Accelerometer in stroke rehabilitation: A modern look at the assessment of physical activity
Marina A. Kozlyakova , Anna V. Sirotenko , Arnella R. Chepnyan , Angelina N. Ekizova , Rolan E. Mefaev , Amir M. Zhachemukov , Polina V. Gorlina , Milena V. Vakhtinskaya , Elina A. Khakova , Airat R. Galimov , Jasur M. Kholiqov , Dmitriy I. Goncharov , Sofia T. Yusubova , Ruslan G. Khasanov
Medical and Social Expert Evaluation and Rehabilitation ›› 2024, Vol. 27 ›› Issue (2) : 109 -125.
Accelerometer in stroke rehabilitation: A modern look at the assessment of physical activity
The importance of improving the quality of rehabilitation approaches is becoming particularly relevant, as the number of people with stroke-related disabilities is expected to grow due to advances in treatment that contribute to an increase in overall patient survival. Improving the understanding of physical activity during stroke rehabilitation is important, as physical activity is directly related to the recovery process of patients. It not only promotes recovery after a stroke, but also improves the state of the cardiovascular system, cognitive and motor functions, improves mood and increases survival. In this review, the authors analyzed the literature data on the use of accelerometry in the first stage of rehabilitation after stroke. Accelerometry quantifies physical activity by recording movements using accelerometers that measure acceleration along one or more axes. Accelerometry is a promising tool for improving the measurement of physical activity intensity during rehabilitation, although in practice its use remains limited. The use of the V3 and V3+ frameworks, which cover aspects of ergonomics testing, analytical and clinical validation, highlights the importance of a comprehensive assessment of accelerometry-based tools. The available data confirm the effectiveness of accelerometry in determining the intensity of physical activity, but also indicate an existing gap in the data of analytical and clinical studies.
intensity of physical activity / rehabilitation after stroke / accelerometry / stroke / monitoring / clinical validation / physical activity / inpatient treatment / digital medicine / standardization of data
| [1] |
Klochihina OA, Shprakh VV, Stakhovskaya LV, et al. Indicators of stroke morbidity and mortality from stroke in the territories included in the Federal program of caring for patients with stroke. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(3–2):22–28. doi: 10.17116/jnevro202112103222 |
| [2] |
Клочихина О.А., Шпрах В.В., Стаховская Л.В., и др. Показатели заболеваемости инсультом и смертности от него на территориях, вошедших в Федеральную программу реорганизации помощи пациентам с инсультом // Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2021. Т. 121, № 3–2. С. 22–28. doi: 10.17116/jnevro202112103222 |
| [3] |
Tsao CW, Aday AW, Almarzooq ZI, et al. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation. 2023;147(8):e93–e621. doi: 10.1161/CIR.0000000000001123 |
| [4] |
Tsao C.W., Aday A.W., Almarzooq Z.I., et al. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association // Circulation. 2023. Vol. 147, N 8. P. 93–621. doi: 10.1161/CIR.0000000000001123 |
| [5] |
Kovalchuk VV, Barantsevich ER, Galkin AS, et al. Multidisciplinary principle of management in stroke patients. Criterions of efficiency and factors of successful rehabilitation. Medical alphabet. 2020;(22):15–21.doi: 10.33667/2078-5631-2020-22-15-21 |
| [6] |
Ковальчук В.В., Баранцевич Е.Р., Галкин А.С., и др. Мультидисциплинарный принцип ведения пациентов после инсульта. Критерии эффективности и факторы успеха реабилитации // Медицинский алфавит. 2020. № 22. С. 15–21. doi: 10.33667/2078-5631-2020-22-15-21 |
| [7] |
French MA, Roemmich RT, Daley K, et al. Precision Rehabilitation: Optimizing Function, Adding Value to Health Care. Arch Phys Med Rehabil. 2022;103(6):1233–1239. doi: 10.1016/j.apmr.2022.01.154 |
| [8] |
French M.A., Roemmich R.T., Daley K., et al. Precision Rehabilitation: Optimizing Function, Adding Value to Health Care // Arch Phys Med Rehabil. 2022. Vol. 103, N 6. P. 1233–1239. doi: 10.1016/j.apmr.2022.01.154 |
| [9] |
Miller LS, Forer SK. History and Efficacy of the “Three-Hour Rule”. PM R. 2021;13(5):535–539. doi: 10.1002/pmrj.12532 |
| [10] |
Miller L.S., Forer S.K. History and Efficacy of the “Three-Hour Rule” // PM R. 2021. Vol. 13, N 5. P. 535–539. doi: 10.1002/pmrj.12532 |
| [11] |
Beaulieu CL, Peng J, Hade EM, et al. Level of Effort and 3 Hour Rule Compliance. Arch Phys Med Rehabil. 2019;100(10):1827–1836. doi: 10.1016/j.apmr.2019.01.014 |
| [12] |
Beaulieu C.L., Peng J., Hade E.M., et al. Level of Effort and 3 Hour Rule Compliance // Arch Phys Med Rehabil. 2019. Vol. 100, N 10. P. 1827–1836. doi: 10.1016/j.apmr.2019.01.014 |
| [13] |
Lohse KR, Lang CE, Boyd LA. Is more better? Using metadata to explore dose-response relationships in stroke rehabilitation. Stroke. 2014;45(7):2053–2058. doi: 10.1161/STROKEAHA.114.004695 |
| [14] |
Lohse K.R., Lang C.E., Boyd L.A. Is more better? Using metadata to explore dose-response relationships in stroke rehabilitation // Stroke. 2014. Vol. 45, N 7. P. 2053–2058. doi: 10.1161/STROKEAHA.114.004695 |
| [15] |
Vlasova IA. Physical exercises in the system of medical rehabilitation. Acta Biomedica Scientifica. 2018;3(2):134–137. doi: 10.29413/ABS.2018-3.2.25 |
| [16] |
Власова И.А. Физические упражнения в системе медицинской реабилитации (лекция) // Acta Biomedica Scientifica. 2018. Т. 3, № 2. С. 134–137. doi: 10.29413/ABS.2018-3.2.25 |
| [17] |
Howley ET. Type of activity: resistance, aerobic and leisure versus occupational physical activity. Med Sci Sports Exerc. 2001;33(6):364–369; discussion S419–20. doi: 10.1097/00005768-200106001-00005 |
| [18] |
Howley E.T. Type of activity: resistance, aerobic and leisure versus occupational physical activity // Med Sci Sports Exerc. 2001. Vol. 33, N 6. P. 364–369; discussion S419–20. doi: 10.1097/00005768-200106001-00005 |
| [19] |
Thivel D, Tremblay A, Genin PM, et al. Physical Activity, Inactivity, and Sedentary Behaviors: Definitions and Implications in Occupational Health. Front Public Health. 2018;6:288. doi: 10.3389/fpubh.2018.00288 |
| [20] |
Thivel D., Tremblay A., Genin P.M., et al. Physical Activity, Inactivity, and Sedentary Behaviors: Definitions and Implications in Occupational Health // Front Public Health. 2018. Vol. 6. P. 288. doi: 10.3389/fpubh.2018.00288 |
| [21] |
Billinger SA, Arena R, Bernhardt J, et al. Physical activity and exercise recommendations for stroke survivors: a statement for healthcare professionals from the American Heart Association/ American Stroke Association. Stroke. 2014;45(8):2532–2553. doi: 10.1161/STR.0000000000000022 |
| [22] |
Billinger S.A., Arena R., Bernhardt J., et al. Physical activity and exercise recommendations for stroke survivors: a statement for healthcare professionals from the American Heart Association/ American Stroke Association // Stroke. 2014. Vol. 45, N 8. P. 2532–2553. doi: 10.1161/STR.0000000000000022 |
| [23] |
Gallanagh S, Quinn TJ, Alexander J, Walters MR. Physical activity in the prevention and treatment of stroke. ISRN Neurol. 2011;2011:953818. doi: 10.5402/2011/953818 |
| [24] |
Gallanagh S., Quinn T.J., Alexander J., Walters M.R. Physical activity in the prevention and treatment of stroke // ISRN Neurol. 2011. Vol. 2011. P. 953818. doi: 10.5402/2011/953818 |
| [25] |
Kendall BJ, Gothe NP. Effect of Aerobic Exercise Interventions on Mobility among Stroke Patients: A Systematic Review. Am J Phys Med Rehabil. 2016;95(3):214–224. doi: 10.1097/PHM.0000000000000416 |
| [26] |
Kendall B.J., Gothe N.P. Effect of Aerobic Exercise Interventions on Mobility among Stroke Patients: A Systematic Review // Am J Phys Med Rehabil. 2016. Vol. 95, N 3. P. 214–224. doi: 10.1097/PHM.0000000000000416 |
| [27] |
Kramer SF, Hung SH, Brodtmann A. The Impact of Physical Activity Before and After Stroke on Stroke Risk and Recovery: a Narrative Review. Curr Neurol Neurosci Rep. 2019;19(6):28. doi: 10.1007/s11910-019-0949-4 |
| [28] |
Kramer S.F., Hung S.H., Brodtmann A. The Impact of Physical Activity Before and After Stroke on Stroke Risk and Recovery: a Narrative Review // Curr Neurol Neurosci Rep. 2019. Vol. 19, N 6. P. 28. doi: 10.1007/s11910-019-0949-4 |
| [29] |
Lee IM, Shiroma EJ, Lobelo F, et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–229. doi: 10.1016/S0140-6736(12)61031-9 |
| [30] |
Lee I.M., Shiroma E.J., Lobelo F., et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy // Lancet. 2012. Vol. 380, N 9838. P. 219–29. doi: 10.1016/S0140-6736(12)61031-9 |
| [31] |
Loprinzi PD, Addoh O. Accelerometer-Determined Physical Activity and All-Cause Mortality in a National Prospective Cohort Study of Adults Post-Acute Stroke. Am J Health Promot. 2018;32(1):24–27. doi: 10.1177/0890117117720061 |
| [32] |
Loprinzi P.D., Addoh O. Accelerometer-Determined Physical Activity and All-Cause Mortality in a National Prospective Cohort Study of Adults Post-Acute Stroke // Am J Health Promot. 2018. Vol. 32, N 1. P. 24–27. doi: 10.1177/0890117117720061 |
| [33] |
Piercy KL, Troiano RP, Ballard RM, et al. The Physical Activity Guidelines for Americans. JAMA. 2018;320(19):2020–2028. doi: 10.1001/jama.2018.14854 |
| [34] |
Piercy K.L., Troiano R.P., Ballard R.M., et al. The Physical Activity Guidelines for Americans // JAMA. 2018. Vol. 320, N 19. P. 2020–2028. doi: 10.1001/jama.2018.14854 |
| [35] |
Saunders DH, Greig CA, Mead GE. Physical activity and exercise after stroke: review of multiple meaningful benefits. Stroke. 2014;45(12):3742–3747. doi: 10.1161/STROKEAHA.114.004311 |
| [36] |
Saunders D.H., Greig C.A., Mead G.E. Physical activity and exercise after stroke: review of multiple meaningful benefits // Stroke. 2014. Vol. 45, N 12. P. 3742–3747. doi: 10.1161/STROKEAHA.114.004311 |
| [37] |
Saunders DH, Sanderson M, Hayes S, et al. Physical fitness training for stroke patients. Cochrane Database Syst Rev. 2020;3(3):CD003316. doi: 10.1002/14651858.CD003316.pub7 |
| [38] |
Saunders D.H., Sanderson M., Hayes S., et al. Physical fitness training for stroke patients // Cochrane Database Syst Rev. 2020. Vol. 3, N 3. P. CD003316. doi: 10.1002/14651858.CD003316.pub7 |
| [39] |
Lee CD, Folsom AR, Blair SN. Physical activity and stroke risk: a meta-analysis. Stroke. 2003;34(10):2475–81. doi: 10.1161/01.STR.0000091843.02517.9D |
| [40] |
Lee C.D., Folsom A.R., Blair S.N. Physical activity and stroke risk: a meta-analysis // Stroke. 2003. Vol. 34, N 10. P. 2475–2481. doi: 10.1161/01.STR.0000091843.02517.9D |
| [41] |
Lee JY, Kwon S, Kim WS, et al. Feasibility, reliability, and validity of using accelerometers to measure physical activities of patients with stroke during inpatient rehabilitation. PLoS One. 2018;13(12):e0209607. doi: 10.1371/journal.pone.0209607 |
| [42] |
Lee J.Y., Kwon S., Kim W.S., et al. Feasibility, reliability, and validity of using accelerometers to measure physical activities of patients with stroke during inpatient rehabilitation // PLoS One. 2018. Vol. 13, N 12. P. e0209607. doi: 10.1371/journal.pone.0209607 |
| [43] |
Melnikova EA, Starkova EYu, Razumov AN. Modern view on upper limb physical rehabilitation after stroke. Literature review. Problems of Balneology, Physiotherapy and Exercise Therapy. 2023;100(1):42–53. doi: 10.17116/kurort202310001142 |
| [44] |
Мельникова Е.А., Старкова Е.Ю., Разумов А.Н. Современный подход к физической реабилитации функций верхней конечности после инсульта. Обзор литературы // Вопросы курортологии, физиотерапии и лечебной физической культуры. 2023. Т. 100, № 1. С. 42–53. doi: 10.17116/kurort202310001142 |
| [45] |
Fini NA, Holland AE, Keating J, et al. How Physically Active Are People Following Stroke? Systematic Review and Quantitative Synthesis. Phys Ther. 2017;97(7):707–717. doi: 10.1093/ptj/pzx038 |
| [46] |
Fini N.A., Holland A.E., Keating J., et al. How Physically Active Are People Following Stroke? Systematic Review and Quantitative Synthesis // Phys Ther. 2017. Vol. 97, N 7. P. 707–717. doi: 10.1093/ptj/pzx038 |
| [47] |
van der Ploeg HP, Hillsdon M. Is sedentary behaviour just physical inactivity by another name? Int J Behav Nutr Phys Act. 2017;14(1):142. doi: 10.1186/s12966-017-0601-0 |
| [48] |
van der Ploeg H.P., Hillsdon M. Is sedentary behaviour just physical inactivity by another name? // Int J Behav Nutr Phys Act. 2017. Vol. 14, N 1. P. 142. doi: 10.1186/s12966-017-0601-0 |
| [49] |
Braakhuis HEM, Roelofs JMB, Berger MAM, et al. Intensity of daily physical activity — a key component for improving physical capacity after minor stroke? Disabil Rehabil. 2022;44(13):3048–3053. doi: 10.1080/09638288.2020.1851781 |
| [50] |
Braakhuis H.E.M., Roelofs J.M.B., Berger M.A.M., et al. Intensity of daily physical activity — a key component for improving physical capacity after minor stroke? // Disabil Rehabil. 2022. Vol. 44, N 13. P. 3048–3053. doi: 10.1080/09638288.2020.1851781 |
| [51] |
Gothe NP, Bourbeau K. Associations Between Physical Activity Intensities and Physical Function in Stroke Survivors. Am J Phys Med Rehabil. 2020;99(8):733–738. doi: 10.1097/PHM.0000000000001410 |
| [52] |
Gothe N.P., Bourbeau K. Associations Between Physical Activity Intensities and Physical Function in Stroke Survivors // Am J Phys Med Rehabil. 2020. Vol. 99, N 8. P. 733–738. doi: 10.1097/PHM.0000000000001410 |
| [53] |
Koopman AD, Eken MM, van Bezeij T, et al. Does clinical rehabilitation impose sufficient cardiorespiratory strain to improve aerobic fitness? J Rehabil Med. 2013;45(1):92–98. doi: 10.2340/16501977-1072 |
| [54] |
Koopman A.D., Eken M.M., van Bezeij T., et al. Does clinical rehabilitation impose sufficient cardiorespiratory strain to improve aerobic fitness? // J Rehabil Med. 2013. Vol. 45, N 1. P. 92–98. doi: 10.2340/16501977-1072 |
| [55] |
Sage M, Middleton LE, Tang A, et al. Validity of rating of perceived exertion ranges in individuals in the subacute stage of stroke recovery. Top Stroke Rehabil. 2013;20(6):519–527. doi: 10.1310/tsr2006-519 |
| [56] |
Sage M., Middleton L.E., Tang A., et al. Validity of rating of perceived exertion ranges in individuals in the subacute stage of stroke recovery // Top Stroke Rehabil. 2013. Vol. 20, N 6. P. 519–27. doi: 10.1310/tsr2006-519 |
| [57] |
Zabina EYu, Zinovyeva VA, Popovich MV, et al. Experience with an accelerometer to estimate physical activity level in the population. Russian Journal of Preventive Medicine. 2017;20(5):54–58. doi: 10.17116/profmed201720554-58 |
| [58] |
Забина Е.Ю., Зиновьева В.А., Попович М.В., и др. Опыт использования акселерометра для оценки уровня физической активности населения // Профилактическая медицина. 2017. Т. 20, № 5. С. 54–58. doi: 10.17116/profmed201720554-58 |
| [59] |
Chen KY, Bassett DR Jr. The technology of accelerometry-based activity monitors: current and future. Med Sci Sports Exerc. 2005;37(11 Suppl):S490–500. doi: 10.1249/01.mss.0000185571.49104.82 |
| [60] |
Chen K.Y., Bassett D.R. Jr. The technology of accelerometry-based activity monitors: current and future // Med Sci Sports Exerc. 2005. Vol. 37, N 11. P. 490–500. doi: 10.1249/01.mss.0000185571.49104.82 |
| [61] |
Yang CC, Hsu YL. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors (Basel). 2010;10(8):7772–7788. doi: 10.3390/s100807772 |
| [62] |
Yang C.C., Hsu Y.L. A review of accelerometry-based wearable motion detectors for physical activity monitoring // Sensors (Basel). 2010. Vol. 10, N 8. P. 7772–7788. doi: 10.3390/s100807772 |
| [63] |
Mtaweh H, Tuira L, Floh AA, Parshuram CS. Indirect Calorimetry: History, Technology, and Application. Front Pediatr. 2018;6:257. doi: 10.3389/fped.2018.00257 |
| [64] |
Mtaweh H., Tuira L., Floh A.A., Parshuram C.S. Indirect Calorimetry: History, Technology, and Application // Front Pediatr. 2018. N 6. P. 257. doi: 10.3389/fped.2018.00257 |
| [65] |
Katzan I, Schuster A, Kinzy T. Physical Activity Monitoring Using a Fitbit Device in Ischemic Stroke Patients: Prospective Cohort Feasibility Study. JMIR Mhealth Uhealth. 2021;9(1):e14494. doi: 10.2196/14494 |
| [66] |
Katzan I., Schuster A., Kinzy T. Physical Activity Monitoring Using a Fitbit Device in Ischemic Stroke Patients: Prospective Cohort Feasibility Study // JMIR Mhealth Uhealth. 2021. Vol. 9, N 1. P. e14494. doi: 10.2196/14494 |
| [67] |
Goldsack JC, Coravos A, Bakker JP, et al. Verification, analytical validation, and clinical validation (V3): the foundation of determining fit-for-purpose for Biometric Monitoring Technologies (BioMeTs). NPJ Digit Med. 2020;3:55. doi: 10.1038/s41746-020-0260-4 |
| [68] |
Goldsack J.C., Coravos A., Bakker J.P., et al. Verification, analytical validation, and clinical validation (V3): the foundation of determining fit-for-purpose for Biometric Monitoring Technologies (BioMeTs) // NPJ Digit Med. 2020. Vol. 3. P. 55. doi: 10.1038/s41746-020-0260-4 |
| [69] |
Westerterp KR. Doubly labelled water assessment of energy expenditure: principle, practice, and promise. Eur J Appl Physiol. 2017;117(7):1277–1285. doi: 10.1007/s00421-017-3641-x |
| [70] |
Westerterp K.R. Doubly labelled water assessment of energy expenditure: principle, practice, and promise // Eur J Appl Physiol. 2017. Vol. 117, N 7. P. 1277–1285. doi: 10.1007/s00421-017-3641-x |
| [71] |
Kenny GP, Notley SR, Gagnon D. Direct calorimetry: a brief historical review of its use in the study of human metabolism and thermoregulation. Eur J Appl Physiol. 2017;117(9):1765–1785. doi: 10.1007/s00421-017-3670-5 |
| [72] |
Kenny G.P., Notley S.R., Gagnon D. Direct calorimetry: a brief historical review of its use in the study of human metabolism and thermoregulation // Eur J Appl Physiol. 2017. Vol. 117, N 9. P. 1765–1785. doi: 10.1007/s00421-017-3670-5 |
| [73] |
Chastin SFM, De Craemer M, De Cocker K, et al. How does light-intensity physical activity associate with adult cardiometabolic health and mortality? Systematic review with meta-analysis of experimental and observational studies. Br J Sports Med. 2019;53(6):370–376. doi: 10.1136/bjsports-2017-097563 |
| [74] |
Chastin S.F.M., De Craemer M., De Cocker K., et al. How does light-intensity physical activity associate with adult cardiometabolic health and mortality? Systematic review with meta-analysis of experimental and observational studies // Br J Sports Med. 2019. Vol. 53, N 6. P. 370–376. doi: 10.1136/bjsports-2017-097563 |
| [75] |
Pate RR, Pratt M, Blair SN, et al. Physical activity and public health. A recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA. 1995;273(5):402–407. doi: 10.1001/jama.273.5.402 |
| [76] |
Pate R.R., Pratt M., Blair S.N., et al. Physical activity and public health. A recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine // JAMA. 1995. Vol. 273, N 5. P. 402–407. doi: 10.1001/jama.273.5.402 |
| [77] |
Ainsworth BE, Haskell WL, Herrmann SD, et al. 2011 Compendium of Physical Activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575–1581. doi: 10.1249/MSS.0b013e31821ece12 |
| [78] |
Ainsworth B.E., Haskell W.L., Herrmann S.D., et al. 2011 Compendium of Physical Activities: a second update of codes and MET values // Med Sci Sports Exerc. 2011. Vol. 43, N 8. P. 1575–1581. doi: 10.1249/MSS.0b013e31821ece12 |
| [79] |
Fonte G, Schreiber C, Areno G, et al. Metabolic Energy Expenditure and Accelerometer-Determined Physical Activity Levels in Post-Stroke Hemiparetic Patients. J Stroke Cerebrovasc Dis. 2022;31(5):106397. doi: 10.1016/j.jstrokecerebrovasdis.2022.106397 |
| [80] |
Fonte G., Schreiber C., Areno G., et al. Metabolic Energy Expenditure and Accelerometer-Determined Physical Activity Levels in Post-Stroke Hemiparetic Patients // J Stroke Cerebrovasc Dis. 2022. Vol. 31, N 5. P. 106397. doi: 10.1016/j.jstrokecerebrovasdis.2022.106397 |
| [81] |
Danielsson A, Willén C, Sunnerhagen KS. Measurement of energy cost by the physiological cost index in walking after stroke. Arch Phys Med Rehabil. 2007;88(10):1298–1303. doi: 10.1016/j.apmr.2007.06.760 |
| [82] |
Danielsson A., Willén C., Sunnerhagen K.S. Measurement of energy cost by the physiological cost index in walking after stroke // Arch Phys Med Rehabil. 2007. Vol. 88, N 10. P. 1298–1303. doi: 10.1016/j.apmr.2007.06.760 |
| [83] |
Mendes MA, da Silva I, Ramires V, et al. Metabolic equivalent of task (METs) thresholds as an indicator of physical activity intensity. PLoS One. 2018;13(7):e0200701. doi: 10.1371/journal.pone.0200701 |
| [84] |
Mendes M.A., da Silva I., Ramires V., et al. Metabolic equivalent of task (METs) thresholds as an indicator of physical activity intensity // PLoS One. 2018. Vol. 13, N 7. P. e0200701. doi: 10.1371/journal.pone.0200701 |
| [85] |
Billinger SA, Coughenour E, Mackay-Lyons MJ, Ivey FM. Reduced cardiorespiratory fitness after stroke: biological consequences and exercise-induced adaptations. Stroke Res Treat. 2012;2012:959120. doi: 10.1155/2012/959120 |
| [86] |
Billinger S.A., Coughenour E., Mackay-Lyons M.J., Ivey F.M. Reduced cardiorespiratory fitness after stroke: biological consequences and exercise-induced adaptations // Stroke Res Treat. 2012. Vol. 2012. P. 959120. doi: 10.1155/2012/959120 |
| [87] |
Smith AC, Saunders DH, Mead G. Cardiorespiratory fitness after stroke: a systematic review. Int J Stroke. 2012;7(6):499–510. doi: 10.1111/j.1747-4949.2012.00791.x |
| [88] |
Smith A.C., Saunders D.H., Mead G. Cardiorespiratory fitness after stroke: a systematic review // Int J Stroke. 2012. Vol. 7, N 6. P. 499–510. doi: 10.1111/j.1747-4949.2012.00791.x |
| [89] |
Sverchkov VV, Bykov EV. Cardiorespiratory Endurance is Associated with Metabolic Syndrome Severity in Men. Journal Biomed. 2023;19(2):61–68. doi: 10.33647/2074-5982-19-2-61-68 |
| [90] |
Сверчков В.В., Быков Е.В. Кардиореспираторная выносливость обратно пропорциональна тяжести метаболического синдрома у мужчин // Биомедицина. 2023. Т. 19, № 2. С. 61–68. doi: 10.33647/2074-5982-19-2-61-68 |
| [91] |
Jacobs P. NSCA’s Essentials of Training Special Populations. Human Kinetics: Champaign, IL, USA; 2017. Р. 341–365. |
| [92] |
Jacobs P. NSCA’s Essentials of Training Special Populations. Human Kinetics: Champaign, IL, USA, 2017. Р. 341–365. |
| [93] |
Bakker JP, Barge R, Cobb B, et al. V3+: An extension to the V3 framework to ensure user-centricity and scalability of sensor-based digital health technologies [Internet]. 2024. Available from: https://datacc.dimesociety.org/wp-content/uploads/2024/02/V3_-An-extension-to-the-V3-framework-to-ensure-user-centricity-and-scalability-of-sDHTs-Preprint.pdf |
| [94] |
Bakker J.P., Barge R., Cobb B., et al. V3+: An extension to the V3 framework to ensure user-centricity and scalability of sensor-based digital health technologies [Internet]. 2024. Available from: https://datacc.dimesociety.org/wp-content/uploads/2024/02/V3_-An-extension-to-the-V3-framework-to-ensure-user-centricity-and-scalability-of-sDHTs-Preprint.pdf |
| [95] |
Kaminsky LA, Arena R, Ellingsen Ø, et al. Cardiorespiratory fitness and cardiovascular disease — The past, present, and future. Prog Cardiovasc Dis. 2019;62(2):86–93. doi: 10.1016/j.pcad.2019.01.002 |
| [96] |
Kaminsky L.A., Arena R., Ellingsen Ø., et al. Cardiorespiratory fitness and cardiovascular disease — The past, present, and future // Prog Cardiovasc Dis. 2019. Vol. 62, N 2. P. 86–93. doi: 10.1016/j.pcad.2019.01.002 |
| [97] |
Ellis R, Kelly P, Huang C, et al. Sensor Verification and Analytical Validation of Algorithms to Measure Gait and Balance and Pronation/ Supination in Healthy Volunteers. Sensors (Basel). 2022;22(16):6275. doi: 10.3390/s22166275 |
| [98] |
Ellis R., Kelly P., Huang C., et al. Sensor Verification and Analytical Validation of Algorithms to Measure Gait and Balance and Pronation/ Supination in Healthy Volunteers // Sensors (Basel). 2022. Vol. 22, N 16. P. 6275. doi: 10.3390/s22166275 |
| [99] |
Robin J, Harrison JE, Kaufman LD, et al. Evaluation of Speech-Based Digital Biomarkers: Review and Recommendations. Digit Biomark. 2020;4(3):99–108. doi: 10.1159/000510820 |
| [100] |
Robin J., Harrison J.E., Kaufman L.D., et al. Evaluation of Speech-Based Digital Biomarkers: Review and Recommendations // Digit Biomark. 2020. Vol. 4, N 3. P. 99–108. doi: 10.1159/000510820 |
| [101] |
Arvidsson D, Fridolfsson J, Börjesson M, et al. Re-examination of accelerometer data processing and calibration for the assessment of physical activity intensity. Scand J Med Sci Sports. 2019;29(10):1442–1452. doi: 10.1111/sms.13470 |
| [102] |
Arvidsson D., Fridolfsson J., Börjesson M., et al. Re-examination of accelerometer data processing and calibration for the assessment of physical activity intensity // Scand J Med Sci Sports. 2019. Vol. 29, N 10. P. 1442–1452. doi: 10.1111/sms.13470 |
| [103] |
Migueles JH, Cadenas-Sanchez C, Ekelund U, et al. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Med. 2017;47(9):1821–1845. doi: 10.1007/s40279-017-0716-0 |
| [104] |
Migueles J.H., Cadenas-Sanchez C., Ekelund U., et al. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations // Sports Med. 2017. Vol. 47, N 9. P. 1821–1845. doi: 10.1007/s40279-017-0716-0 |
| [105] |
Santos-Lozano A, Marín PJ, Torres-Luque G, et al. Technical variability of the GT3X accelerometer. Med Eng Phys. 2012;34(6):787–90. doi: 10.1016/j.medengphy.2012.02.005 |
| [106] |
Santos-Lozano A., Marín P.J., Torres-Luque G., et al. Technical variability of the GT3X accelerometer // Med Eng Phys. 2012. Vol. 34, N 6. P. 787–790. doi: 10.1016/j.medengphy.2012.02.005 |
| [107] |
White JW 3rd, Finnegan OL, Tindall N, et al. Comparison of raw accelerometry data from ActiGraph, Apple Watch, Garmin, and Fitbit using a mechanical shaker table. PLoS One. 2024;19(3):e0286898. doi: 10.1371/journal.pone.0286898 |
| [108] |
White J.W. 3rd, Finnegan O.L., Tindall N., et al. Comparison of raw accelerometry data from ActiGraph, Apple Watch, Garmin, and Fitbit using a mechanical shaker table // PLoS One. 2024. Vol. 19, N 3. P. e0286898. doi: 10.1371/journal.pone.0286898 |
| [109] |
Büsching F, Kulau U, Gietzelt M, Wolf L. Comparison and validation of capacitive accelerometers for health care applications. Comput Methods Programs Biomed. 2012;106(2):79–88. doi: 10.1016/j.cmpb.2011.10.009 |
| [110] |
Büsching F., Kulau U., Gietzelt M., Wolf L. Comparison and validation of capacitive accelerometers for health care applications // Comput Methods Programs Biomed. 2012. Vol. 106, N 2. P. 79–88. doi: 10.1016/j.cmpb.2011.10.009 |
| [111] |
Joseph C, Strömbäck B, Hagströmer M, Conradsson D. Accelerometry: A feasible method to monitor physical activity during sub-acute rehabilitation of persons with stroke. J Rehabil Med. 2018;50(5):429–434. doi: 10.2340/16501977-2326 |
| [112] |
Joseph C., Strömbäck B., Hagströmer M., Conradsson D. Accelerometry: A feasible method to monitor physical activity during sub-acute rehabilitation of persons with stroke // J Rehabil Med. 2018. Vol. 50, N 5. P. 429–434. doi: 10.2340/16501977-2326 |
| [113] |
Strømmen AM, Christensen T, Jensen K. Quantitative measurement of physical activity in acute ischemic stroke and transient ischemic attack. Stroke. 2014;45(12):3649–3655. doi: 10.1161/STROKEAHA.114.006496 |
| [114] |
Strømmen A.M., Christensen T., Jensen K. Quantitative measurement of physical activity in acute ischemic stroke and transient ischemic attack // Stroke. 2014. Vol. 45, N 12. P. 3649–3655. doi: 10.1161/STROKEAHA.114.006496 |
| [115] |
Fini NA, Holland AE, Keating J, et al. How is physical activity monitored in people following stroke? Disabil Rehabil. 2015;37(19):1717–1731. doi: 10.3109/09638288.2014.978508 |
| [116] |
Fini N.A., Holland A.E., Keating J., et al. How is physical activity monitored in people following stroke? // Disabil Rehabil. 2015. Vol. 37, N 19. P. 1717–1731. doi: 10.3109/09638288.2014.978508 |
| [117] |
Gebruers N, Vanroy C, Truijen S, et al. Monitoring of physical activity after stroke: a systematic review of accelerometry-based measures. Arch Phys Med Rehabil. 2010;91(2):288–297. doi: 10.1016/j.apmr.2009.10.025 |
| [118] |
Gebruers N., Vanroy C., Truijen S., et al. Monitoring of physical activity after stroke: a systematic review of accelerometry-based measures // Arch Phys Med Rehabil. 2010. Vol. 91, N 2. P. 288–297. doi: 10.1016/j.apmr.2009.10.025 |
| [119] |
Klassen TD, Semrau JA, Dukelow SP, et al. Consumer-Based Physical Activity Monitor as a Practical Way to Measure Walking Intensity During Inpatient Stroke Rehabilitation. Stroke. 2017;48(9):2614–2617. doi: 10.1161/STROKEAHA.117.018175 |
| [120] |
Klassen T.D., Semrau J.A., Dukelow S.P., et al. Consumer-Based Physical Activity Monitor as a Practical Way to Measure Walking Intensity During Inpatient Stroke Rehabilitation // Stroke. 2017. Vol. 48, N 9. P. 2614–2617. doi: 10.1161/STROKEAHA.117.018175 |
| [121] |
Peters DM, O’Brien ES, Kamrud KE, et al. Utilization of wearable technology to assess gait and mobility post-stroke: a systematic review. J Neuroeng Rehabil. 2021;18(1):67. doi: 10.1186/s12984-021-00863-x |
| [122] |
Peters D.M., O’Brien E.S., Kamrud K.E., et al. Utilization of wearable technology to assess gait and mobility post-stroke: a systematic review // J Neuroeng Rehabil. 2021. Vol. 18, N 1. P. 67. doi: 10.1186/s12984-021-00863-x |
| [123] |
Maher C, Szeto K, Arnold J. The use of accelerometer-based wearable activity monitors in clinical settings: current practice, barriers, enablers, and future opportunities. BMC Health Serv Res. 2021;21(1):1064. doi: 10.1186/s12913-021-07096-7 |
| [124] |
Maher C., Szeto K., Arnold J. The use of accelerometer-based wearable activity monitors in clinical settings: current practice, barriers, enablers, and future opportunities // BMC Health Serv Res. 2021. Vol. 21, N 1. P. 1064. doi: 10.1186/s12913-021-07096-7 |
| [125] |
Freedson P, Bowles HR, Troiano R, Haskell W. Assessment of physical activity using wearable monitors: recommendations for monitor calibration and use in the field. Med Sci Sports Exerc. 2012;44(1):1–4. doi: 10.1249/MSS.0b013e3182399b7e |
| [126] |
Freedson P., Bowles H.R., Troiano R., Haskell W. Assessment of physical activity using wearable monitors: recommendations for monitor calibration and use in the field // Med Sci Sports Exerc. 2012. Vol. 44, N 1. P. 1–4. doi: 10.1249/MSS.0b013e3182399b7e |
| [127] |
Evenson KR, Goto MM, Furberg RD. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int J Behav Nutr Phys Act. 2015;12:159. doi: 10.1186/s12966-015-0314-1 |
| [128] |
Evenson K.R., Goto M.M., Furberg R.D. Systematic review of the validity and reliability of consumer-wearable activity trackers // Int J Behav Nutr Phys Act. 2015. Vol. 12. P. 159. doi: 10.1186/s12966-015-0314-1 |
| [129] |
Faria GS, Polese JC, Ribeiro-Samora GA, et al. Validity of the accelerometer and smartphone application in estimating energy expenditure in individuals with chronic stroke. Braz J Phys Ther. 2019;23(3):236–243. doi: 10.1016/j.bjpt.2018.08.003 |
| [130] |
Faria G.S., Polese J.C., Ribeiro-Samora G.A., et al. Validity of the accelerometer and smartphone application in estimating energy expenditure in individuals with chronic stroke // Braz J Phys Ther. 2019. Vol. 23, N 3. P. 236–243. doi: 10.1016/j.bjpt.2018.08.003 |
| [131] |
Wu WJ, Yu HB, Tai WH, et al. Validity of Actigraph for Measuring Energy Expenditure in Healthy Adults: A Systematic Review and Meta-Analysis. Sensors (Basel). 2023;23(20):8545. doi: 10.3390/s23208545 |
| [132] |
Wu W.J., Yu H.B., Tai W.H., et al. Validity of Actigraph for Measuring Energy Expenditure in Healthy Adults: A Systematic Review and Meta-Analysis // Sensors (Basel). 2023. Vol. 23, N 20. P. 8545. doi: 10.3390/s23208545 |
| [133] |
Veras L.d.S. Calibration and validation of accelerometers: Establishing new equations for energy expenditure and ground reaction force prediction [dissertation]. 2019. Available from: https://github.com/verasls/MSc_dissertation?ysclid=m547g0ul7l433901886 |
| [134] |
Veras L.d.S. Calibration and validation of accelerometers: Establishing new equations for energy expenditure and ground reaction force prediction: dissertation. 2019. Available from: https://github.com/verasls/MSc_dissertation?ysclid=m547g0ul7l433901886 |
| [135] |
Lyden K, Kozey SL, Staudenmeyer JW, Freedson PS. A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations. Eur J Appl Physiol. 2011;111(2):187–201. doi: 10.1007/s00421-010-1639-8 |
| [136] |
Lyden K., Kozey S.L., Staudenmeyer J.W., Freedson P.S. A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations // Eur J Appl Physiol. 2011. Vol. 111, N 2. P. 187–201. doi: 10.1007/s00421-010-1639-8 |
| [137] |
Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30(5):777–781. doi: 10.1097/00005768-199805000-00021 |
| [138] |
Freedson P.S., Melanson E., Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer // Med Sci Sports Exerc. 1998. Vol. 30, N 5. P. 777–781. doi: 10.1097/00005768-199805000-00021 |
| [139] |
Crouter SE, Clowers KG, Bassett DR Jr. A novel method for using accelerometer data to predict energy expenditure. J Appl Physiol (1985). 2006;100(4):1324–1331. doi: 10.1152/japplphysiol.00818.2005 |
| [140] |
Crouter S.E., Clowers K.G., Bassett D.R. Jr. A novel method for using accelerometer data to predict energy expenditure // J Appl Physiol (1985). 2006. Vol. 100, N 4. P. 1324–1331. doi: 10.1152/japplphysiol.00818.2005 |
| [141] |
Daniel CR, Yazbek P, Santos ACA, Battistella LR. Validity study of a triaxial accelerometer for measuring energy expenditure in stroke inpatients of a physical medicine and rehabilitation center. Top Stroke Rehabil. 2023;30(4):402–409. doi: 10.1080/10749357.2022.2058292 |
| [142] |
Daniel C.R., Yazbek P., Santos A.C.A., Battistella L.R. Validity study of a triaxial accelerometer for measuring energy expenditure in stroke inpatients of a physical medicine and rehabilitation center // Top Stroke Rehabil. 2023. Vol. 30, N 4. P. 402–409. doi: 10.1080/10749357.2022.2058292 |
| [143] |
Pfeiffer KA, Clevenger KA, Kaplan A, et al. Accessibility and use of novel methods for predicting physical activity and energy expenditure using accelerometry: a scoping review. Physiol Meas. 2022;43(9). doi: 10.1088/1361-6579/ac89ca |
| [144] |
Pfeiffer K.A., Clevenger K.A., Kaplan A., et al. Accessibility and use of novel methods for predicting physical activity and energy expenditure using accelerometry: a scoping review // Physiol Meas. 2022. Vol. 43, N 9. doi: 10.1088/1361-6579/ac89ca |
| [145] |
Sasaki JE, Hickey A, Mavilia M, et al. Validation of the Fitbit wireless activity tracker for prediction of energy expenditure. J Phys Act Health. 2015;12(2):149–154. doi: 10.1123/jpah.2012-0495 |
| [146] |
Sasaki J.E., Hickey A., Mavilia M., et al. Validation of the Fitbit wireless activity tracker for prediction of energy expenditure // J Phys Act Health. 2015. Vol. 12, N 2. P. 149–154. doi: 10.1123/jpah.2012-0495 |
| [147] |
U.S. Department of Health and Human Services FDA Center for Drug Evaluation and Research; U.S. Department of Health and Human Services FDA Center for Biologics Evaluation and Research; U.S. Department of Health and Human Services FDA Center for Devices and Radiological Health. Guidance for industry: patient-reported outcome measures: use in medical product development to support labeling claims: draft guidance. Health Qual Life Outcomes. 2006;4:79. doi: 10.1186/1477-7525-4-79 |
| [148] |
U.S. Department of Health and Human Services FDA Center for Drug Evaluation and Research; U.S. Department of Health and Human Services FDA Center for Biologics Evaluation and Research; U.S. Department of Health and Human Services FDA Center for Devices and Radiological Health. Guidance for industry: patient-reported outcome measures: use in medical product development to support labeling claims: draft guidance // Health Qual Life Outcomes. 2006. Vol. 4. P. 79. doi: 10.1186/1477-7525-4-79 |
| [149] |
Parker FR. Department of Health and Human Services, US Food and Drug Administration: Authority and responsibility. FDA Administration Enforce Man. CRC. 2005. Р. 21–60. |
| [150] |
Parker F.R. Department of Health and Human Services, US Food and Drug Administration: Authority and responsibility. FDA Administration Enforce Man // CRC. 2005. Р. 21–60. |
| [151] |
Herrington WG, Goldsack JC, Landray MJ. Increasing the use of mobile technology-derived endpoints in clinical trials. Clin Trials. 2018;15(3):313–315. doi: 10.1177/1740774518755393 |
| [152] |
Herrington W.G., Goldsack J.C., Landray MJ. Increasing the use of mobile technology-derived endpoints in clinical trials // Clin Trials. 2018. Vol. 15, N 3. P. 313–315. doi: 10.1177/1740774518755393 |
| [153] |
Hart T, Dijkers MP, Whyte J, et al. A Theory-Driven System for the Specification of Rehabilitation Treatments. Arch Phys Med Rehabil. 2019;100(1):172–180. doi: 10.1016/j.apmr.2018.09.109 |
| [154] |
Hart T., Dijkers M.P., Whyte J., et al. A Theory-Driven System for the Specification of Rehabilitation Treatments // Arch Phys Med Rehabil. 2019. Vol. 100, N 1. P. 172–180. doi: 10.1016/j.apmr.2018.09.109 |
| [155] |
Van Stan JH, Whyte J, Duffy JR, et al. Voice Therapy According to the Rehabilitation Treatment Specification System: Expert Consensus Ingredients and Targets. Am J Speech Lang Pathol. 2021;30(5):2169–2201. doi: 10.1044/2021_AJSLP-21-00076 |
| [156] |
Van Stan J.H., Whyte J., Duffy J.R., et al. Voice Therapy According to the Rehabilitation Treatment Specification System: Expert Consensus Ingredients and Targets // Am J Speech Lang Pathol. 2021. Vol. 30, N 5. P. 2169–2201. doi: 10.1044/2021_AJSLP-21-00076 |
| [157] |
Lynch EA, Jones TM, Simpson DB, et al. ACTIOnS Collaboration. Activity monitors for increasing physical activity in adult stroke survivors. Cochrane Database Syst Rev. 2018;7(7):CD012543. doi: 10.1002/14651858.CD012543.pub2 |
| [158] |
Lynch E.A., Jones T.M., Simpson D.B., et al. ACTIOnS Collaboration. Activity monitors for increasing physical activity in adult stroke survivors // Cochrane Database Syst Rev. 2018. Vol. 7, N 7. P. CD012543. doi: 10.1002/14651858.CD012543.pub2 |
| [159] |
Mansfield A, Wong JS, Bryce J, et al. Use of Accelerometer-Based Feedback of Walking Activity for Appraising Progress With Walking-Related Goals in Inpatient Stroke Rehabilitation: A Randomized Controlled Trial. Neurorehabil Neural Repair. 2015;29(9):847–857. doi: 10.1177/1545968314567968 |
| [160] |
Mansfield A., Wong J.S., Bryce J., et al. Use of Accelerometer-Based Feedback of Walking Activity for Appraising Progress With Walking-Related Goals in Inpatient Stroke Rehabilitation: A Randomized Controlled Trial // Neurorehabil Neural Repair. 2015. Vol. 29, N 9. P. 847–857. doi: 10.1177/1545968314567968 |
| [161] |
Mattlage AE, Redlin SA, Rippee MA, et al. Use of Accelerometers to Examine Sedentary Time on an Acute Stroke Unit. J Neurol Phys Ther. 2015;39(3):166–171. doi: 10.1097/NPT.0000000000000092 |
| [162] |
Mattlage A.E., Redlin S.A., Rippee M.A., et al. Use of Accelerometers to Examine Sedentary Time on an Acute Stroke Unit // J Neurol Phys Ther. 2015. Vol. 39, N 3. P. 166–171. doi: 10.1097/NPT.0000000000000092 |
| [163] |
Usui H, Nishida Y. Relationship between physical activity and the very low-frequency component of heart rate variability after stroke. J Stroke Cerebrovasc Dis. 2015;24(4):840–843. doi: 10.1016/j.jstrokecerebrovasdis.2014.11.026 |
| [164] |
Usui H., Nishida Y. Relationship between physical activity and the very low-frequency component of heart rate variability after stroke // J Stroke Cerebrovasc Dis. 2015. Vol. 24, N 4. P. 840–843. doi: 10.1016/j.jstrokecerebrovasdis.2014.11.026 |
Eco-Vector
/
| 〈 |
|
〉 |