, Vol. 25 ›› Issue (2) : 159 -169.
The dynamics of morphological and functional changes of face neck skin at using injectables
The article deals with the issues of face and neck skin involutional changes, which are considered to be the first and easily determined signs of the body aging. Clinical studies of the effectiveness of the therapy with medicines based on hyaluronic acid, silicon and zinc are presented. Based on the presented data, the possibility of further clinical trials of pharmacological preparations used to treat the skin of the face and neck is discussed.
Of particular interest are data on the dynamics of expression of key biomarkers of skin aging in the combined use of silicon- and zinc-containing injectable drugs. The addition of zinc can enhance the effect of silicon compounds in the composition of these drugs.
Organosilicon (silanol) increases the synthesis of type III collagen and elastin and has a protective effect against photodamage of the skin. An increase in the formation of type III collagen was revealed when using silicon complexes with chitinase, while an increase in the expression of TGF-β and an increase in fibroblast proliferation were also revealed.
The use of silicon- and zinc-containing drugs is a promising, but still insufficiently studied direction of therapy for involutional changes in the skin of the face and neck. Silicon and zinc in the composition of drugs for anti-aging therapy can have a synergistic effect, affecting a number of important molecular mechanisms of skin aging.
aging / leather / therapy / silicon / zinc
| [1] |
Ilnitskiy AN, Proschaev KI, Trofimova SV. Preventive geriatrics, or anti-aging medicine. Successes Gerontology. 2015;28(3):589–592.(In Russ). |
| [2] |
Ильницкий А.Н., Прощаев К.И., Трофимова С.В. Превентивная гериатрия, или антивозрастная медицина // Успехи геронтологии. 2015. Т. 28, № 3. С. 589–592. |
| [3] |
Da Costa JP, Vitorino R, Silva GM, et al. A brief overview of aging ― theories, mechanisms and prospects for the future. Aging Res Rev. 2016;29:90–112. doi: 10.1016/j.arr.2016.06.005 |
| [4] |
Da Costa J.P., Vitorino R., Silva G.M., etal. Asynopsisonaging-theories, mechanisms and future prospects // Ageing Res Rev. 2016. Vol. 29. Р. 90–112.doi: 10.1016/j.arr.2016.06.005 |
| [5] |
KolgunenkoII. Fundamentals of gerontocosmetology. Moscow: Medicine; 1974. 222 p. |
| [6] |
Кольгуненко И.И. Основы геронтокосметологии. Москва: Медицина, 1974. 222 с. |
| [7] |
Araviyskaya ER. Skin changes in perimenopause. Principles of modern complex correction. Clin Dermatol Venereol. 2007;5(2): 97–100. (In Russ). |
| [8] |
Аравийская Е.Р. Изменения кожи в перименопаузе. Принципы современной комплексной коррекции // Клиническая дерматология и венерология. 2007.Т. 5,№ 2. С. 97–100. |
| [9] |
Kononov AV, Gorodilov RV, Manturova NE. Skin aging: mechanisms of formation and structural changes. Annals of plastic, reconstructive and aesthetic surgery. 2010;(1):88–92. (In Russ). |
| [10] |
Кононов А.В., Городилов Р.В., Мантурова Н.Е. Старение кожи: механизмы формирования и структурные изменения // Анналы пластической, реконструктивной и эстетической хирургии. 2010. № 1. С. 88–92. |
| [11] |
Smolyakova SA, Olisova OY. Correction of age-related skin changes in women using an amino acid cluster. Russ JSkin Venereal Diseases. 2015;18(2):50–57.(In Russ). |
| [12] |
Смолякова С.А., Олисова О.Ю. Коррекция возрастных изменений кожи у женщин с помощью аминокислотного кластера // Российский журнал кожных и венерических болезней. 2015. Т. 18, № 2. С. 50–57. |
| [13] |
Silina EV, Manturova NE, Morgulis NV, Stupin VA. Physiology of skin aging. Plastic Sur Aesthetic Med. 2020;(2):40–45. (In Russ). doi: 10.17116/plast.hirurgia202002140 |
| [14] |
Силина Е.В., Мантурова Н.Е., Моргулис Н.В., Ступин В.А. Физиология старения кожи // Пластическая хирургия и эстетическая медицина.2020. № 2. С. 40–45. doi: 10.17116/plast.hirurgia202002140 |
| [15] |
Zubulis KS, Makrantonaki E. Clinical aspects and molecular diagnostics of skin aging. Dermatol Wedge. 2011;29(1):3–14. doi: 10.1016/j.clindermatol.2010.07.001 |
| [16] |
Zouboulis C.C., Makrantonaki E. Clinical aspects and molecular diagnostics of skin aging // Clin Dermatol. 2011. Vol. 29, N 1. Р. 3–14.doi: 10.1016/j.clindermatol.2010.07.001 |
| [17] |
Kohl E, Steinbauer J, Landthaler M, Seimis RM. Skin aging. J Eur Acad Dermatol Venereol. 2011;25(8):873–884. doi: 10.1111/j.1468-3083.2010.03963.x |
| [18] |
Kohl E., Steinbauer J., Landthaler M., Szeimies R.M. Skin ageing // J Eur Acad Dermatol Venereol. 2011. Vol. 25, N 8. Р. 873–884. doi: 10.1111/j.1468-3083.2010.03963.x |
| [19] |
Kruglikov IL, Scherer PE. Skin aging as a mechanical phenomenon: the main weak links. Nutr Healthy Aging. 2018;4(4):291–307.doi: 10.3233/NHA-170037 |
| [20] |
Kruglikov I.L., Scherer P.E. Skin aging as a mechanical phenomenon: the main weak links // Nutr Healthy Aging. 2018. Vol. 4, N 4. Р. 291–307.doi: 10.3233/NHA-170037 |
| [21] |
Borzykh OB, Petrova MM, Schneider NA, Nasyrova RF. Problems of introduction of personalized medicine in medical cosmetology in Russia. Siberian Med Rev. 2021;(2):12–22. (In Russ). doi: 10.20333/2500136-2021-2-12-22 |
| [22] |
Борзых О.Б., Петрова М.М., Шнайдер Н.А., Насырова Р.Ф. Проблемы внедрения персонализированной медицины во врачебной косметологии в России // Сибирское медицинское обозрение. 2021. № 2. С. 12–22.doi: 10.20333/2500136-2021-2-12-22 |
| [23] |
Makrantonaki E, Zubulis KK, William J. Cunliffe science awards. Characteristics and pathomechanisms of endogenously aged skin. Dermatology. 2007;214(4):352–360. doi: 10.1159/000100890 |
| [24] |
Makrantonaki E., Zouboulis C.C., William J. Cunliffe scientific awards. Characteristics and pathomechanisms of endogenously aged skin // Dermatology. 2007. Vol. 214, N 4. Р. 352–360. doi: 10.1159/000100890 |
| [25] |
Newton VL, McConnell JK, Hibbert SA, et al. Skin aging: molecular pathology, skin remodeling and a revolution in imaging. G Ital Dermatol Venerol. 2015;150(6):665–674. |
| [26] |
Newton V.L., Mcconnell J.C., Hibbert S.A., et al. Skin aging: molecular pathology, dermal remodelling and the imaging revolution // G Ital Dermatol Venereol. 2015. Vol. 150, N 6. Р. 665–674. |
| [27] |
Zhang S, Duan E. The fight against skin aging: the path from the bench to the patient’s bed. Cell Transplantation. 2018;27(5):729–738. doi: 10.1177/0963689717725755 |
| [28] |
Zhang S., Duan E. Fighting against skin aging: the way from bench to bedside // Cell Transplant. 2018. Vol. 27, N 5. Р. 729–738. doi: 10.1177/0963689717725755 |
| [29] |
Bonte F, Girard D, Archambault JK, Demulier A. Skin changes during aging. Subcellular Biochemistry. 2019;91:249–280. doi: 10.1007/978-981-13-3681-2-10 |
| [30] |
Bonté F., Girard D., Archambault J.C., Desmoulière A. Skin changes during ageing // SubcellBiochem. 2019. Vol. 91. Р. 249–280. doi: 10.1007/978-981-13-3681-2-10 |
| [31] |
Lowry UE. It’s written on your face: molecular and physiological consequences of skin aging. Mechanical Aging Dev. 2020;190:111315. doi: 10.1016/j.mad.2020.111315 |
| [32] |
Lowry W.E. Its written all over your face: the molecular and physiological consequences of aging skin // Mech Ageing Dev. 2020. Vol. 190. Р. 111315. doi: 10.1016/j.mad.2020.111315 |
| [33] |
Ahmed MS, Ikram S, Bibi N, Mir A. Hutchinson-Guilford progeria syndrome: the disease of premature aging. Mole Neurobiol. 2018;55(5):4417–4427. doi: 10.1007/s12035-017-0610-7 |
| [34] |
Ahmed M.S., Ikram S., Bibi N., Mir A. Hutchinson-Gilford progeria syndrome: a premature aging disease // Mol Neurobiol. 2018. Vol. 55, N 5. Р. 4417–4427. doi: 10.1007/s12035-017-0610-7 |
| [35] |
Puizina-Ivich N. Skin aging. Acta Dermatovenerol Alp Pannonica Adriat. 2008;17(2):47–54. |
| [36] |
Puizina-Ivić N. Skin aging // Acta Dermatovenerol Alp Pannonica Adriat. 2008. Vol. 17, N 2. Р. 47–54. |
| [37] |
Tseluiko SS, Malyuk EA, Korneeva LS, Krasavina NP. Morphofunctional characteristics of the dermis of the skin and its changes during aging (literature review). Bulletin Physiology Pathology Respiration. 2016;(60):111–116. (In Russ). |
| [38] |
Целуйко С.С., Малюк Е.А., Корнеева Л.С., Красавина Н.П. Морфофункциональная характеристика дермы кожи и ее изменения при старении (обзор литературы) // Бюллетень физиологии и патологии дыхания. 2016. № 60. С. 111–116. |
| [39] |
Kostyaeva MG, Kastro IV, Eremina IZ. Some morphological aspects of skin aging. Morphology. 2020;157(2-3):110. (In Russ). |
| [40] |
Костяева М.Г., Кастыро И.В., Еремина И.З. Некоторые морфологические аспекты старения кожи // Морфология. 2020. Т. 157, № 2-3. С. 110. |
| [41] |
Omurzakova AT, Izranov VA. Age-related changes in facial skin (literature review and results of own research). Bulletin New Med Technol. 2020;27(1):105–109. (In Russ). doi: 10.24411/1609-2163-2020-16621 |
| [42] |
Омурзакова А.Т., Изранов В.А. Возрастные изменения кожи лица (обзор литературы и результаты собственных исследований) // Вестник новых медицинских технологий. 2020. Т. 27, № 1. С. 105–109. doi: 10.24411/1609-2163-2020-16621 |
| [43] |
Naylor EK, Watson RE, Sherratt MJ. Molecular aspects of skin aging. Maturitas. 2011;69(3):249–256. doi: 10.1016/j.maturitas.2011.04.011 |
| [44] |
Naylor E.C., Watson R.E., Sherratt M.J.Molecular aspects of skin ageing // Maturitas. 2011. Vol. 69, N 3. Р. 249–256. doi: 10.1016/j.maturitas.2011.04.011 |
| [45] |
Olisova OY, Vladimirova EV, Babushkin AM. Skin and sun. Russ J Skin Venereal Diseases. 2012;(6):57–62. (In Russ). |
| [46] |
Олисова О.Ю., Владимирова Е.В., Бабушкин А.М. Кожа и солнце // Российский журнал кожных и венерических болезней. 2012. № 6. С. 57–62. |
| [47] |
Araviyskaya ER, Sokolovsky EV. Photoprotection in modern dermatology and cosmetology: classical ideas and new information. Bulletin Dermatol Venereol. 2013;(3):114–118. (In Russ). |
| [48] |
Аравийская Е.Р., Соколовский Е.В. Фотопротекция в современной дерматологии и косметологии: классические представления и новые сведения // Вестник дерматологии и венерологии. 2013. № 3. С. 114–118. |
| [49] |
Gu Y, Han J, Jiang K, Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Aging Res Rev. 2020;59:101036. doi: 10.1016/j.arr.2020.101036 |
| [50] |
Gu Y., Han J., Jiang C., Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging // Ageing Res Rev. 2020. Vol. 59. Р. 101036. doi: 10.1016/j.arr.2020.101036 |
| [51] |
Trautinger F, Mazzucco K, Knobler RM, et al. UVA- and UVB-induced changes in the collagen of the skin of hairless mice. Arch Dermatol Res. 1994;286(8):490–494. doi: 10.1007/BF00371578 |
| [52] |
Trautinger F., Mazzucco K., Knobler R.M., et al. UVA- and UVB-induced changes in hairless mouse skin collagen // Arch Dermatol Res. 1994. Vol. 286, N 8. Р. 490–494. doi: 10.1007/BF00371578 |
| [53] |
Cohen R. Skin antioxidants: their role in aging and oxidative stress – new approaches to their assessment. Biomedical Pharmacotherapy. 1999;53(4):181–192. doi: 10.1016/S0753-3322(99)80087-0 |
| [54] |
Kohen R. Skin antioxidants: their role in aging and in oxidative stress ― new approaches for their evaluation // Biomed Pharmacother. 1999. Vol. 53, N 4. Р. 181–192. doi: 10.1016/S0753-3322(99)80087-0 |
| [55] |
Lefart ED. Skin aging and oxidative stress: anti-aging effects of Equol through biochemical and molecular mechanisms. Aging Res Rev. 2016;31:36–54. doi: 10.1016/j.arr.2016.08.001 |
| [56] |
Lephart E.D. Skin aging and oxidative stress: Equol’s anti-aging effects via biochemical and molecular mechanisms // Ageing Res Rev. 2016. Vol. 31. Р. 36–54. doi: 10.1016/j.arr.2016.08.001 |
| [57] |
Wang Y, Wang L, Wen H, et al. Transmission of NF-kB signals during skin aging. MechAgingDev. 2019;184:111160. doi: 10.1016/j.mad.2019.111160 |
| [58] |
Wang Y., Wang L., Wen X., et al. NF-κB signaling in skin aging // Mech Ageing Dev. 2019. Vol. 184. Р. 111160. doi: 10.1016/j.mad.2019.111160 |
| [59] |
Batti S, Jitsukawa S, Bernerd F, et al. A new understanding of photoaging, damage caused by UV radiation, and skin types. Exp Dermatol. 2014;23(Suppl 1):7–12. doi: 10.1111/exd.12388 |
| [60] |
Battie C., Jitsukawa S., Bernerd F., et al. New insights in photoaging, UVA induced damage and skin types // Exp Dermatol. 2014. Vol. 23, Suppl 1. Р. 7–12. doi: 10.1111/exd.12388 |
| [61] |
Gerasimchuk M, Cherkasova V, Kovalchuk O, Kovalchuk I. The role of microRNAs in the aging of the body and skin. Int J Mol Sci. 2020;21(15):5281. doi: 10.3390/ijms21155281 |
| [62] |
Gerasymchuk M., Cherkasova V., Kovalchuk O., Kovalchuk I. The role of microRNAs in organismal and skin aging // Int J Mol Sci. 2020. Vol. 21, N 15. Р. 5281. doi: 10.3390/ijms21155281 |
| [63] |
Rek K, Tigges J, Sass S, et al. miR-23a-3p causes cellular aging by acting on hyaluronan synthase 2: possible effect on skin aging. J Invest Dermatol. 2015;135(2):369–377. doi: 10.1038/jid.2014.422 |
| [64] |
Röck K., Tigges J., Sass S., et al. miR-23a-3p causes cellular senescence by targeting hyaluronan synthase 2: possible implication for skin aging // J Invest Dermatol. 2015. Vol. 135, N 2. Р. 369–377. doi: 10.1038/jid.2014.422 |
| [65] |
Fiedler J, Granniger E, Pfanne A, et al. Identification of miR-126 as a new skin aging regulator. ExpDermatol. 2017;26(3):284–286. doi: 10.1111/exd.13173 |
| [66] |
Fiedler J., Grönniger E., Pfanne A., et al. Identification of miR-126 as a new regulator of skin ageing // Exp Dermatol. 2017. Vol. 26, N 3. Р. 284–286. doi: 10.1111/exd.13173 |
| [67] |
Farrar MD. Advanced glycation end products for aging and photoaging of the skin: what are the consequences for the function of the epidermis? Exp Dermatol. 2016;25(12):947–948. doi: 10.1111/exd.13076 |
| [68] |
Farrar M.D. Advanced glycation end products in skin ageing and photoageing: what are the implications for epidermal function? // Exp Dermatol. 2016. Vol. 25, N 12. Р. 947–948.doi: 10.1111/exd.13076 |
| [69] |
Eassa HA, Eltokhi MA, Fayyaz HA, et al. Modern topical strategies for the treatment of aging and skin inflammation: science versus fiction. J Cosmetic Sci. 2020;71(5):321–350. |
| [70] |
Eassa H.A., Eltokhy M.A., Fayyaz H.A., et al. Current topical strategies for skin-aging and inflammaging treatment: science versus fiction // J Cosmet Sci. 2020. Vol. 71, N 5. Р. 321–350. |
| [71] |
Ansari TM, Hossein MR, Kamiya K, et al. Inflammatory molecules associated with skin aging mediated by ultraviolet radiation. Int J Mol Sci. 2021;22(8):3974.doi: 10.3390/ijms22083974 |
| [72] |
Ansary T.M., Hossain M.R., Kamiya K., et al. Inflammatory molecules associated with ultraviolet radiation-mediated skin aging // Int J Mol Sci. 2021. Vol. 22, N 8. Р. 3974. doi: 10.3390/ijms22083974 |
| [73] |
Cardoso AL, Fernandez A, Aguilar-Pimentel JA, et al. Towards biomarkers of fragility: candidates from genes and pathways regulating aging and age-related diseases. Aging Res Rev. 2018;47:214–277. doi: 10.1016/j.arr.2018.07.004 |
| [74] |
Cardoso A.L., Fernandes A., Aguilar-Pimentel J.A., et al. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases // Ageing Res Rev. 2018. Vol. 47. Р. 214–277. doi: 10.1016/j.arr.2018.07.004 |
| [75] |
Wang AS, Drizen O. Biomarkers of cellular aging and skin aging. Front Genet. 2018;9:247. doi: 10.3389/fgene.2018.00247 |
| [76] |
Wang A.S., Dreesen O. Biomarkers of cellular senescence and skin aging // Front Genet. 2018. Vol. 9. Р. 247. doi: 10.3389/fgene.2018.00247 |
| [77] |
Kim SH, Kim JH, Suk JM, et al. Identification of biomarkers of skin aging correlating with biomechanical properties. Skin Restoration Tech. 2021;27(5):940–947. doi: 10.1111/srt.13046 |
| [78] |
Kim S.H., Kim J.H., Suk J.M., et al. Identification of skin aging biomarkers correlated with the biomechanical properties // Skin Res Technol. 2021. Vol. 27, N 5. Р. 940–947. doi: 10.1111/srt.13046 |
| [79] |
Khabarov V, Zhukova I, Ivanov P, Kvetnoy I. Skin biorevitalization: molecular mechanisms of inhibition of cellular aging. Aesthetic Med. 2020;(1):13–19. (In Russ). |
| [80] |
Хабаров В., Жукова И., Иванов П., Кветной И. Биоревитализация кожи: молекулярные механизмы ингибирования клеточного старения // Эстетическая медицина. 2020. № 1. С. 13–19. |
| [81] |
Khabarov V, Zhukova I, Ivanov P, Kvetnoy I. Neuroendocrine biomarkers of skin aging in molecular cosmetology. Aesthetic Med. 2021;(1):26–35. (In Russ). |
| [82] |
Хабаров В., Жукова И., Иванов П., Кветной И. Нейроэндокринные биомаркеры старения кожи в молекулярной косметологии // Эстетическая медицина. 2021. № 1. С. 26–35. |
| [83] |
Quan T, Fisher GJ. Role of age-associated alterations of the dermal extracellular matrix microenvironment in human skin aging: a mini-review. Gerontology. 2015;61(5):427–434. doi: 10.1159/000371708 |
| [84] |
Quan T., Fisher G.J. Role of age-associated alterations of the dermal extracellular matrix microenvironment in human skin aging: a mini-review // Gerontology. 2015. Vol. 61, N 5. Р. 427–434. doi: 10.1159/000371708 |
| [85] |
Nigdelioglu R, Hamanaka RB, Meliton AY, et al. Transforming growth factor (TGF)-βpromotes de novo serine synthesis for collagen production. J Biol Chem. 2016;291(53):27239–27251. doi: 10.1074/jbc.M116.756247 |
| [86] |
Nigdelioglu R., Hamanaka R.B., Meliton A.Y., et al. Transforming growth factor (TGF)-βpromotes de novo serine synthesis for collagen production // J Biol Chem. 2016. Vol. 291, N 53. Р. 27239–27251. doi: 10.1074/jbc.M116.756247 |
| [87] |
Gutop EO, Dyatlova AS, Linkova NS, et al. Aging of skin fibroblasts: genetic and epigenetic factors. Successes Gerontology. 2019;32(6):908–914. (In Russ). |
| [88] |
Гутоп Е.О., Дятлова А.С., Линькова Н.С., и др. Старение фибробластов кожи: генетические и эпигенетические факторы // Успехи геронтологии. 2019. Т. 32, № 6. С. 908–914. |
| [89] |
Zhuang Y, Lyga J. Inflammaging in skin and other tissues ― the roles of complement system and macrophage. Inflamm Allergy Drug Targets. 2014;13(3):153–161. doi: 10.2174/1871528113666140522112003 |
| [90] |
Zhuang Y., Lyga J. Inflammaging in skin and other tissues ― the roles of complement system and macrophage // Inflamm Allergy Drug Targets. 2014. Vol. 13, N 3. Р. 153–161. doi: 10.2174/1871528113666140522112003 |
| [91] |
Khabarov VN, Rodichkina VN, Fingers MA. Molecular cosmetology. Signaling mechanisms of skin aging, targeted prevention and therapy. Moscow: Eco-Vector; 2021. 191 p. |
| [92] |
Хабаров В.Н., Родичкина В.Н., Пальцев М.А. Молекулярная косметология. Сигнальные механизмы старения кожи, таргетная профилактика и терапия. Москва: Эко-Вектор, 2021. 191 с. |
| [93] |
Shin JW, Kwon SH, Choi JY, et al. Molecular mechanisms of dermal aging and antiaging approaches. Int J Mol Sci. 2019;20(9):2126. doi: 10.3390/ijms20092126 |
| [94] |
Shin J.W., Kwon S.H., Choi J.Y., et al. Molecular mechanisms of dermal aging and antiaging approaches // Int J Mol Sci. 2019 29. Vol. 20, N 9. Р. 2126. doi: 10.3390/ijms20092126 |
| [95] |
Birchall JD. The essentiality of silicon in biology. Chem Soc Rev. 1995;24:351–357. |
| [96] |
Birchall J.D. The essentiality of silicon in biology // Chem Soc Rev. 1995. Vol. 24. Р. 351–357. |
| [97] |
Jurkic LM, Cepanec I, Pavelic SK, Pavelic K. Biological and therapeutic effects of orthosilicic acid and some orthosilicic acid-releasing compounds: new perspectives for therapy. Nutr Metab. 2013;10(1):2. doi: 10.1186/1743-7075-10-2 |
| [98] |
Jurkic L.M., Cepanec I., Pavelic S.K., Pavelic K. Biological and therapeutic effects of orthosilicic acid and some orthosilicic acid-releasing compounds: new perspectives for therapy // Nutr Metab. 2013. Vol. 10, N 1. Р. 2. doi: 10.1186/1743-7075-10-2 |
| [99] |
Jugdaohsingh R, Calomme MR, Robinson K, et al. Increased longitudinal growth in rats on a silicon-depleted diet. Bone. 2008;43(3):596–606. doi: 10.1016/j.bone.2008.04.014 |
| [100] |
Jugdaohsingh R., Calomme M.R., Robinson K., et al. Increased longitudinal growth in rats on a silicon-depleted diet // Bone. 2008. Vol. 43, N 3. Р. 596–606. doi: 10.1016/j.bone.2008.04.014 |
| [101] |
Jugdaohsingh R, Tucker KL, Qiao N, et al. Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort. J Bone Miner Res. 2004;19(2):297–307. doi: 10.1359/JBMR.0301225 |
| [102] |
Jugdaohsingh R., Tucker K.L., Qiao N., et al. Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort // J Bone Miner Res. 2004. Vol. 19, N 2. Р. 297–307. doi: 10.1359/JBMR.0301225 |
| [103] |
Kalil CL, Campos V, Cignachi S, et al. Evaluation of cutaneous rejuvenation associated with the use of ortho-silicic acid stabilized by hydrolyzed marine collagen. J Cosmet Dermatol. 2018;17(5): 814–820. doi: 10.1111/jocd.12430 |
| [104] |
Kalil C.L., Campos V., Cignachi S., et al. Evaluation of cutaneous rejuvenation associated with the use of ortho-silicic acid stabilized by hydrolyzed marine collagen // J Cosmet Dermatol. 2018. Vol. 17, N 5. Р. 814–820. doi: 10.1111/jocd.12430 |
| [105] |
Bisse E, Epting T, Beil A, et al. Reference values for serum silicon in adults. Anal Biochem. 2005;337(1):130–135. doi: 10.1016/j.ab.2004.10.034 |
| [106] |
Bisse E., Epting T., Beil A., et al. Reference values for serum silicon in adults // Anal Biochem. 2005. Vol. 337, N 1. Р. 130–135.doi: 10.1016/j.ab.2004.10.034 |
| [107] |
Garneau AP, Carpentier GA, Marcoux AA, et al. Aquaporins mediate silicon transport in humans. PLoS One. 2015;10(8):e0136149.doi: 10.1371/journal.pone.0136149 |
| [108] |
Garneau A.P., Carpentier G.A., Marcoux A.A., et al. Aquaporins mediate silicon transport in humans // PLoS One. 2015. Vol. 10, N 8. Р. e0136149. doi: 10.1371/journal.pone.0136149 |
| [109] |
Li S, Li C, Wang W. Molecular aspects of aquaporins. Vitam Horm. 2020;113:129–181. doi: 10.1016/bs.vh.2019.08.019 |
| [110] |
Li S., Li C., Wang W. Molecular aspects of aquaporins // Vitam Horm. 2020. Vol. 113. Р. 129–181. doi: 10.1016/bs.vh.2019.08.019 |
| [111] |
Bollag WB, Aitkens L, White J, et al. Aquaporin-3 in the epidermis: more than skin deep. Am J Physiol Cell Physiol. 2020;318(6): C1144–C1153. doi: 10.1152/ajpcell.00075.2020 |
| [112] |
Bollag W.B., Aitkens L., White J., et al. Aquaporin-3 in the epidermis: more than skin deep // Am J Physiol Cell Physiol. 2020. Vol. 318, N 6. Р. C1144–C1153. doi: 10.1152/ajpcell.00075.2020 |
| [113] |
Hara M, Verkman AS. Glycerol replacement corrects defective skin hydration, elasticity, and barrier function in aquaporin-3-deficient mice. Proc Natl Acad Sci USA. 2003;100:7360–7365. doi: 10.1073/pnas.1230416100 |
| [114] |
Hara M., Verkman A.S. Glycerol replacement corrects defective skin hydration, elasticity, and barrier function in aquaporin-3-deficient mice // Proc Natl Acad Sci USA. 2003. Vol. 100. Р. 7360–7365. doi: 10.1073/pnas.1230416100 |
| [115] |
Seleit I, Bakry OA, El Rebey HS, et al. Is Aquaporin-3 a determinant factor of intrinsic and extrinsic aging? An immunohistochemical and morphometric study. Appl Immunohistochem Mol Morphol. 2017;25(1):49–57.doi: 10.1097/PAI.0000000000000265 |
| [116] |
Seleit I., Bakry O.A., El Rebey H.S., et al. Is Aquaporin-3 a determinant factor of intrinsic and extrinsic aging? An immunohistochemical and morphometric study // Appl Immunohistochem Mol Morphol. 2017. Vol. 25, N 1. Р. 49–57. doi: 10.1097/PAI.0000000000000265 |
| [117] |
Xie H, Zhou L, Liu F, et al. Autophagy induction regulates aquaporin 3-mediated skin fibroblasts aging. Br J Dermatol. 2021;186(2):318–333. doi: 10.1111/bjd.20662 |
| [118] |
Xie H., Zhou L., Liu F., et al. Autophagy induction regulates aquaporin 3-mediated skin fibroblasts aging // Br J Dermatol. 2021.Vol. 186, N 2.Р. 318–333. doi: 10.1111/bjd.20662 |
| [119] |
Prasad AS. Zinc: role in immunity, oxidative stress and chronic inflammation. Curr Opin Clin Nutr Metab Care. 2009;12(6):646–652. doi: 10.1097/MCO.0b013e3283312956 |
| [120] |
Prasad A.S. Zinc: role in immunity, oxidative stress and chronic inflammation // Curr Opin Clin Nutr Metab Care. 2009. Vol. 12, N 6. Р. 646–652. doi: 10.1097/MCO.0b013e3283312956 |
| [121] |
Olechnowicz J, Tinkov A, Skalny A, Suliburska J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J Physiol Sci. 2018;68(1):19–31. doi: 10.1007/s12576-017-0571-7 |
| [122] |
Olechnowicz J., Tinkov A., Skalny A., Suliburska J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism // J Physiol Sci. 2018. Vol. 68, N 1. Р. 19–31. doi: 10.1007/s12576-017-0571-7 |
| [123] |
Sharif R, Thomas P, Zalewski P, Fenech M. Zinc supplementation influences genomic stability biomarkers, antioxidant activity, and zinc transporter genes in an elderly Australian population with low zinc status. Mol Nutr Food Res. 2015;59(6):1200–1212. doi: 10.1002/mnfr.201400784 |
| [124] |
Sharif R., Thomas P., Zalewski P., Fenech M. Zinc supplementation influences genomic stability biomarkers, antioxidant activity, and zinc transporter genes in an elderly Australian population with low zinc status // Mol Nutr Food Res. 2015. Vol. 59, N 6. Р. 1200–1212.doi: 10.1002/mnfr.201400784 |
| [125] |
Deglesne PA, Arroyo R, López J, et al. In vitro study of RRSSilisorg CE Class III medical device composed of silanol: effect on human skin fibroblasts and its clinical use. Med Devices (Auckl). 2018;11:313–320. doi: 10.2147/MDER.S167078 |
| [126] |
Deglesne P.A., Arroyo R., Fidalgo López J., et al. In vitro study of RRSSilisorg CE Class III medical device composed of silanol: effect on human skin fibroblasts and its clinical use // Med Devices (Auckl). 2018 7. Vol. 11. Р. 313–320. doi: 10.2147/MDER.S167078 |
| [127] |
Fenske NA, Lober CW. Skin changes of aging: pathological implications. Geriatrics. 1990;45(3):27–35. |
| [128] |
Fenske N.A., Lober C.W. Skin changes of aging: pathological implications // Geriatrics. 1990. Vol. 45, N 3. Р. 27–35. |
| [129] |
Khabarov V, Zhukova I, Kvetnoy I. Study of the physiological role of silicon and zinc in the composition of injectable hyaluronic acid hydrogels. Aesthetic Med. 2020;(2):137–143. (In Russ). |
| [130] |
Хабаров В., Жукова И., Кветной И. Изучение физиологической роли кремния и цинка в составе инъекционных гидрогелей гиалуроновой кислоты // Эстетическая медицина. 2020. № 2. С. 137–143. |
| [131] |
Ilnitsky AN, Masnaya MV, Ismanova VD, et al. Morphotypes of skin aging as a selection criterion for programs of somato-cognitive prevention of premature aging. Modern Problems Healthcare Med Statist. 2021;(2):61–72. (In Russ). |
| [132] |
Ильницкий А.Н., Масная М.В., Исманова В.Д., и др. Морфотипы старения кожи как критерий отбора на программы сомато-когнитивной профилактики преждевременного старения // Современные проблемы здравоохранения и медицинской статистики. 2021. № 2. С. 61–72. |
Eco-Vector
/
| 〈 |
|
〉 |