Early rehabilitation of patients after stroke-versions and contraversions (literature review)

Alexey A. Marciyash , Svetlana A. Zueva , Vadim G. Moses , Kira B. Moses , Evgeny V. Lishov , Svetlana I. Yelgina , Elena V. Rudaeva

Medical and Social Expert Evaluation and Rehabilitation ›› 2021, Vol. 24 ›› Issue (1) : 53 -60.

PDF
Medical and Social Expert Evaluation and Rehabilitation ›› 2021, Vol. 24 ›› Issue (1) : 53 -60. DOI: 10.17816/MSER60080
Reviews
review-article

Early rehabilitation of patients after stroke-versions and contraversions (literature review)

Author information +
History +
PDF

Abstract

The article contains an overview of the main directions of medical rehabilitation in stroke. Modern views on the process of intensive and moderate early rehabilitation are presented.

Keywords

stroke / rehabilitation / physiotherapy

Cite this article

Download citation ▾
Alexey A. Marciyash, Svetlana A. Zueva, Vadim G. Moses, Kira B. Moses, Evgeny V. Lishov, Svetlana I. Yelgina, Elena V. Rudaeva. Early rehabilitation of patients after stroke-versions and contraversions (literature review). Medical and Social Expert Evaluation and Rehabilitation, 2021, 24(1): 53-60 DOI:10.17816/MSER60080

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mijajlović MD, Pavlović A, Brainin M, et al. Post-stroke dementia – a comprehensive review. BMC Med. 2017;15(1):11. doi: 10.1186/s12916-017-0779-7

[2]

Mijajlović M.D., Pavlović A., Brainin M., et al. Post-stroke dementia – a comprehensive review // BMC Med. 2017. Vol. 15, N 1. Р. 11. doi: 10.1186/s12916-017-0779-7

[3]

Piradov MA, Maksimova MYu, Tanashyan MM. Stroke step-by-step instructions [Insul’t. Poshagovaya instruktsiya]. Moscow: GEOTAR-Media; 2019. 267 p. (In Russ).

[4]

Пирадов М.А., Максимова М.Ю., Танашян М.М. Инсульт. Пошаговая инструкция. Москва: ГЭОТАР-Медиа, 2019. 267 с.

[5]

Dąbrowski J, Czajka A, Zielińska-Turek J, et al. Brain functional reserve in the context of neuroplasticity after stroke. Neural Plast. 2019;2019:9708905. doi: 10.1155/2019/9708905

[6]

Dąbrowski J., Czajka A., Zielińska-Turek J., et al. Brain functional reserve in the context of neuroplasticity after stroke // Neural Plast. 2019. Vol. 2019. Р. 9708905. doi: 10.1155/2019/9708905

[7]

Stewart JC, Cramer SC. Genetic variation and neuroplasticity: role in rehabilitation after stroke. J Neurol Phys Ther. 2017;41(Suppl 3):S17–S23. doi: 10.1097/NPT.0000000000000180

[8]

Stewart J.C., Cramer S.C. Genetic variation and neuroplasticity: role in rehabilitation after stroke // J Neurol Phys Ther. 2017. Vol. 41, Suppl 3. S17–S23. doi: 10.1097/NPT.0000000000000180

[9]

Nemchek V, Haan EM, Mavros R, et al. Voluntary exercise ameliorates the good limb training effect in a mouse model of stroke. Exp Brain Res. 2021;239(2):687–697. doi: 10.1007/s00221-020-05994-6

[10]

Nemchek V., Haan E.M., Mavros R., et al. Voluntary exercise ameliorates the good limb training effect in a mouse model of stroke // Exp Brain Res. 2021. Vol. 239, N 2. Р. 687–697. doi: 10.1007/s00221-020-05994-6

[11]

Bundy DT, Guggenmos DJ, Murphy MD, Nudo RJ. Chronic stability of single-channel neurophysiological correlates of gross and fine reaching movements in the rat. PLoS One. 2019;14(10):e0219034. doi: 10.1371/journal.pone.0219034

[12]

Bundy D.T., Guggenmos D.J., Murphy M.D., Nudo R.J. Chronic stability of single-channel neurophysiological correlates of gross and fine reaching movements in the rat // PLoS One. 2019. Vol. 14, N 10. Р. e0219034. doi: 10.1371/journal.pone.0219034

[13]

Erickson CA, Gharbawie OA, Whishaw IQ. Attempt-dependent decrease in skilled reaching characterizes the acute postsurgical period following a forelimb motor cortex lesion: an experimental demonstration of learned nonuse in the rat. Behav Brain Res. 2007;179(2):208–18. doi: 10.1016/j.bbr.2007.02.004

[14]

Erickson C.A., Gharbawie O.A., Whishaw I.Q. Attempt-dependent decrease in skilled reaching characterizes the acute postsurgical period following a forelimb motor cortex lesion: an experimental demonstration of learned nonuse in the rat // Behav Brain Res. 2007. Vol. 179, N 2. Р. 208–218. doi: 10.1016/j.bbr.2007.02.004

[15]

Dijkhuizen RM, Ren J, Mandeville JB, et al. Functional magnetic resonance imaging of reorganization in rat brain after stroke. Proc Natl Acad Sci U S A. 2001;98(22):12766–12771. doi: 10.1073/pnas.231235598

[16]

Dijkhuizen R.M., Ren J., Mandeville J.B., et al. Functional magnetic resonance imaging of reorganization in rat brain after stroke // Proc Natl Acad Sci U S A. 2001. Vol. 98, N 22. Р. 12766–12771 doi: 10.1073/pnas.231235598

[17]

Dijkhuizen RM, Singhal AB, Mandeville JB, et al. Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. J Neurosci. 2003;23(2):510–517.

[18]

Dijkhuizen R.M., Singhal A.B., Mandeville J.B., et al. Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study // J Neurosci. 2003. Vol. 23, N 2. Р. 510–517.

[19]

Grefkes C, Fink GR. Recovery from stroke: current concepts and future perspectives. Neurol Res Pract. 2020;2:17. doi: 10.1186/s42466-020-00060-6

[20]

Grefkes C., Fink G.R. Recovery from stroke: current concepts and future perspectives // Neurol Res Pract. 2020. Vol. 2. Р. 17. doi: 10.1186/s42466-020-00060-6

[21]

Bernhardt J, Hayward KS, Kwakkel G, et al. Agreed definitions and a shared vision for new standards in stroke recovery research: the stroke recovery and rehabilitation roundtable taskforce. Neurorehabil Neural Repair. 2017;31(9):793–799. doi: 10.1177/1545968317732668

[22]

Bernhardt J., Hayward K.S., Kwakkel G., et al. Agreed definitions and a shared vision for new standards in stroke recovery research: the stroke recovery and rehabilitation roundtable taskforce // Neurorehabil Neural Repair. 2017. Vol. 31, N 9. Р. 793–799. doi: 10.1177/1545968317732668

[23]

Lapi D, Colantuoni A. Remodeling of cerebral microcirculation after ischemia-reperfusion. J Vasc Res. 2015;52(1):22–31. doi: 10.1159/000381096

[24]

Lapi D., Colantuoni A. Remodeling of cerebral microcirculation after ischemia-reperfusion // J Vasc Res. 2015. Vol. 52, N 1. Р. 22–31. doi: 10.1159/000381096

[25]

Kugler C, Thielscher C, Tambe BA, et al. Epothilones improve axonal growth and motor outcomes after stroke in the adult mammalian CNS. Cell Rep Med. 2020;1(9):100159. doi: 10.1016/j.xcrm.2020.100159

[26]

Kugler C., Thielscher C., Tambe B.A., et al. Epothilones improve axonal growth and motor outcomes after stroke in the adult mammalian CNS // Cell Rep Med. 2020. Vol. 1, N 9. Р. 100159. doi: 10.1016/j.xcrm.2020.100159

[27]

Kojima T, Hirota Y, Ema M, et al. Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. Stem Cells. 2010;28:545–554.

[28]

Kojima T., Hirota Y., Ema M., et al. Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum // Stem Cells. 2010. Vol. 28. Р. 545–554.

[29]

Figiel I, Kruk PK, Zaręba-Kozioł M, et al. MMP-9 signaling pathways that engage rho GTPases in brain plasticity. Cells. 2021;10(1):166. doi: 10.3390/cells10010166

[30]

Figiel I., Kruk P.K., Zaręba-Kozioł M., et al. MMP-9 signaling pathways that engage rho GTPases in brain plasticity // Cells. 2021. Vol. 10, N 1. Р. 166. doi: 10.3390/cells10010166

[31]

Andreska T, Rauskolb S, Schukraft N, et al. Induction of BDNF expression in layer II/III and layer V neurons of the motor cortex is essential for motor learning. J Neurosci. 2020;40(33):6289–6308. doi: 10.1523/JNEUROSCI.0288-20.2020

[32]

Andreska T., Rauskolb S., Schukraft N., et al. Induction of BDNF expression in layer II/III and layer V neurons of the motor cortex is essential for motor learning // J Neurosci. 2020. Vol. 40, N 33. Р. 6289–6308. doi: 10.1523/JNEUROSCI.0288-20.2020

[33]

Santoro M, Siotto M, Germanotta M, et al. BDNF rs6265 polymorphism and its methylation in patients with stroke undergoing rehabilitation. Int J Mol Sci. 2020;21(22):8438. doi: 10.3390/ijms21228438

[34]

Santoro M., Siotto M., Germanotta M., et al. BDNF rs6265 polymorphism and its methylation in patients with stroke undergoing rehabilitation // Int J Mol Sci. 2020. Vol. 21, N 22. Р. 8438. doi: 10.3390/ijms21228438

[35]

Schabitz WR, Steigleder T, Cooper-Kuhn CM, et al. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke. 2007;38(7):2165–2172.

[36]

Schabitz W.R., Steigleder T., Cooper-Kuhn C.M., et al. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis // Stroke. 2007. Vol. 38, N 7. Р. 2165–2172.

[37]

Kinde B, Wu DY, Greenberg ME, Gabel HW. DNA methylation in the gene body influences MeCP2-mediated gene repression. Proc Natl Acad Sci U S A. 2016;113(52):15114–15119. doi: 10.1073/pnas.1618737114

[38]

Kinde B., Wu D.Y., Greenberg M.E., Gabel H.W. DNA methylation in the gene body influences MeCP2-mediated gene repression // Proc Natl Acad Sci U S A. 2016. Vol. 113, N 52. Р. 15114–15119. doi: 10.1073/pnas.1618737114

[39]

Bian H, Zhou Y, Zhou D, et al. The latest progress on miR-374 and its functional implications in physiological and pathological processes. J Cell Mol Med. 2019;23(5):3063–3076. doi: 10.1111/jcmm.14219

[40]

Bian H., Zhou Y., Zhou D., et al. The latest progress on miR-374 and its functional implications in physiological and pathological processes // J Cell Mol Med. 2019. Vol. 23, N 5. Р. 3063–3076. doi: 10.1111/jcmm.14219

[41]

Zhang P, Xianglei J, Hongbo Y, et al. Neuroprotection of early locomotor exercise poststroke: evidence from animal studies. Can J Neurol Sci. 2015;42(4):213–220.

[42]

Zhang P., Xianglei J., Hongbo Y., et al. Neuroprotection of early locomotor exercise poststroke: evidence from animal studies // Can J Neurol Sci. 2015. Vol. 42, N 4. Р. 213–220.

[43]

Xu Y, Yao Y, Lyu H, et al. Rehabilitation effects of fatigue-controlled treadmill training after stroke: a rat model study. Front Bioeng Biotechnol. 2020;8:590013. doi: 10.3389/fbioe.2020.590013

[44]

Xu Y., Yao Y., Lyu H., et al. Rehabilitation effects of fatigue-controlled treadmill training after stroke: a rat model study // Front Bioeng Biotechnol. 2020. Vol. 8. Р. 590013. doi: 10.3389/fbioe.2020.590013

[45]

Biernaskie J. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci. 2004;24(5):1245–1254.

[46]

Biernaskie J. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury // J Neurosci. 2004. Vol. 24, N 5. Р. 1245–1254.

[47]

Seifali E, Hassanzadeh G, Mahdavipour M, et al. Extracellular vesicles derived from human umbilical cord perivascular cells improve functional recovery in brain ischemic rat via the inhibition of apoptosis. Iran Biomed J. 2020;24(6):347–360. doi: 10.29252/ibj.24.6.342

[48]

Seifali E., Hassanzadeh G., Mahdavipour M., et al. Extracellular vesicles derived from human umbilical cord perivascular cells improve functional recovery in brain ischemic rat via the inhibition of apoptosis // Iran Biomed J. 2020. Vol. 24, N 6. Р. 347–360. doi: 10.29252/ibj.24.6.342

[49]

Zhang L, Hu X, Luo J, et al. Physical exercise improves functional recovery through mitigation of autophagy, attenuation of apoptosis and enhancement of neurogenesis after MCAO in rats. BMC Neurosci. 2013;14(1):46. doi: 10.1186/1471-2202-14-46

[50]

Zhang L., Hu X., Luo J., et al. Physical exercise improves functional recovery through mitigation of autophagy, attenuation of apoptosis and enhancement of neurogenesis after MCAO in rats // BMC Neurosci. 2013. Vol. 14, N 1. Р. 46. doi: 10.1186/1471-2202-14-46

[51]

Codd LN, Blackmore DG, Vukovic J, Bartlett PF. Exercise reverses learning deficits induced by hippocampal injury by promoting neurogenesis. Sci Rep. 2020;10(1):19269. doi: 10.1038/s41598-020-76176-1

[52]

Codd L.N., Blackmore D.G., Vukovic J., Bartlett P.F. Exercise reverses learning deficits induced by hippocampal injury by promoting neurogenesis // Sci Rep. 2020. Vol. 10, N 1. Р. 19269. doi: 10.1038/s41598-020-76176-1

[53]

Li F, Pendy JT, Ding JN, et al. Exercise rehabilitation immediately following ischemic stroke exacerbates inflammatory injury. Neurol Res. 2017;39(6):530–537.

[54]

Li F., Pendy J.T., Ding J.N., et al. Exercise rehabilitation immediately following ischemic stroke exacerbates inflammatory injury // Neurol Res. 2017. Vol. 39, N 6. Р. 530–537.

[55]

Bundy DT, Nudo RJ. Preclinical studies of neuroplasticity following experimental brain injury. Stroke. 2019;50(9):2626–2633. doi: 10.1161/STROKEAHA.119.023550

[56]

Bundy D.T., Nudo R.J. Preclinical studies of neuroplasticity following experimental brain injury // Stroke. 2019. Vol. 50, N 9. Р. 2626–2633. doi: 10.1161/STROKEAHA.119.023550

[57]

Zhao LR, Willing A. Enhancing endogenous capacity to repair a stroke-damaged brain: An evolving field for stroke research. Prog Neurobiol. 2018;(163-164):5–26. doi: 10.1016/j.pneurobio.2018.01.004

[58]

Zhao L.R., Willing A. Enhancing endogenous capacity to repair a stroke-damaged brain: An evolving field for stroke research // Prog Neurobiol. 2018. N 163-164. Р. 5–26. doi: 10.1016/j.pneurobio.2018.01.004

[59]

Guo Z, Qian Q, Wong K, et al. Altered Corticomuscular Coherence (CMCoh) pattern in the upper limb during finger movements after stroke. Front Neurol. 2020;11:410. doi: 10.3389/fneur.2020.00410

[60]

Guo Z., Qian Q., Wong K., et al. Altered Corticomuscular Coherence (CMCoh) pattern in the upper limb during finger movements after stroke // Front Neurol. 2020. Vol. 11. Р. 410. doi: 10.3389/fneur.2020.00410

[61]

Bernhardt J, Dewey H, Thrift A, et al. A very early rehabilitation trial for stroke (AVERT): phase II safety and feasibility. Stroke. 2008;39(2):390–396. doi: 10.1161/STROKEAHA.107.492363

[62]

Bernhardt J., Dewey H., Thrift A., et al. A very early rehabilitation trial for stroke (AVERT): phase II safety and feasibility // Stroke. 2008. Vol. 39, N 2. Р. 390–396. doi: 10.1161/STROKEAHA.107.492363

[63]

Bernhardt J, Langhorne P, Lindley R, et al. Efficacy and safety of very early mobilisation within 24 hours of stroke onset (AVERT): a randomised controlled trial. Lancet. 2015;386:46–55.

[64]

Bernhardt J., Langhorne P., Lindley R., et al. Efficacy and safety of very early mobilisation within 24 hours of stroke onset (AVERT): a randomised controlled trial // Lancet. 2015. Vol. 386. Р. 46–55.

[65]

Bernhardt J, Churilov L, Ellery F, et al. Prespecified dose-response analysis for a very early rehabilitation trial (AVERT). Neurology. 2016;86(23):2138–2145.

[66]

Bernhardt J., Churilov L., Ellery F., et al. Prespecified dose-response analysis for a very early rehabilitation trial (AVERT) // Neurology. 2016. Vol. 86, N 23. Р. 2138–2145.

[67]

Belnik AP, Quintaine V, Andriantsifanetra C, et al. AMOBES (Active Mobility Very Early After Stroke): a randomized controlled trial. Stroke. 2017;48(2):400–405. doi: 10.1161/STROKEAHA.116.014803

[68]

Belnik A.P., Quintaine V., Andriantsifanetra C., et al. AMOBES (Active Mobility Very Early After Stroke): a randomized controlled trial // Stroke. 2017;48(2):400–405. doi: 10.1161/STROKEAHA.116.014803

[69]

Riberholt CG, Wagner V, Lindschou J, et al. Early head-up mobilisation versus standard care for patients with severe acquired brain injury: A systematic review with meta-analysis and Trial Sequential Analysis. PLoS One. 2020;15(8):e0237136. doi: 10.1371/journal.pone.0237136

[70]

Riberholt C.G., Wagner V., Lindschou J., et al. Early head-up mobilisation versus standard care for patients with severe acquired brain injury: A systematic review with meta-analysis and Trial Sequential Analysis // PLoS One. 2020. Vol. 15, N 8. Р. e0237136. doi: 10.1371/journal.pone.0237136

[71]

Tong Y, Cheng Z, Rajah GB, et al. High intensity physical rehabilitation later than 24 h post stroke is beneficial in patients: a pilot randomized controlled trial (RCT) study in mild to moderate ischemic stroke. Front Neurol. 2019;10:113. doi: 10.3389/fneur.2019.00113

[72]

Tong Y., Cheng Z., Rajah G.B., et al. High intensity physical rehabilitation later than 24 h post stroke is beneficial in patients: a pilot randomized controlled trial (RCT) study in mild to moderate ischemic stroke // Front Neurol. 2019. Vol. 10. Р. 113. doi: 10.3389/fneur.2019.00113

[73]

Van de Winckel A, De Patre D, Rigoni M, et al. Exploratory study of how Cognitive Multisensory Rehabilitation restores parietal operculum connectivity and improves upper limb movements in chronic stroke. Sci Rep. 2020;10(1):20278. doi: 10.1038/s41598-020-77272-y

[74]

Van de Winckel A., De Patre D., Rigoni M., et al. Exploratory study of how Cognitive Multisensory Rehabilitation restores parietal operculum connectivity and improves upper limb movements in chronic stroke // Sci Rep. 2020. Vol. 10, N 1. Р. 20278. doi: 10.1038/s41598-020-77272-y

[75]

Morreale M, Marchione P, Pili A, et al. Early versus delayed rehabilitation treatment in hemiplegic patients with ischemic stroke: proprioceptive or cognitive approach? Eur J Phys Rehabil Med. 2016;52(1):81–89.

[76]

Morreale M., Marchione P., Pili A., et al. Early versus delayed rehabilitation treatment in hemiplegic patients with ischemic stroke: proprioceptive or cognitive approach? // Eur J Phys Rehabil Med. 2016. Vol. 52, N 1. Р. 81–89.

[77]

Sarabadani Tafreshi A, Riener R, Klamroth-Marganska V. Distinctive steady-state heart rate and blood pressure responses to passive robotic leg exercise during head-up tilt: a pilot study in neurological patients. Front Physiol. 2017;8:327. doi: 10.3389/fphys.2017.00327

[78]

Sarabadani Tafreshi A., Riener R., Klamroth-Marganska V. Distinctive steady-state heart rate and blood pressure responses to passive robotic leg exercise during head-up tilt: a pilot study in neurological patients // Front Physiol. 2017. Vol. 8. Р. 327. doi: 10.3389/fphys.2017.00327

[79]

Kumar S, Yadav R. Comparison between Erigo tilt-table exercise and conventional physiotherapy exercises in acute stroke patients: a randomized trial. Arch Physiother. 2020;10:3. doi: 10.1186/s40945-020-0075-2

[80]

Kumar S., Yadav R. Comparison between Erigo tilt-table exercise and conventional physiotherapy exercises in acute stroke patients: a randomized trial // Arch Physiother. 2020. Vol. 10. Р. 3. doi: 10.1186/s40945-020-0075-2

[81]

Zeng X, Zhu G, Zhang M, Xie SQ. Reviewing clinical effectiveness of active training strategies of platform-based ankle rehabilitation robots. J Healthc Eng. 2018;2018:2858294. doi: 10.1155/2018/2858294

[82]

Zeng X., Zhu G., Zhang M., Xie S.Q. Reviewing clinical effectiveness of active training strategies of platform-based ankle rehabilitation robots // J Healthc Eng. 2018. Vol. 2018. Р. 2858294. doi: 10.1155/2018/2858294

[83]

Kuznetsov AN, Rybalko NV, Daminov VD, Luft AR. Early poststroke rehabilitation using a robotic tilt-table stepper and functional electrical stimulation. Stroke Res Treatm. 2013;2013:946056.

[84]

Kuznetsov A.N., Rybalko N.V., Daminov V.D., Luft A.R. Early poststroke rehabilitation using a robotic tilt-table stepper and functional electrical stimulation // Stroke Res Treatm. 2013. Vol. 2013. Р. 946056.

[85]

Forrester LW, Roy A, Krywonis A, et al. Modular ankle robotics training in early subacute stroke: a randomized controlled pilot study. Neurorehabil Neural Repair. 2014;28(7):678–687.

[86]

Forrester L.W., Roy A., Krywonis A., et al. Modular ankle robotics training in early subacute stroke: a randomized controlled pilot study // Neurorehabil Neural Repair. 2014. Vol. 28, N 7. Р. 678–687.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/