Heterogeneity by antibiotic sensitivity and genotype of Vibrio Cholerae El Tor strains isolated from environmental objects in Russia

Nadechda Selynskaya , Daria Alexandrovna Levchenko , Liana Egiazarjan , Nina Pasyukova

Epidemiology and Infectious Diseases ›› 2020, Vol. 25 ›› Issue (6) : 246 -252.

PDF
Epidemiology and Infectious Diseases ›› 2020, Vol. 25 ›› Issue (6) : 246 -252. DOI: 10.17816/EID81069
Original study articles
research-article

Heterogeneity by antibiotic sensitivity and genotype of Vibrio Cholerae El Tor strains isolated from environmental objects in Russia

Author information +
History +
PDF

Abstract

BACKGROUND: Waterborne diseases kill 3.4 million people worldwide each year. Cholera is one such disease. Up to 4 million cases of this infection occur in the world every year, leading to more than 100,000 deaths. The plasticity of the genome of the causative agent of cholera, the mobility of genetic elements carrying factors of pathogenicity and antibiotic resistance, contribute to the variability and unpredictability of the spectrum of resistance, the formation of new pheno- and genotypes. A single Vibrio cholerae isolate can contain up to 40 different genes that can confer resistance to 22 antibiotics, representing nine different classes of antimicrobial drugs. The ability of Vibrio cholerae to long-term survival in aquatic ecosystems in which there is an active exchange of genetic information and new ecological lines may arise that have potential advantages in the adaptation of microorganisms to adverse conditions, emphasizes the complexity of the ways of transmission of this infection and the need for studies at the environmental level. Periodic deliveries of cholera to the territory of the Russian Federation with (without) the spread of the infectious agent, V. cholerae contamination of surface water bodies used as sources of water supply and for recreational water use, the possibility of implementing the main route for cholera (water) the pathway for the spread of the pathogen of the infection indicate the need for conducting annual monitoring of antimicrobial resistance as part of the epidemiological surveillance of cholera in order to obtain information on the distribution, nature and dynamics of resistance in a specific period of time in a given territory.

AIM: Analysis of the spectrum of antibiotic resistance of Vibrio cholerae O1 serogroup strains isolated from environmental objects in various territories of the Russian Federation in 2020.

MATERIALS AND METHODS: 25 strains V. cholerae О1 El Tor, isolated from environmental objects in the Russian Federation in 2020. The sensitivity / resistance of the studied strains to 13 antibacterial drugs was determined by the method of serial dilutions on a solid nutrient medium in accordance with guidelines. PCR-genotyping of strains V. cholerae El Tor was performed for 14 target genes, followed by cluster analysis.

RESULTS: The strains showed resistance markers to furazolidone, trimethoprim/sulfamethoxazole, ampicillin, nalidixic acid, ceftriaxone, which formed 5 phenotypes. PCR-genotyping genotyping of 14 target genes divided the strains into five genotypes (A1–A5), corresponding to certain territories. The antibiotic resistance profiles within the same genotype in V. cholerae О1 El Tor belonging to different territories were both the same and different.

CONCLUSION: The genotypic diversity of isolated strains was revealed, the variability of resistance markers even in one region, which indicates both changes in the V. cholerae population and the possibility of circulation of various geno- and phenotypes, which emphasizes the importance of constant monitoring of these pathogens.

Keywords

Vibrio cholerae O1 El Tor / antibiotic resistance phenotypes / PCR-genotyping

Cite this article

Download citation ▾
Nadechda Selynskaya, Daria Alexandrovna Levchenko, Liana Egiazarjan, Nina Pasyukova. Heterogeneity by antibiotic sensitivity and genotype of Vibrio Cholerae El Tor strains isolated from environmental objects in Russia. Epidemiology and Infectious Diseases, 2020, 25(6): 246-252 DOI:10.17816/EID81069

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Moehling TJ, Lee DH, Henderson ME, et al. A smartphone-based particle diffusometry platform for sub-attomolar detection of Vibrio cholerae in environmental water. Biosens Bioelectron. 2020;167:112497. doi: 10.1016/j.bios.2020.112497

[2]

Moehling T.J., Lee D.H., Henderson M.E., et al. A smartphone-based particle diffusometry platform for sub-attomolar detection of Vibrio cholerae in environmental water // Biosens Bioelectron. 2020. Vol. 167. P. 112497. doi: 10.1016/j.bios.2020.112497

[3]

Ali M, Nelson AR, Lopez AL, Sack D. Updated global burden of cholera in endemic countries. PLoS Negl Trop Dis. 2015; 9(6):e0003832. doi: 10.1371/ journal.pntd.0003832

[4]

Ali M., Nelson A.R., Lopez A.L., Sack D. Updated global burden of cholera in endemic countries // PLoS Negl Trop Dis. 2015. Vol. 9, N 6. Р. e0003832. doi: 10.1371/journal.pntd.0003832

[5]

Wozniak RA, Waldor MK. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol. 2010;8(8):552–563. doi: 10.1038/nrmicro2382

[6]

Wozniak R.A., Waldor M.K. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow // Nat Rev Microbiol. 2010. Vol. 8, N 8. P. 552–563. doi: 10.1038/nrmicro2382

[7]

Mavian C, Paisie TK, Alam MT, et al. Toxigenic Vibrio cholera evolution and establishment of reservoirs in aquatic ecosystems. Proc Natl Acad Sci USA. 2020;117(14):7897–7904. doi: 10.1073/pnas.1918763117

[8]

Mavian C., Paisie T.K., Alam M.T., et al. Toxigenic Vibrio choleraе evolution and establishment of reservoirs in aquatic ecosystems // Proc Natl Acad Sci USA. 2020. Vol. 117, N 14. P. 7897–7904. doi: 10.1073/pnas.1918763117

[9]

Moskvitina EA, Yanovich EG, Kurilenko ML, et al. Cholera: monitoring of epidemiological situation around the world and in Russia (2010–2019). Forecast for 2020. Problems of Particularly Dangerous Infections. 2020;(2):38–47. (In Russ). doi: 10.21055/0370-1069-2020-2-38-47

[10]

Москвитина Э.А., Янович Е.Г., Куриленко М.Л., и др. Холера: мониторинг эпидемиологической обстановки в мире и России (2010–2019 гг.). Прогноз на 2020 г. // Проблемы особо опасных инфекций. 2020. № 2. С. 38–47. doi: 10.21055/0370-1069-2020-2-38-47

[11]

Guidelines 4.2.2495-09 Determination of the sensitivity of pathogens of dangerous bacterial infections (plague, anthrax, cholera, tularemia, brucellosis, sap, melioidosis) to antibacterial drugs. Moscow; 2009. 59 р. (In Russ).

[12]

Методические указания 4.2.2495-09 «Определение чувствительности возбудителей опасных бактериальных инфекций (чума, сибирская язва, холера, туляремия, бруцеллез, сап, мелиоидоз) к антибактериальным препаратам». Москва, 2009. 59 с.

[13]

Kruglikov VD, Levchenko DA, Vodopyanov AS, Nepomnyashchaya NB. PCR genotyping of non-toxigenic Vibrio cholerae strains as one of approaches to their actualization in terms of epidemiological surveillance of cholera. Epidemiology and Infectious Disease. Current Issues. 2018;(2):28–35. (In Russ). doi: 10.18565/epidem.2018.2.28-35

[14]

Кругликов В.Д., Левченко Д.А., Водопьянов А.С., Непомнящая Н.Б. ПЦР-генотипирование нетоксигенных штаммов холерных вибрионов как один из подходов их актуализации в плане эпиднадзора за холерой // Эпидемиология и инфекционные болезни. Актуальные вопросы. 2018. № 2. С. 28–35. doi: 10.18565/epidem.2018.2.28-35

[15]

Selyanskaya NA, Egiazaryan IA, Ezhova MI, et al. Analysis of antibiotic resistance of Vibrio cholerae isolated from environmental objects in Russia in 2019. Antibiotics and chemotherapy. 2021;66 (3-4):4–11. (In Russ). doi: 10.37489/0235-2990-2021-66-3-4-4-11

[16]

Селянская Н.А., Егиазарян Л.А., Ежова М.И., и др. Анализ устойчивости к антибактериальным препаратам холерных вибрионов, выделенных из объектов окружающей среды в России в 2019 г. // Антибиотики и химиотерапия. 2021. Т. 66, № 3-4. С. 4–11. doi: 10.37489/0235-2990-2021-66-3-4-4-11

[17]

Abana D, Gyamfi E, Dogbe M, et al. Investigating the virulence genes and antibiotic susceptibility patterns of Vibrio cholerae O1 in environmental and clinical isolates in Accra, Ghana. BMC Infect Dis. 2019;19(1):76. doi: 10.1186/s12879-019-3714-z

[18]

Abana D., Gyamfi E., Dogbe M., et al. Investigating the virulence genes and antibiotic susceptibility patterns of Vibrio cholerae O1 in environmental and clinical isolates in Accra, Ghana // BMC Infect Dis. 2019. Vol. 19, N 1. P. 76. doi: 10.1186/s12879-019-3714-z

[19]

Fu H, Yu P, Liang W, et al. Virulence, resistance, and genomic fingerprint traits of vibrio cholerae isolated from 12 species of aquatic products in shanghai, China. Microb Drug Resist. 2020;26(12):1526–1539. doi: 10.1089/mdr.2020.0269

[20]

Fu H., Yu P., Liang W., et al. Virulence, resistance, and genomic fingerprint traits of vibrio cholerae isolated from 12 species of aquatic products in shanghai, China // Microb Drug Resist. 2020. Vol. 26, N 12. P. 1526–1539. doi: 10.1089/mdr.2020.0269

[21]

Verma J, Bag S, Saha B, et al. Genomic plasticity associated with antimicrobial resistance in Vibrio cholerae. Proc Natl Acad Sci USA. 2019;116(13):6226–6231. doi: 10.1073/pnas.1900141116

[22]

Verma J., Bag S., Saha B., et al. Genomic plasticity associated with antimicrobial resistance in Vibrio cholerae // Proc Natl Acad Sci USA. 2019. Vol. 116, N 13. P. 6226–6231. doi: 10.1073/pnas.1900141116

[23]

Das B, Verma J, Kumar P, et al. Antibiotic resistance in Vibrio cholerae: Understanding the ecology of resistance genes and mechanisms. Vaccine. 2020;38(Suppl 1):A83–A92. doi: 10.1016/j.vaccine.2019.06.031

[24]

Das B., Verma J., Kumar P., et al. Antibiotic resistance in Vibrio cholerae: Understanding the ecology of resistance genes and mechanisms // Vaccine. 2020. Vol. 38, Suppl. 1. P. A83–A92. doi: 10.1016/j.vaccine.2019.06.031

[25]

Imamura D, Morita M, Sekizuka T, et al. Comparative genome analysis of VSP-II and SNPs reveals heterogenic variation in contemporary strains of Vibrio cholerae O1 isolated from cholera patients in Kolkata, India. PLoS Negl Trop Dis. 2017; 11(2):e0005386. doi: 10.1371/journal.pntd.0005386

[26]

Imamura D., Morita M., Sekizuka T., et al. Comparative genome analysis of VSP-II and SNPs reveals heterogenic variation in contemporary strains of Vibrio cholerae O1 isolated from cholera patients in Kolkata, India // PLoS Negl Trop Dis. 2017. Vol. 11, N 2. P. e0005386. doi: 10.1371/journal.pntd.0005386

RIGHTS & PERMISSIONS

Eco-vector

AI Summary AI Mindmap
PDF

85

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/