Pathogenesis of psoriasis: past, present, future

Olga V. Kandalova , Dina E. Klyuchnikova , Tatyana V. Ayvazova

Russian Journal of Skin and Venereal Diseases ›› 2022, Vol. 25 ›› Issue (3) : 191 -200.

PDF
Russian Journal of Skin and Venereal Diseases ›› 2022, Vol. 25 ›› Issue (3) : 191 -200. DOI: 10.17816/dv108870
DERMATOLOGY
research-article

Pathogenesis of psoriasis: past, present, future

Author information +
History +
PDF

Abstract

Psoriasis is a common, chronic, systemic immune-mediated inflammatory disease that affects the skin, joints, and other organs and systems. Despite the fact that psoriasis is one of the most studied dermatoses, its pathogenesis has not yet been fully clarified. In recent years, the pathogenetic model leading to the formation of psoriatic papules and plaques has undergone significant changes.

This article presents a retrospective analysis of the study of the disease over the past 60 years from the generally accepted concept of epidermal dermatosis to understanding the complex interactions between keratinocytes, dendritic cells, T-lymphocytes, neutrophils and mast cells, with a significant role of interleukins (IL) 23, 17, 22,10, T-helper cells (Th) 17, 22, T-regulatory cells, transformative growth factor b1 (TGF-b1), in the pathogenesis of the disease. Targeted therapy using new biologics and small molecules, patient education, screening for comorbidities, and regular patient follow-up allow to apply a personalized approach to the patient and achieve impressive results.

Achievements in psoriasis research have led to the fact that today we are witnessing the so-called translational revolution in psoriasis therapy, consisting in the fastest possible transfer of fundamental discoveries of the field of theoretical research to the field of practical application.

Keywords

psoriasis / study history / pathogenesis / genetic factors / immunopathology

Cite this article

Download citation ▾
Olga V. Kandalova, Dina E. Klyuchnikova, Tatyana V. Ayvazova. Pathogenesis of psoriasis: past, present, future. Russian Journal of Skin and Venereal Diseases, 2022, 25(3): 191-200 DOI:10.17816/dv108870

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Boehncke WH, Schön MP. Psoriasis. Lancet. 2015;386(9997): 983–994. doi: 10.1016/S0140-6736(14)61909-7

[2]

Boehncke W.H., Schön M.P. Psoriasis // Lancet. 2015. Vol. 386, N 9997. Р. 983–994. doi: 10.1016/S0140-6736(14)61909-7

[3]

Al Qassimi S, Al Brashdi S, Galadari H, Hashim MJ. Global burden of psoriasis ― comparison of regional and global epidemiology, 1990 to 2017. Int J Dermatol. 2020;59(5):566–571. doi: 10.1111/ijd.14864

[4]

Al Qassimi S., Al Brashdi S., Galadari H., Hashim M.J. Global burden of psoriasis ― comparison of regional and global epidemiology, 1990 to 2017 // Int J Dermatol. 2020. Vol. 59, N 5. Р. 566–571. doi: 10.1111/ijd.14864

[5]

Parisi R, Iskandar IY, Kontopantelis E, et al. National, regional, and worldwide epidemiology of psoriasis: systematic analysis and modelling study. BMJ. 2020;369:m1590. doi: 10.1136/bmj.m1590

[6]

Parisi R., Iskandar I.Y., Kontopantelis E., et al. National, regional, and worldwide epidemiology of psoriasis: systematic analysis and modelling study // BMJ. 2020. Vol. 369. Р. m1590. doi: 10.1136/bmj.m1590

[7]

Griffiths CE, Barker JN. Pathogenesis and clinical features of psoriasis. Lancet. 2007;370(9583):263–271. doi: 10.1016/S0140-6736(07)61128-3

[8]

Griffiths C.E., Barker J.N. Pathogenesis and clinical features of psoriasis // Lancet. 2007. Vol. 370, N 9583. Р. 263–271. doi: 10.1016/S0140-6736(07)61128-3

[9]

Takeshita J, Grewal S, Langan SM, et al. Psoriasis and comorbid diseases: epidemiology. J Am Acad Dermatol. 2017;76(3):377–390. doi: 10.1016/j.jaad.2016.07.064

[10]

Takeshita J., Grewal S., Langan S.M., et al. Psoriasis and comorbid diseases: Epidemiology // J Am Acad Dermatol. 2017. Vol. 76, N 3. Р. 377–390. doi: 10.1016/j.jaad.2016.07.064

[11]

Gelfand JM, Neimann AL, Shin DB, et al. Risk of myocardial infarction in patients with psoriasis. JAMA. 2006;296(14):1735–1741. doi: 10.1001/jama.296.14.1735

[12]

Gelfand J.M., Neimann A.L., Shin D.B., et al. Risk of myocardial infarction in patients with psoriasis // JAMA. 2006. Vol. 296, N 14. Р. 1735–1741. doi: 10.1001/jama.296.14.1735

[13]

Ahlehoff O, Gislason GH, Jørgensen CH, et al. Psoriasis and risk of atrial fibrillation and ischaemic stroke: a Danish Nationwide Cohort Study. Eur Heart J. 2012;33(16):2054–2064. doi: 10.1093/eurheartj/ehr285

[14]

Ahlehoff O., Gislason G.H., Jørgensen C.H., et al. Psoriasis and risk of atrial fibrillation and ischaemic stroke: a Danish Nationwide Cohort Study // Eur Heart J. 2012. Vol. 33, N 16. Р. 2054–2064. doi: 10.1093/eurheartj/ehr285

[15]

Fernandez A.P. Dermatology update: the dawn of targeted treatment. Cleveland Clinic J Med. 2015;82(5):309–320. doi: 10.3949/ccjm.82gr.15002

[16]

Fernandez A.P. Dermatology update: the dawn of targeted treatment // Cleveland Clinic J Med. 2015. Vol. 82, N 5. Р. 309–320. doi: 10.3949/ccjm.82gr.15002

[17]

Weinstein GD, McCullough JL. Cytokinetics and chemotherapy of psoriasis. J Invest Dermatol. 1976;67(1):26–30. doi: 10.1111/1523-1747.ep12512476

[18]

Weinstein GD, Frost P. Abnormal cell proliferation in psoriasis. J Invest Dermatol. 1968;50(3):254–259.

[19]

Weinstein G.D., Frost P. Abnormal cell proliferation in psoriasis // J Invest Dermatol. 1968. Vol. 50, N 3. Р. 254–259.

[20]

Voorhees JJ, Duell EA, Bass LJ, et al. The cyclic AMP system in normal and psoriatic epidermis. J Invest Dermatol. 1972;59(1): 114–120. doi: 10.1111/1523-1747.ep12625885

[21]

Voorhees J.J., Duell E.A., Bass L.J., et al. The cyclic AMP system in normal and psoriatic epidermis // J Invest Dermatol. 1972. Vol. 59, N 1. Р. 114–120. doi: 10.1111/1523-1747.ep12625885

[22]

Rusin LJ, Duell EA, Voorhees JJ. Papaverine and Ro 20-1724 inhibit cyclic nucleotide phosphodiesterase activity and increase cyclic AMP levels in psoriatic epidermis in vitro. J Invest Dermatol. 1978;71(2):154–156. doi: 10.1111/1523-1747.ep12546928

[23]

Rusin L.J., Duell E.A., Voorhees J.J. Papaverine and Ro 20-1724 inhibit cyclic nucleotide phosphodiesterase activity and increase cyclic AMP levels in psoriatic epidermis in vitro // J Invest Dermatol. 1978. Vol. 71, N 2. Р. 154–156. doi: 10.1111/1523-1747.ep12546928

[24]

Nast A, Jacobs A, Rosumeck S, Werner RN. Efficacy and safety of systemic long-term treatments for moderate-to-severe psoriasis: a systematic review and meta-analysis. J Invest Dermatol. 2015;135(11):2641–2648. doi: 10.1038/jid.2015.206

[25]

Nast A., Jacobs A., Rosumeck S., Werner R.N. Efficacy and safety of systemic long-term treatments for moderate-to-severe psoriasis: a systematic review and meta-analysis // J Invest Dermatol. 2015. Vol. 135, N 11. Р. 2641–2648. doi: 10.1038/jid.2015.206

[26]

Perlamutrov YN, Aivazova TV, Olkhovskaya KB, Soloviev AM. Modern possibilities of systemic therapy of psoriasis. Russ J Clin Dermatology Venereology. 2019;18(4):474–478. (In Russ). doi: 10.17116/klinderma201918041474

[27]

Перламутров Ю.Н., Айвазова Т.В., Ольховская К.Б., Соловьев А.М. Современные возможности системной терапии псориаза // Клиническая дерматология и венерология. 2019. Т. 18, № 4. С. 474–447. doi: 10.17116/klinderma201918041474

[28]

Brain S, Camp R, Dowd P, et al. The release of leukotriene B4-like material in biologically active amounts from the lesional skin of patients with psoriasis. J Invest Dermatol. 1984;83(1):70–73. doi: 10.1111/1523-1747.ep12261712

[29]

Brain S., Camp R., Dowd P., et al. The release of leukotriene B4-like material in biologically active amounts from the lesional skin of patients with psoriasis // J Invest Dermatol. 1984. Vol. 83, N 1. Р. 70–73. doi: 10.1111/1523-1747.ep12261712

[30]

Zhang H, Hou W, Henrot L, et al. Modelling epidermis homoeostasis and psoriasis pathogenesis. J R Soc Interface. 2015;12(103):20141071. doi: 10.1098/rsif.2014.1071

[31]

Zhang H., Hou W., Henrot L., et al. Modelling epidermis homoeostasis and psoriasis pathogenesis // J R Soc Interface. 2015. Vol. 12, N 103. Р. 20141071. doi: 10.1098/rsif.2014.1071

[32]

Kim SA, Ryu YW, Kwon JI, et al. Differential expression of cyclin D1, Ki-67, pRb, and p53 in psoriatic skin lesions and normal skin. Mol Med Rep. 2018;17(1):735–742. doi: 10.3892/mmr.2017.8015

[33]

Kim S.A., Ryu Y.W., Kwon J.I., et al. Differential expression of cyclin D1, Ki-67, pRb, and p53 in psoriatic skin lesions and normal skin // Mol Med Rep. 2018. Vol. 17, N 1. Р. 735–742. doi: 10.3892/mmr.2017.8015

[34]

Hwang YJ, Na JI, Byun SY, et al. Histone deacetylase 1 and sirtuin 1 expression in psoriatic skin: a comparison between guttate and plaque psoriasis. Life (Basel). 2020;10(9):157. doi: 10.3390/life10090157

[35]

Hwang Y.J., Na J.I., Byun S.Y., et al. Histone deacetylase 1 and sirtuin 1 expression in psoriatic skin: a comparison between guttate and plaque psoriasis // Life (Basel). 2020. Vol. 10, N 9. Р. 157. doi: 10.3390/life10090157

[36]

Zhang X, Yin M, Zhang LJ. Keratin 6, 16 and 17-critical barrier alarmin molecules in skin wounds and psoriasis. Cells. 2019;8(8):807. doi: 10.3390/cells8080807

[37]

Zhang X., Yin M., Zhang L.J. Keratin 6, 16 and 17-critical barrier alarmin molecules in skin wounds and psoriasis // Cells. 2019. Vol. 8, N 8. Р. 807. doi: 10.3390/cells8080807

[38]

Nickoloff BJ, Nickoloff BJ. The cytokine network in psoriasis. Arch Dermatol. 1991;127:871–884.

[39]

Nickoloff B.J., Nickoloff B.J. The cytokine network in psoriasis // Arch Dermatol. 1991. Vol. 127, N 6. Р. 871–884.

[40]

Uyemura K, Yamamura M, Fivenson DF, et al. The cytokine network in lesional and lesion-free psoriatic skin is characterized by a T-helper type 1 cell-mediated response. J Invest Dermatol. 1993;101(5):701–705. doi: 10.1111/1523-1747.ep12371679

[41]

Uyemura K., Yamamura M., Fivenson D.F., et al. The cytokine network in lesional and lesion-free psoriatic skin is characterized by a T-helper type 1 cell-mediated response // J Invest Dermatol. 1993. Vol. 101, N 5. Р. 701–705. doi: 10.1111/1523-1747.ep12371679

[42]

Pinegin BV, Ivanov L., Pinegin VB. The role of immune system cells and cytokines in the development of psoriasis. Russ J Skin Venereal Diseases. 2013;(3):19–25. (In Russ).

[43]

Пинегин Б.В., Иванов О.Л., Пинегин В.Б. Роль клеток иммунной системы и цитокинов в развитии псориаза // Российский журнал кожных и венерических болезней. 2013. № 3. С. 19–25.

[44]

Lynde CW, Poulin Y, Vender R, et al. Interleukin 17A: toward a new understanding of psoriasis pathogenesis. J Am Acad Dermatol. 2014;71(1):141–150. doi: 10.1016/j.jaad.2013.12.036

[45]

Lynde C.W., Poulin Y., Vender R., et al. Interleukin 17A: toward a new understanding of psoriasis pathogenesis // J Am Acad Dermatol. 2014. Vol. 71, N 1. Р. 141–150. doi: 10.1016/j.jaad.2013.12.036

[46]

Leonardi CL, Powers JL, Matheson RT, et al.; Etanercept Psoriasis Study Group. Etanercept as monotherapy in patients with psoriasis. N Engl J Med. 2003;20;349(21):2014–2022. doi: 10.1056/NEJMoa030409

[47]

Leonardi C.L., Powers J.L., Matheson R.T., et al.; Etanercept Psoriasis Study Group. Etanercept as monotherapy in patients with psoriasis // N Engl J Med. 2003. Vol. 349, N 21. Р. 2014–2022. doi: 10.1056/NEJMoa030409

[48]

Leonardi CL, Kimball AB, Papp KA, et al.; PHOENIX 1 study investigators. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet. 2008;371(9625):1665–1674. doi: 10.1016/S0140-6736(08)60725-4

[49]

Leonardi C.L., Kimball A.B., Papp K.A., et al.; PHOENIX 1 study investigators. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1) // Lancet. 2008. Vol. 371, N 9625. Р. 1665–1674. doi: 10.1016/S0140-6736(08)60725-4

[50]

Leonardi CL, Gordon KB. New and emerging therapies in psoriasis. Semin Cutan Med Surg. 2014;33(2 Suppl 2):S37–41. doi: 10.12788/j.sder.0066

[51]

Leonardi C.L., Gordon K.B. New and emerging therapies in psoriasis // Semin Cutan Med Surg. 2014. Vol. 33, N 2, Suppl 2. Р. S37–41. doi: 10.12788/j.sder.0066

[52]

Leonardi C, Matheson R, Zachariae C, et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N Engl J Med. 2012;366(13):1190–1199. doi: 10.1056/NEJMoa1109997

[53]

Leonardi C., Matheson R., Zachariae C., et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis // N Engl J Med. 2012. Vol. 366, N 13. Р. 1190–1199. doi: 10.1056/NEJMoa1109997

[54]

Papp A, Leonardi C, Menter A, et al. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N Engl J Med. 2012;366(13):1181–1189. doi: 10.1056/NEJMoa1109017

[55]

Papp K.A., Leonardi C., Menter A., et al. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis // N Engl J Med. 2012. Vol. 366. Р. 1181–1189. doi: 10.1056/NEJMoa1109017

[56]

Blauvelt A, Chiricozzi A. The immunologic role of IL-17 in psoriasis and psoriatic arthritis pathogenesis. Clin Rev Allergy Immunol. 2018;55(3):379–390. doi: 10.1007/s12016-018-8702-3

[57]

Blauvelt A., Chiricozzi A. The immunologic role of IL-17 in psoriasis and psoriatic arthritis pathogenesis // Clin Rev Allergy Immunol. 2018. Vol. 55, N 3. Р. 379–390. doi: 10.1007/s12016-018-8702-3

[58]

Olisova OY, Anpilogova EM. Systemic treatment of psoriasis: from methotrexate to biologics. Bulletin Dermatology Venereology. 2020;96(3):7–26. (In Russ). doi: 10.25208/vdv1162

[59]

Олисова О.Ю., Анпилогова Е.М. Системная терапия псориаза: от метотрексата до генно-инженерных биологических препаратов // Вестник дерматологии и венерологии. 2020. Т. 96, № 3. C. 7–26. doi: 10.25208/vdv1162

[60]

Piro MC, Ventura A, Smirnov A, et al. Transglutaminase 3 reduces the severity of psoriasis in imiquimod-treated mouse skin. Int J Mol Sci. 2020;21(5):1566. doi: 10.3390/ijms21051566

[61]

Piro M.C., Ventura A., Smirnov A., et al. Transglutaminase 3 reduces the severity of psoriasis in imiquimod-treated mouse skin // Int J Mol Sci. 2020. Vol. 21, N 5. Р. 1566. doi: 10.3390/ijms21051566

[62]

Matsuki M, Yamashita F, Ishida-Yamamoto A, et al. Defective stratum corneum and early neonatal death in mice lacking the gene for transglutaminase 1 (keratinocyte transglutaminase). Proc Natl Acad Sci USA. 1998;95(3):1044–1049. doi: 10.1073/pnas.95.3.1044

[63]

Matsuki M., Yamashita F., Ishida-Yamamoto A., et al. Defective stratum corneum and early neonatal death in mice lacking the gene for transglutaminase 1 (keratinocyte transglutaminase) // Proc Natl Acad Sci USA. 1998. Vol. 95, N 3. Р. 1044–1049. doi: 10.1073/pnas.95.3.1044

[64]

Tian S, Krueger JG, Li K, et al. Meta-analysis derived (MAD) transcriptome of psoriasis defines the “core” pathogenesis of disease. PLoS One. 2012;7(9):e44274. doi: 10.1371/journal.pone.0044274

[65]

Tian S., Krueger J.G., Li K., et al. Meta-analysis derived (MAD) transcriptome of psoriasis defines the “core” pathogenesis of disease // PLoS One. 2012. Vol. 7, N 9. Р. e44274. doi: 10.1371/journal.pone.0044274

[66]

Suárez-Fariñas M, Li K, Fuentes-Duculan J, et al. Expanding the psoriasis disease profile: interrogation of the skin and serum of patients with moderate-to-severe psoriasis. J Invest Dermatol. 2012;132(11):2552–2564. doi: 10.1038/jid.2012.184

[67]

Suárez-Fariñas M., Li K., Fuentes-Duculan J., et al. Expanding the psoriasis disease profile: interrogation of the skin and serum of patients with moderate-to-severe psoriasis // J Invest Dermatol. 2012. Vol. 132, N 11. Р. 2552–2564. doi: 10.1038/jid.2012.184

[68]

Di Meglio P, Villanova F, Nestle FO. Psoriasis. Cold Spring Harb Perspect Med. 2014;4(8):a015354. doi: 10.1101/cshperspect.a015354

[69]

Di Meglio P., Villanova F., Nestle F.O. Psoriasis // Cold Spring Harb Perspect Med. 2014. Vol. 4, N 8. Р. a015354. doi: 10.1101/cshperspect.a015354

[70]

Harden JL, Krueger JG, Bowcock AM. The immunogenetics of psoriasis: a comprehensive review. J Autoimmun. 2015;64:66–73. doi: 10.1016/j.jaut.2015.07.008

[71]

Harden J.L., Krueger J.G., Bowcock A.M. The immunogenetics of psoriasis: a comprehensive review // J Autoimmun. 2015. Vol. 64. Р. 66–73. doi: 10.1016/j.jaut.2015.07.008

[72]

Morizane S, Gallo RL. Antimicrobial peptides in the pathogenesis of psoriasis. J Dermatol. 2012;39(3):225–230. doi: 10.1111/j.1346-8138.2011.01483.x

[73]

Morizane S., Gallo R.L. Antimicrobial peptides in the pathogenesis of psoriasis // J Dermatol. 2012. Vol. 39, N 3. Р. 225–230. doi: 10.1111/j.1346-8138.2011.01483.x

[74]

Morizane S, Yamasaki K, Mühleisen B, et al. Cathelicidin antimicrobial peptide LL-37 in psoriasis enables keratinocyte reactivity against TLR9 ligands. J Invest Dermatol. 2012;132(1): 135–143. doi: 10.1038/jid.2011.259

[75]

Morizane S., Yamasaki K., Mühleisen B., et al. Cathelicidin antimicrobial peptide LL-37 in psoriasis enables keratinocyte reactivity against TLR9 ligands // J Invest Dermatol. 2012. Vol. 132, N 1. Р. 135–143. doi: 10.1038/jid.2011.259

[76]

Peltonen S, Riehokainen J, Pummi K, Peltonen J. Tight junction components occludin, ZO-1, and claudin-1, -4 and -5 in active and healing psoriasis. Br J Dermatol. 2007;156:466–472. doi: 10.1111/j.1365-2133.2006.07642.x

[77]

Peltonen S., Riehokainen J., Pummi K., Peltonen J. Tight junction components occludin, ZO-1, and claudin-1, -4 and -5 in active and healing psoriasis // Br J Dermatol. 2007. Vol. 156. Р. 466–472. doi: 10.1111/j.1365-2133.2006.07642.x

[78]

Kirschner N, Poetzl C, von den Driesch P, et al. Alteration of tight junction proteins is an early event in psoriasis: putative involvement of proinflammatory cytokines. Am J Pathol. 2009;175(3):1095–1106. doi: 10.2353/ajpath.2009.080973

[79]

Kirschner N., Poetzl C., von den Driesch P., et al. Alteration of tight junction proteins is an early event in psoriasis: putative involvement of proinflammatory cytokines // Am J Pathol. 2009. Vol. 175, N 3. Р. 1095–1106. doi: 10.2353/ajpath.2009.080973

[80]

Visconti B, Paolino G, Carotti S, et al. Immunohistochemical expression of VDR is associated with reduced integrity of tight junction complex in psoriatic skin. J Eur Acad Dermatol Venereol. 2015;29(10):2038–2042. doi: 10.1111/jdv.12736

[81]

Visconti B., Paolino G., Carotti S., et al. Immunohistochemical expression of VDR is associated with reduced integrity of tight junction complex in psoriatic skin // J Eur Acad Dermatol Venereol. 2015. Vol. 29, N 10. Р. 2038–2042. doi: 10.1111/jdv.12736

[82]

Montero-Vilchez T, Segura-Fernández-Nogueras MV, Pérez-Rodríguez I, et al. Skin barrier function in psoriasis and atopic dermatitis: transepidermal water loss and temperature as useful tools to assess disease severity. J Clin Med. 2021;10(2):359. doi: 10.3390/jcm10020359

[83]

Montero-Vilchez T., Segura-Fernández-Nogueras M.V., Pérez-Rodríguez I., et al. Skin barrier function in psoriasis and atopic dermatitis: transepidermal water loss and temperature as useful tools to assess disease severity // J Clin Med. 2021. Vol. 10, N 2. Р. 359. doi: 10.3390/jcm10020359

[84]

Gutowska-Owsiak D, Schaupp AL, Salimi M, et al. IL-17 downregulates filaggrin and affects keratinocyte expression of genes associated with cellular adhesion. Exp Dermatol. 2012;21(2): 104–110. doi: 10.1111/j.1600-0625.2011.01412.x

[85]

Gutowska-Owsiak D., Schaupp A.L., Salimi M., et al. IL-17 downregulates filaggrin and affects keratinocyte expression of genes associated with cellular adhesion // Exp Dermatol. 2012. Vol. 21, N 2. Р. 104–110. doi: 10.1111/j.1600-0625.2011.01412.x

[86]

Ten Bergen LL, Petrovic A, Aarebrot AK, Appel S. Current knowledge on autoantigens and autoantibodies in psoriasis. Scand J Immunol. 2020;92(4):e12945. doi: 10.1111/sji.12945

[87]

Ten Bergen L.L., Petrovic A., Aarebrot A.K., Appel S. Current knowledge on autoantigens and autoantibodies in psoriasis // Scand J Immunol. 2020. Vol. 92, N 4. Р. e12945. doi: 10.1111/sji.12945

[88]

Liang Y, Sarkar MK, Tsoi LC, Gudjonsson JE. Psoriasis: a mixed autoimmune and autoinflammatory disease. Curr Opin Immunol. 2017;49:1–8. doi: 10.1016/j.coi.2017.07.007

[89]

Liang Y., Sarkar M.K., Tsoi L.C., Gudjonsson J.E. Psoriasis: a mixed autoimmune and autoinflammatory disease // Curr Opin Immunol. 2017. Vol. 49. Р. 1–8. doi: 10.1016/j.coi.2017.07.007

[90]

Orsmond A, Bereza-Malcolm L, Lynch T, et al. Skin barrier dysregulation in psoriasis. Int J Mol Sci. 2021;22(19):10841. doi: 10.3390/ijms221910841

[91]

Orsmond A., Bereza-Malcolm L., Lynch T., et al. Skin barrier dysregulation in psoriasis // Int J Mol Sci. 2021. Vol. 22, N 19. Р. 10841. doi: 10.3390/ijms221910841

[92]

Johnston A, Gudjonsson JE, Sigmundsdottir H, et al. Peripheral blood T cell responses to keratin peptides that share sequences with streptococcal M proteins are largely restricted to skin-homing CD8(+) T cells. Clin Exp Immunol. 2004;138(1):83–93. doi: 10.1111/j.1365-2249.2004.00600.x

[93]

Johnston A., Gudjonsson J.E., Sigmundsdottir H., et al. Peripheral blood T cell responses to keratin peptides that share sequences with streptococcal M proteins are largely restricted to skin-homing CD8(+) T cells // Clin Exp Immunol. 2004. Vol. 138, N 1. Р. 83–93. doi: 10.1111/j.1365-2249.2004.00600.x

[94]

Cheung KL, Jarrett R, Subramaniam S, et al. Psoriatic T cells recognize neolipid antigens generated by mast cell phospholipase delivered by exosomes and presented by CD1a. J Exp Med. 2016;213(11):2399–2412. doi: 10.1084/jem.20160258

[95]

Cheung K.L., Jarrett R., Subramaniam S., et al. Psoriatic T cells recognize neolipid antigens generated by mast cell phospholipase delivered by exosomes and presented by CD1a // J Exp Med. 2016. Vol. 213, N 11. Р. 2399–2412. doi: 10.1084/jem.20160258

[96]

Méndez-Samperio P. The human cathelicidin hCAP18/LL-37: a multifunctional peptide involved in mycobacterial infections. Peptides. 2010;31(9):1791–1798. doi: 10.1016/j.peptides.2010.06.016

[97]

Méndez-Samperio P. The human cathelicidin hCAP18/LL-37: a multifunctional peptide involved in mycobacterial infections // Peptides. 2010. Vol. 31, N 9. Р. 1791–1798. doi: 10.1016/j.peptides.2010.06.016

[98]

Chiba H, Michibata H, Wakimoto K, et al. Cloning of a gene for a novel epithelium-specific cytosolic phospholipase A2, cPLA2 delta, induced in psoriatic skin. J Biol Chem. 2004;279(13):12890–12897. doi: 10.1074/jbc.M305801200

[99]

Chiba H., Michibata H., Wakimoto K., et al. Cloning of a gene for a novel epithelium-specific cytosolic phospholipase A2, cPLA2 delta, induced in psoriatic skin // J Biol Chem. 2004. Vol. 279, N 13. Р. 12890–12897. doi: 10.1074/jbc.M305801200

[100]

Bragulla HH, Homberger DG. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat. 2009;214(4):516–559. doi: 10.1111/j.1469-7580.2009.01066.x

[101]

Bragulla H.H., Homberger D.G. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia // J Anat. 2009. Vol. 214, N 4. Р. 516–559. doi: 10.1111/j.1469-7580.2009.01066.x

[102]

Besgen P, Trommler P, Vollmer S, Prinz JC. Ezrin, maspin, peroxiredoxin 2, and heat shock protein 27: potential targets of a streptococcal-induced autoimmune response in psoriasis. J Immunol. 2010;184(9):5392–5402. doi: 10.4049/jimmunol.0903520

[103]

Besgen P., Trommler P., Vollmer S., Prinz J.C. Ezrin, maspin, peroxiredoxin 2, and heat shock protein 27: potential targets of a streptococcal-induced autoimmune response in psoriasis // J Immunol. 2010. Vol. 184, N 9. Р. 5392–5402. doi: 10.4049/jimmunol.0903520

[104]

Lande R, Gregorio J, Facchinetti V, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449(7162):564–569. doi: 10.1038/nature06116

[105]

Lande R., Gregorio J., Facchinetti V., et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide // Nature. 2007. Vol. 449, N 7162. Р. 564–569. doi: 10.1038/nature06116

[106]

Ganguly D, Chamilos G, Lande R, et al. Self-RNAantimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med. 2009;206(9):1983–1994. doi: 10.1084/jem.20090480

[107]

Ganguly D., Chamilos G., Lande R., et al. Self-RNAantimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8 // J Exp Med. 2009. Vol. 206, N 9. Р. 1983–1994. doi: 10.1084/jem.20090480

[108]

Lande R, Botti E, Jandus C, et al. Corrigendum: the antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat Commun. 2015;6:6595. doi: 10.1038/ncomms7595

[109]

Lande R., Botti E., Jandus C., et al. Corrigendum: the antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis // Nat Commun. 2015. Vol. 6. Р. 6595. doi: 10.1038/ncomms7595

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

202

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/